1
|
de Lahoz ME, Barjola P, Peláez I, Ferrera D, Fernandes-Magalhaes R, Mercado F. Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children. Biomedicines 2023; 11:3030. [PMID: 38002030 PMCID: PMC10669837 DOI: 10.3390/biomedicines11113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Migraine has been considered a chronic neuronal-based pain disorder characterized by the presence of cortical hyperexcitability. The Contingent Negative Variation (CNV) is the most explored electrophysiological index in migraine. However, the findings show inconsistencies regarding its functional significance. To address this, we conducted a review in both adults and children with migraine without aura to gain a deeper understanding of it and to derive clinical implications. The literature search was conducted in the PubMed, SCOPUS and PsycINFO databases until September 2022m and 34 articles were retrieved and considered relevant for further analysis. The main results in adults showed higher CNV amplitudes (with no habituation) in migraine patients. Electrophysiological abnormalities, particularly focused on the early CNV subcomponent (eCNV), were especially prominent a few days before the onset of a migraine attack, normalizing during and after the attack. We also explored various modulatory factors, including pharmacological treatments-CNV amplitude was lower after the intake of drugs targeting neural hyperexcitability-and other factors such as psychological, hormonal or genetic/familial influences on CNV. Although similar patterns were found in children, the evidence is particularly scarce and less consistent, likely due to the brain's maturation process during childhood. As the first review exploring the relationship between CNV and migraine, this study supports the role of the CNV as a potential neural marker for migraine pathophysiology and the prediction of pain attacks. The importance of further exploring the relationship between this neurophysiological index and childhood migraine is critical for identifying potential therapeutic targets for managing migraine symptoms during its development.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Universidad Rey Juan Carlos, 28922 Madrid, Spain; (M.E.d.L.); (P.B.); (I.P.); (D.F.); (R.F.-M.)
| |
Collapse
|
2
|
Osumi M, Sumitani M, Nishi Y, Nobusako S, Dilek B, Morioka S. Fear of movement-related pain disturbs cortical preparatory activity after becoming aware of motor intention. Behav Brain Res 2021; 411:113379. [PMID: 34051229 DOI: 10.1016/j.bbr.2021.113379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022]
Abstract
Fear of movement-related pain is known to disturb the process of motor preparation in patients with chronic pain. In the present study, we aimed to clarify the neural mechanisms underlying the influence of fear movement-related pain on motor preparatory brain activity using Libet's clock and electroencephalography (EEG). Healthy participants were asked to press a button while watching a rotating Libet's clock-hand, and report the number on the clock ("W time") when they made the "decision" to press the button with their right index finger. Immediately after pressing the button, a painful electrical stimulus was delivered to the dorsum of the left hand, causing participants to feel fear of movement (button press-related pain). We found that fear of movement-related pain caused the W time to be early, and that the amplitudes of readiness potentials (RPs) increased after awareness of motor intention emerged. In addition, fear of movement-related pain caused over-activation of the medial frontal cortex, supplementary motor area, cingulate motor area, and primary motor cortex after participants became aware of their motor intention. Such over-activation might result from conflict between the unrealized desire to escape from a painful experience and motivation to perform a required motor task.
Collapse
Affiliation(s)
- Michihiro Osumi
- Graduate School of Health Science, Kio University, Nara, Japan; Neurorehabilitation Research Center, Kio University, Nara, Japan.
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuki Nishi
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Satoshi Nobusako
- Graduate School of Health Science, Kio University, Nara, Japan; Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Burcu Dilek
- Trakya University, Faculty of Health Sciences, Department of Occupational Therapy, Edirne, Turkey; Institute of Health Sciences, PhD Candidate in Neuroscience, Istanbul Medipol University, Istanbul, Turkey
| | - Shu Morioka
- Graduate School of Health Science, Kio University, Nara, Japan; Neurorehabilitation Research Center, Kio University, Nara, Japan
| |
Collapse
|
3
|
Does experimentally induced pain-related fear influence central and peripheral movement preparation in healthy people and patients with low back pain? Pain 2020; 161:1212-1226. [DOI: 10.1097/j.pain.0000000000001813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Naeije G, Vaulet T, Wens V, Marty B, Goldman S, De Tiège X. Multilevel Cortical Processing of Somatosensory Novelty: A Magnetoencephalography Study. Front Hum Neurosci 2016; 10:259. [PMID: 27313523 PMCID: PMC4889577 DOI: 10.3389/fnhum.2016.00259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Using magnetoencephalography (MEG), this study investigates the spatio-temporal dynamics of the multilevel cortical processing of somatosensory change detection. Neuromagnetic signals of 16 healthy adult subjects (7 females and 9 males, mean age 29 ± 3 years) were recorded using whole-scalp-covering MEG while they underwent an oddball paradigm based on simple standard (right index fingertip tactile stimulation) and deviant (simultaneous right index fingertip and middle phalanx tactile stimulation) stimuli gathered into sequences to create and then deviate from stimulus patterns at multiple (local vs. global) levels of complexity. Five healthy adult subjects (3 females and 2 males, mean age 31, 6 ± 2 years) also underwent a similar oddball paradigm in which standard and deviant stimuli were flipped. Local deviations led to a somatosensory mismatch response peaking at 55-130 ms post-stimulus onset with a cortical generator located at the contralateral secondary somatosensory (cSII) cortex. The mismatch response was independent of the deviant stimuli physical characteristics. Global deviants led to a P300 response with cortical sources located bilaterally at temporo-parietal junction (TPJ) and supplementary motor area (SMA). The posterior parietal cortex (PPC) and the SMA were found to generate a contingent magnetic variation (CMV) attributed to top-down expectations. Amplitude of mismatch responses were modulated by top-down expectations and correlated with both the magnitude of the CMV and the P300 amplitude at the right TPJ. These results provide novel empirical evidence for a unified sensory novelty detection system in the human brain by linking detection of salient sensory stimuli in personal and extra-personal spaces to a common framework of multilevel cortical processing.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Thibaut Vaulet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Brice Marty
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| |
Collapse
|
5
|
Höfle M, Pomper U, Hauck M, Engel AK, Senkowski D. Spectral signatures of viewing a needle approaching one's body when anticipating pain. Eur J Neurosci 2013; 38:3089-98. [PMID: 23859421 DOI: 10.1111/ejn.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
When viewing the needle of a syringe approaching your skin, anticipation of a painful prick may lead to increased arousal. How this anticipation is reflected in neural oscillatory activity and how it relates to activity within the autonomic nervous system is thus far unknown. Recently, we found that viewing needle pricks compared with Q-tip touches increases the pupil dilation response (PDR) and perceived unpleasantness of electrical stimuli. Here, we used high-density electroencephalography to investigate whether anticipatory oscillatory activity predicts the unpleasantness of electrical stimuli and PDR while viewing a needle approaching a hand that is perceived as one's own. We presented video clips of needle pricks and Q-tip touches, and delivered spatiotemporally aligned painful and nonpainful intracutaneous electrical stimuli. The perceived unpleasantness of electrical stimuli and the PDR were enhanced when participants viewed needle pricks compared with Q-tip touches. Source reconstruction using linear beamforming revealed reduced alpha-band activity in the posterior cingulate cortex (PCC) and fusiform gyrus before the onset of electrical stimuli when participants viewed needle pricks compared with Q-tip touches. Moreover, alpha-band activity in the PCC predicted PDR on a single trial level. The anticipatory reduction of alpha-band activity in the PCC may reflect a neural mechanism that serves to protect the body from forthcoming harm by facilitating the preparation of adequate defense responses.
Collapse
Affiliation(s)
- Marion Höfle
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| | - Ulrich Pomper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| | - Michael Hauck
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Senkowski
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| |
Collapse
|
6
|
Jacobs JV, Yaguchi C, Kaida C, Irei M, Naka M, Henry SM, Fujiwara K. Effects of experimentally induced low back pain on the sit-to-stand movement and electroencephalographic contingent negative variation. Exp Brain Res 2011; 215:123-34. [PMID: 21952791 PMCID: PMC3257517 DOI: 10.1007/s00221-011-2880-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 09/15/2011] [Indexed: 01/07/2023]
Abstract
It is becoming increasingly evident that people with chronic, recurrent low back pain (LBP) exhibit changes in cerebrocortical activity that associate with altered postural coordination, suggesting a need for a better understanding of how the experience of LBP alters postural coordination and cerebrocortical activity. To characterize changes in postural coordination and pre-movement cerebrocortical activity related to the experience of acutely induced LBP, 14 healthy participants with no history of LBP performed sit-to-stand movements in 3 sequential conditions: (1) without experimentally induced LBP; NoPain1, (2) with movement-associated LBP induced by electrocutaneous stimulation; Pain, and (3) again without induced LBP; NoPain2. The Pain condition elicited altered muscle activation and redistributed forces under the seat and feet prior to movement, decreased peak vertical force exerted under the feet during weight transfer, longer movement times, as well as decreased and earlier peak hip extension. Stepwise regression models demonstrated that electroencephalographic amplitudes of contingent negative variation during the Pain condition significantly correlated with the participants' change in sit-to-stand measures between the NoPain1 and Pain conditions, as well as with the subsequent difference in sit-to-stand measures between the NoPain1 and NoPain2 conditions. The results, therefore, identify the contingent negative variation as a correlate for the extent of an individual's LBP-related movement modifications and to the subsequent change in movement patterns from before to after the experience of acutely induced LBP, thereby providing a direction for future studies aimed to understand the neural mechanisms underlying the development of altered movement patterns with LBP.
Collapse
Affiliation(s)
- Jesse V Jacobs
- Department of Rehabilitation and Movement Science, University of Vermont, 305 Rowell Building, 106 Carrigan Drive, Burlington, VT 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Del Percio C, Le Pera D, Arendt-Nielsen L, Babiloni C, Brancucci A, Chen ACN, De Armas L, Miliucci R, Restuccia D, Valeriani M, Rossini PM. Distraction affects frontal alpha rhythms related to expectancy of pain: An EEG study. Neuroimage 2006; 31:1268-77. [PMID: 16529953 DOI: 10.1016/j.neuroimage.2006.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 10/13/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022] Open
Abstract
Previous electroencephalographic (EEG) evidence has shown event-related desynchronization (ERD) of alpha rhythms before predictable painful stimuli, as a possible neural concomitant of attentional preparatory processes (Babiloni, C., Brancucci, A., Babiloni, F., Capotosto, P., Carducci, F., Cincotti, F., Arendt-Nielsen, L., Chen, A.C., Rossini, P.M., 2003. Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study. Eur. J. Neurosci. 18 (6) 1692-700). This study tested the hypothesis that alpha ERD before predictable painful stimuli is reduced as an effect of distraction. A visual warning stimulus preceded a laser painful stimulation, which was strictly followed by visual imperative stimuli. In the Pain (control) condition, no task was required after the imperative stimuli. In the Pain + Movement condition, subjects had to perform a movement of the right index finger. In the Pain + Cognition condition, they had to mentally perform an arithmetical task. EEG data were recorded in 10 subjects from 30 electrodes. Artifact-free recordings were spatially enhanced by surface Laplacian transformation. Alpha ERD was computed at three alpha sub-bands according to subjects' individual alpha frequency peak (i.e., about 6-8 Hz, 8-10 Hz, 10-12 Hz). Compared to the control condition, the subjects reported a significantly lower stimulus intensity perception and unpleasantness in the Pain + Movement and Pain + Cognition conditions. In addition, there was a cancellation of the alpha 3 ERD (i.e., about 10-12 Hz) in Pain + Cognition condition and even a generation of a statistically significant alpha 3 ERS in Pain + Movement condition. These effects were maximum over fronto-central midline. These results suggest that distraction during the expectancy of pain is related to a reduced neural desynchronization of fronto-central midline alpha rhythms (i.e., reduced cortical activation) towards an overt hyper-synchronization (cortical idling).
Collapse
Affiliation(s)
- Claudio Del Percio
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|