1
|
Farley SJ, Freeman JH. Central amygdala contributes to stimulus facilitation and pre-stimulus vigilance during cerebellar learning. Neurobiol Learn Mem 2024; 211:107925. [PMID: 38579895 PMCID: PMC11078604 DOI: 10.1016/j.nlm.2024.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Our previous studies found that the central amygdala (CeA) modulates cerebellum-dependent eyeblink conditioning (EBC) using muscimol inactivation. We also found that CeA inactivation decreases cerebellar neuronal activity during the conditional stimulus (CS) from the start of training. Based on these findings, we hypothesized that the CeA facilitates CS input to the cerebellum. The current study tested the CS facilitation hypothesis using optogenetic inhibition with archaerhodopsin (Arch) and excitation with channelrhodopsin (ChR2) of the CeA during EBC in male rats. Optogenetic manipulations were administered during the 400 ms tone CS or during a 400 ms pre-CS period. As predicted by the CS facilitation hypothesis CeA inhibition during the CS impaired EBC and CeA excitation during the CS facilitated EBC. Unexpectedly, CeA inhibition just prior to the CS also impaired EBC, while CeA excitation during the pre-CS pathway did not facilitate EBC. The results suggest that the CeA contributes to CS facilitation and vigilance during the pre-CS period. These putative functions of the CeA may be mediated through separate output pathways from the CeA to the cerebellum.
Collapse
Affiliation(s)
- Sean J Farley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - John H Freeman
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Hernández-Avalos I, Mota-Rojas D, Mendoza-Flores JE, Casas-Alvarado A, Flores-Padilla K, Miranda-Cortes AE, Torres-Bernal F, Gómez-Prado J, Mora-Medina P. Nociceptive pain and anxiety in equines: Physiological and behavioral alterations. Vet World 2021; 14:2984-2995. [PMID: 35017848 PMCID: PMC8743789 DOI: 10.14202/vetworld.2021.2984-2995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Pain and anxiety are two of the most important concerns in clinical veterinary medicine because they arise as consequences of multiple factors that can severely affect animal welfare. The aim of the present review was to provide a description and interpretation of the physiological and behavioral alterations associated with pain and anxiety in equines. To this end, we conducted an extensive review of diverse sources on the topic. The article begins by describing the neurophysiological pathway of pain, followed by a discussion of the importance of the limbic system in responses to pain and anxiety, since prolonged exposure to situations that cause stress and pain generates such physiological changes as tachycardia, tachypnea, hypertension, hyperthermia, and heart rate variability (HRV), often accompanied by altered emotional states, deficient rest, and even aggressiveness. In the long term, animals may show deficiencies in their ability to deal with changes in the environment due to alterations in the functioning of their immune, nervous, and endocrinologic systems. In conclusion, pain and anxiety directly impact the homeostasis of organisms, so it is necessary to conduct objective evaluations of both sensations using behavioral scales, like the horse grimace scale, complemented by assessments of blood biomarkers to analyze their correlation with physiological parameters: Heart rate, respiratory rate, HRV, theparasympathetic tone activity index, lactate and glucose levels, and temperature. Additional tools - infrared thermography, for example - can also be used in these efforts to improve the quality of life and welfare of horses.
Collapse
Affiliation(s)
- I. Hernández-Avalos
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - D. Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - J. E. Mendoza-Flores
- Equine Hospital Faculty of Higher Studies Cuautitlán FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - A. Casas-Alvarado
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - K. Flores-Padilla
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - A. E. Miranda-Cortes
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - F. Torres-Bernal
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - J. Gómez-Prado
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - P. Mora-Medina
- Department of Livestock Sciences, Animal Welfare, FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| |
Collapse
|