1
|
Kloc ML, Holmes GL, Barry JM. Sex differences in cholinergic signaling affect functional outcomes for theta-gamma coordination in hippocampal subcircuits following experimental febrile status epilepticus. Epilepsia 2024; 65:2138-2151. [PMID: 38780490 PMCID: PMC11251858 DOI: 10.1111/epi.18017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Sex determines cognitive outcome in animal models of early life seizure, where males exhibit impaired hippocampal-dependent learning and memory compared with females. The physiological underpinnings of this sex effect are unclear. Cholinergic signaling is essential for the generation of hippocampal oscillations, and supplementation of cholinergic precursors prior to status epilepticus in immature male rats prevents subsequent memory deficits. We hypothesized that there are sex differences in acetylcholine circuits and their response to experimental febrile status epilepticus (eFSE). METHODS eFSE was induced in male and female rat pups. We transversed the hippocampus of postnatal day >60 control (CTL) and eFSE rats with a 64-channel laminar silicon probe to assay cholinergic-dependent theta oscillations under urethane anesthesia. Local field potential properties were compared during (1) baseline sensory stimulation, (2) pharmacological stimulation via acetylcholine reuptake blockade, and (3) sensory stimulation after muscarinic acetylcholine receptor block (atropine). RESULTS In all groups, a baseline tail pinch could elicit theta oscillations via corticohippocampal synaptic input. Following atropine, a tail pinch response could no longer be elicited in CTL male, CTL female, or eFSE female rats. In contrast, induced slow theta power in eFSE males after atropine was not decreased to spontaneous levels. Analysis of oscillation bandwidths revealed sex differences in acetylcholine modulation of theta frequency and slow gamma frequency and power. This study also identified significant effects of both sex and eFSE on baseline theta-gamma comodulation, indicating a loss of coupling in eFSE males and a potential gain of function in eFSE females. SIGNIFICANCE There are differences in cholinergic modulation of theta and gamma signal coordination between male and female rats. These differences may underlie worse cognitive outcomes in males following eFSE. Promoting the efficacy of muscarinic acetylcholine signaling prior to or following early life seizures could elucidate a mechanism for the temporal discoordination of neural signals within and between hippocampus and neocortex and provide a novel therapeutic approach for improving cognitive outcomes.
Collapse
Affiliation(s)
- Michelle L Kloc
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Gregory L Holmes
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Jeremy M Barry
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
2
|
Ruggiero RN, Marques DB, Rossignoli MT, De Ross JB, Prizon T, Beraldo IJS, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Lopes-Aguiar C, Leite JP. Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 2024; 12:RP90997. [PMID: 38593008 PMCID: PMC11003745 DOI: 10.7554/elife.90997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Jana Batista De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Ikaro Jesus Silva Beraldo
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | | | | | - Jose Eduardo Peixoto-Santos
- Neuroscience Discipline, Department of Neurology and Neurosurgery,Universidade Federal de São PauloSão PauloBrazil
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | - Joao Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| |
Collapse
|
3
|
Holmes GL. Commentary on the Paper "Effect of Seizures on the Developing Brain and Cognition". Semin Pediatr Neurol 2023; 47:101080. [PMID: 37919042 DOI: 10.1016/j.spen.2023.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
EFFECT OF SEIZURES ON THE DEVELOPING BRAIN AND COGNITION Gregory L. Holmes Seminars in Pediatric Neurology Volume 23, Issue 2, May 2016, Pages 120-126 Epilepsy is a complex disorder, which involves much more than seizures, encompassing a range of associated comorbid health conditions that can have significant health and quality-of-life implications. Of these comorbidities, cognitive impairment is one of the most common and distressing aspects of epilepsy. Clinical studies have demonstrated that refractory seizures, resistant to antiepileptic drugs, occurring early in life have significant adverse effects on cognitive function. Much of what has been learned about the neurobiological underpinnings of cognitive impairment following early-life seizures has come from animal models. While early-life seizures in rodents do not result in cell loss, seizures do result in changes in neurogenesis and synaptogenesis and alteration of excitatory/inhibitory balance, network connectivity and temporal coding. These morphological and physiological changes are accompanied by parallel impairment in cognitive skills. This increased understanding of the pathophysiological basis of seizure-induced cognitive deficits should allow investigators to develop novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT.
| |
Collapse
|
4
|
Kloc ML, Chen Y, Daglian JM, Holmes GL, Baram TZ, Barry JM. Spatial learning impairments and discoordination of entorhinal-hippocampal circuit coding following prolonged febrile seizures. Hippocampus 2023; 33:970-992. [PMID: 37096324 PMCID: PMC10529121 DOI: 10.1002/hipo.23541] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
How the development and function of neural circuits governing learning and memory are affected by insults in early life remains poorly understood. The goal of this study was to identify putative changes in cortico-hippocampal signaling mechanisms that could lead to learning and memory deficits in a clinically relevant developmental pathophysiological rodent model, Febrile status epilepticus (FSE). FSE in both pediatric cases and the experimental animal model, is associated with enduring physiological alterations of the hippocampal circuit and cognitive impairment. Here, we deconstruct hippocampal circuit throughput by inducing slow theta oscillations in rats under urethane anesthesia and isolating the dendritic compartments of CA1 and dentate gyrus subfields, their reception of medial and lateral entorhinal cortex inputs, and the efficacy of signal propagation to each somatic cell layer. We identify FSE-induced theta-gamma decoupling at cortical synaptic input pathways and altered signal phase coherence along the CA1 and dentate gyrus somatodendritic axes. Moreover, increased DG synaptic activity levels are predictive of poor cognitive outcomes. We propose that these alterations in cortico-hippocampal coordination interfere with the ability of hippocampal dendrites to receive, decode and propagate neocortical inputs. If this frequency-specific syntax is necessary for cortico-hippocampal coordination and spatial learning and memory, its loss could be a mechanism for FSE cognitive comorbidities.
Collapse
Affiliation(s)
- Michelle L. Kloc
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Yuncai Chen
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
| | - Jennifer M. Daglian
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
| | - Gregory L. Holmes
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Tallie Z. Baram
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
- Departments of Neurology, University California-Irvine, Irvine, California, USA
| | - Jeremy M. Barry
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
5
|
Velasquez F, Dickson C, Kloc ML, Schneur CA, Barry JM, Holmes GL. Optogenetic modulation of hippocampal oscillations ameliorates spatial cognition and hippocampal dysrhythmia following early-life seizures. Neurobiol Dis 2023; 178:106021. [PMID: 36720444 DOI: 10.1016/j.nbd.2023.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
There is increasing human and animal evidence that brain oscillations play a critical role in the development of spatial cognition. In rat pups, disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Early-life seizures are associated with long-term deficits in spatial cognition and aberrant hippocampal oscillatory activity. Here we asked whether modulation of hippocampal rhythms following early-life seizures can reverse or improve hippocampal connectivity and spatial cognition. We used optogenetic stimulation of the medial septum to induce physiological 7 Hz theta oscillations in the hippocampus during the critical period of spatial cognition following early-life seizures. Optogenetic stimulation of the medial septum in control and rats subjected to early-life seizures resulted in precisely regulated frequency-matched hippocampal oscillations. Rat pups receiving active blue light stimulation performed better than the rats receiving inert yellow light in a test of spatial cognition. The improvement in spatial cognition in these rats was associated with a faster theta frequency and higher theta power, coherence and phase locking value in the hippocampus than rats with early-life seizures receiving inert yellow light. These findings indicate that following early life seizures, modification of hippocampal rhythms may be a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Conor Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
6
|
Dickson CR, Holmes GL, Barry JM. Dynamic θ Frequency Coordination within and between the Prefrontal Cortex-Hippocampus Circuit during Learning of a Spatial Avoidance Task. eNeuro 2022; 9:ENEURO.0414-21.2022. [PMID: 35396256 PMCID: PMC9034755 DOI: 10.1523/eneuro.0414-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
θ-Scale coordination of prelimbic medial prefrontal cortex (mPFC) local field potentials (LFPs) and its influence via direct or indirect projections to the ventral hippocampus (vHC) and dorsal hippocampus (dHC) during spatial learning remains poorly understood. We hypothesized that θ frequency coordination dynamics within and between the mPFC, dHC, and vHC would be predetermined by the level of connectivity rather than reflecting differing circuit throughput relationships depending on cognitive demands. Moreover, we hypothesized that coherence levels would not change during learning of a complex spatial avoidance task. Adult male rats were bilaterally implanted with EEG electrodes and LFPs recorded in each structure. Contrary to predictions, θ coherence averaged across "Early" or "Late" training sessions in the mPFC-HC, mPFC-mPFC, and HC-HC increased as a function of task learning. Coherence levels were also highest between the indirectly connected mPFC-dHC circuit, particularly during early training. Although mPFC postacquisition coherence remained higher with dHC than vHC, dynamic mPFC coherence patterns with both hippocampal poles across avoidance epochs were similar. In the 3 s before avoidance, a regional temporal sequence of transitory coherence peaks emerged between the mPFC-mPFC, the mPFC-HC, and then dHC-dHC. During this sequence, coherence within θ bandwidth fluctuated between epochs at distinct subfrequencies, suggesting frequency-specific roles for the propagation of task-relevant processing. On a second timescale, coherence frequency within and between the mPFC and hippocampal septotemporal axis change as a function of avoidance learning and cognitive demand. The results support a role for θ coherence subbandwidths, and specifically an 8- to 9-Hz mPFC θ signal, for generating and processing qualitatively different types of information in the organization of spatial avoidance behavior in the mPFC-HC circuit.
Collapse
Affiliation(s)
- Conor R Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington 05405, VT
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington 05405, VT
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington 05405, VT
| |
Collapse
|
7
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Kloc ML, Marchand DH, Holmes GL, Pressman RD, Barry JM. Cognitive impairment following experimental febrile seizures is determined by sex and seizure duration. Epilepsy Behav 2022; 126:108430. [PMID: 34902661 PMCID: PMC8748413 DOI: 10.1016/j.yebeh.2021.108430] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Febrile seizures are the most common type of seizures in children. While in most children the outcome is favorable, children with febrile status epilepticus may exhibit modest cognitive impairment. Whether children with other forms of complex febrile seizure, such as repetitive febrile seizures within the same illness are at risk of cognitive deficits is not known. In this study, we used a well-established model of experimental febrile seizures in rat pups to compare the effects of febrile status epilepticus and recurrent febrile seizures on subsequent spatial cognition and anxiety. METHODS Male and female rat pups were subjected to hyperthermic seizures at postnatal day 10 and were divided into groups of rats with continuous seizures for ≥40 min or recurrent febrile seizures. They were then tested as adults in the active avoidance and spatial accuracy tests to assess spatial learning and memory and the elevated plus maze to measure anxiety. RESULTS Febrile status epilepticus rats demonstrated impaired spatial cognition in active avoidance and spatial accuracy and exhibited reduced anxiety-like behavior in the elevated plus maze. Rats with recurrent febrile seizures did not differ significantly from the controls on any measures. There were also significant sex-related differences with females with FSE performing far better than males with FSE in active avoidance but demonstrating a navigational learning impairment relative to CTL females in spatial accuracy. However, once learned, females with FSE performed the spatial accuracy task as well as CTL females. CONCLUSION There is a duration-dependent effect of febrile seizures on subsequent cognitive and behavioral outcomes. Febrile status epilepticus resulted in spatial cognitive deficits and reduced anxiety-related behaviors whereas rats with recurrent febrile seizures did not differ from controls. Sex had a remarkable effect on spatial cognitive outcome where males with FSE fared worse than females with FSE. The results demonstrate that sex should be considered as a biological variable in studies evaluating the effects of seizures on the developing brain.
Collapse
|
9
|
Kloc ML, Daglian JM, Holmes GL, Baram TZ, Barry JM. Recurrent febrile seizures alter intrahippocampal temporal coordination but do not cause spatial learning impairments. Epilepsia 2021; 62:3117-3130. [PMID: 34562024 DOI: 10.1111/epi.17082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Febrile seizures (FSs) are the most common form of seizures in children. Single short FSs are benign, but FSs lasting longer than 30 min, termed febrile status epilepticus, may result in neurological sequelae. However, there is little information about an intermediary condition, brief recurrent FSs (RFSs). The goal of this study was to determine the role of RFSs on spatial learning and memory and the properties of spontaneous hippocampal signals. METHODS A hippocampus-dependent active avoidance task was used to assess spatial learning and memory in adult rats that underwent experimental RFSs (eRFSs) in early life compared with their littermate controls. Following completion of the task, we utilized high-density laminar probes to measure spontaneous hippocampal CA1 circuit activity under urethane anesthesia, which allowed for the simultaneous recording of input regions in CA1 associated with both CA3 and entorhinal cortex. RESULTS RFSs did not result in deficits in the active avoidance spatial test, a hippocampus-dependent test of spatial learning and memory. However, in vivo high-density laminar electrode recordings from eRFS rats had significantly altered power and frequency expression of theta and gamma bandwidths as well as signaling efficacy along the CA1 somatodendritic axis. Thus, although eRFS modified CA1 neuronal input/output dynamics, these alterations were not sufficient to impair active avoidance spatial behavior. SIGNIFICANCE These findings indicate that although eRFSs do not result in spatial cognitive deficits in the active avoidance task, recurrent seizures do alter the brain and result in longstanding changes in the temporal organization of the hippocampus.
Collapse
Affiliation(s)
- Michelle L Kloc
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jennifer M Daglian
- Department of Pediatrics, University California, Irvine, Irvine, California, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tallie Z Baram
- Department of Pediatrics, University California, Irvine, Irvine, California, USA.,Department of Anatomy/Neurobiology, University California, Irvine, Irvine, California, USA.,Department of Neurology, University California, Irvine, Irvine, California, USA
| | - Jeremy M Barry
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Burke SN, Maurer DP. Floating ideas on theta waves. Behav Neurosci 2021; 134:471-474. [PMID: 33570990 DOI: 10.1037/bne0000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This special issue on the theta rhythm highlights recent experiments aimed at understanding the relationship between this slow, large amplitude oscillation and plasticity, fast oscillations, cellular activity and disease in both animals and humans. The articles in this issue of Behavioral Neuroscience use a number of approaches across different model systems and behavioral paradigms to provide an up-to-date account of recent progress in understanding how the theta rhythm coordinates neural activity in the service of cognition. Prominent themes that emerge are how theta is tightly related to movement in humans and rodents and how this rhythm could be leveraged as a biomarker for understanding and testing therapeutic approaches to treat psychiatric and neurological diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
11
|
Niedecker RW, Kloc ML, Holmes GL, Barry JM. Effects of early life seizures on coordination of hippocampal-prefrontal networks: Influence of sex and dynamic brain states. Epilepsia 2021; 62:1701-1714. [PMID: 34002378 PMCID: PMC8260466 DOI: 10.1111/epi.16927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Early life seizures (ELSs) alter activity-dependent maturation of neuronal circuits underlying learning and memory. The pathophysiological mechanisms underpinning seizure-induced cognitive impairment are not fully understood, and critical variables such as sex and dynamic brain states with regard to cognitive outcomes have not been explored. We hypothesized that in comparison to control (CTL) rats, ELS rats would exhibit deficits in spatial cognition correlating with impaired dynamic neural signal coordination between the hippocampus and medial prefrontal cortex (mPFC). METHODS Male and female rat pups were given 50 flurothyl-induced seizures over 10 days starting at postnatal Day 15. As adults, spatial cognition was tested through active avoidance on a rotating arena. Microwire tetrodes were implanted in the mPFC and CA1 subfield. Single cells and local field potentials were recorded and analyzed in each region during active avoidance and sleep. RESULTS ELS males exhibited avoidance impairments, whereas female rats were unaffected. During avoidance, hippocampus-mPFC coherence was higher in CTL females than CTL males across bandwidths. In comparison to CTL males, ELS male learners exhibit increased coherence within theta bandwidth as well as altered burst-timing in mPFC cell activity. Hippocampus-mPFC coherence levels are predictive of cognitive outcome in the active avoidance spatial task. SIGNIFICANCE Spatial cognitive outcome post-ELS is sex-dependent, as females fare better than males. ELS males that learn the task exhibit increased mPFC coherence levels at low-theta frequency, which may compensate for ELS effects on mPFC cell timing. These results suggest that coherence may serve as a biomarker for spatial cognitive outcome post-ELS and emphasize the significance of analyzing sex and dynamic cognition as variables in understanding seizure effects on the developing brain.
Collapse
Affiliation(s)
- Rhys W Niedecker
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Michelle L Kloc
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jeremy M Barry
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|