1
|
Schmitter-Edgecombe M, Brown K, Chilton RC, Whiteley N, Greeley D. Naturalistic assessment of everyday multitasking in Parkinson's disease with and without mild cognitive impairment. Clin Neuropsychol 2024; 38:1910-1930. [PMID: 38475659 PMCID: PMC11390978 DOI: 10.1080/13854046.2024.2325681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Objective: Multitasking is an essential part of everyday functioning often not formally assessed by traditional neuropsychological tests. Although individuals with Parkinson's disease (PD) experience both motor and cognitive difficulties, previous research has demonstrated more pronounced functional difficulties with the presence of mild cognitive impairment (PD-MCI). The current study compared individuals with PD-MCI, PD with normal cognition (PD-NC), and healthy controls on a naturalistic task of multitasking, the Day Out Task (DOT). Method: Participants were 38 healthy older adults (HOA), 23 individuals with PD-NC, and 15 individuals with PD-MCI. Participants completed a battery of neuropsychological tasks and the DOT. Informants also completed a self-reported questionnaire of participants' everyday executive functioning. Results: Compared to PD-NC and HOA, participants with PD-MCI were less accurate and efficient and took longer to complete the DOT. After controlling for motor performance, only DOT accuracy remained worse, with poorer accuracy resulted from more subtasks being left incomplete or being completed inaccurately by the PD-MCI group. DOT sequencing was a significant predictor of informant reported everyday dysexecutive symptoms. Conclusions: The findings highlight that individuals with PD-MCI are likely to experience difficulties completing complex everyday tasks due to both motor and cognitive impairments. Clinicians may therefore recommend strategies to support efficiency and accuracy in complex tasks of everyday functioning in treatment considerations.
Collapse
Affiliation(s)
| | - Katelyn Brown
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | | | - Nicole Whiteley
- Department of Psychology, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
2
|
Tan X, Wang K, Sun W, Li X, Wang W, Tian F. A Review of Recent Advances in Cognitive-Motor Dual-Tasking for Parkinson's Disease Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6353. [PMID: 39409390 PMCID: PMC11478396 DOI: 10.3390/s24196353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND Parkinson's disease is primarily characterized by the degeneration of motor neurons, leading to significant impairments in movement. Initially, physical therapy was predominantly employed to address these motor issues through targeted rehabilitation exercises. However, recent research has indicated that cognitive training can enhance the quality of life for patients with Parkinson's. Consequently, some researchers have posited that the simultaneous engagement in computer-assisted motor and cognitive dual-task (CADT) may yield superior therapeutic outcomes. METHODS A comprehensive literature search was performed across various databases, and studies were selected following PRISMA guidelines, focusing on CADT rehabilitation interventions. RESULTS Dual-task training enhances Parkinson's disease (PD) rehabilitation by automating movements and minimizing secondary task interference. The inclusion of a sensor system provides real-time feedback to help patients make immediate adjustments during training. Furthermore, CADT promotes more vigorous participation and commitment to training exercises, especially those that are repetitive and can lead to patient boredom and demotivation. Virtual reality-tailored tasks, closely mirroring everyday challenges, facilitate more efficient patient adaptation post-rehabilitation. CONCLUSIONS Although the current studies are limited by small sample sizes and low levels, CADT rehabilitation presents as a significant, effective, and potential strategy for PD.
Collapse
Affiliation(s)
- Xiaohui Tan
- Institute of Artificial Intelligence Education, Capital Normal University, Beijing 100048, China
| | - Kai Wang
- Information Engineering College, Capital Normal University, Beijing 100048, China;
| | - Wei Sun
- Institute of Software, Chinese Academy of Sciences, Beijing 100045, China; (W.S.); (X.L.); (W.W.); (F.T.)
| | - Xinjin Li
- Institute of Software, Chinese Academy of Sciences, Beijing 100045, China; (W.S.); (X.L.); (W.W.); (F.T.)
| | - Wenjie Wang
- Institute of Software, Chinese Academy of Sciences, Beijing 100045, China; (W.S.); (X.L.); (W.W.); (F.T.)
| | - Feng Tian
- Institute of Software, Chinese Academy of Sciences, Beijing 100045, China; (W.S.); (X.L.); (W.W.); (F.T.)
| |
Collapse
|
3
|
Panda R, Deluisi JA, Lee TG, Davis S, Muñoz-Orozco I, Albin RL, Vesia M. Improving efficacy of repetitive transcranial magnetic stimulation for treatment of Parkinson disease gait disorders. Front Hum Neurosci 2024; 18:1445595. [PMID: 39253068 PMCID: PMC11381384 DOI: 10.3389/fnhum.2024.1445595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder that causes motor and cognitive deficits, presenting complex challenges for therapeutic interventions. Repetitive transcranial magnetic stimulation (rTMS) is a type of neuromodulation that can produce plastic changes in neural activity. rTMS has been trialed as a therapy to treat motor and non-motor symptoms in persons with Parkinson disease (PwP), particularly treatment-refractory postural instability and gait difficulties such as Freezing of Gait (FoG), but clinical outcomes have been variable. We suggest improving rTMS neuromodulation therapy for balance and gait abnormalities in PwP by targeting brain regions in cognitive-motor control networks. rTMS studies in PwP often targeted motor targets such as the primary motor cortex (M1) or supplementary motor area (SMA), overlooking network interactions involved in posture-gait control disorders. We propose a shift in focus toward alternative stimulation targets in basal ganglia-cortex-cerebellum networks involved in posture-gait control, emphasizing the dorsolateral prefrontal cortex (dlPFC), cerebellum (CB), and posterior parietal cortex (PPC) as potential targets. rTMS might also be more effective if administered during behavioral tasks designed to activate posture-gait control networks during stimulation. Optimizing stimulation parameters such as dosage and frequency as used clinically for the treatment of depression may also be useful. A network-level perspective suggests new directions for exploring optimal rTMS targets and parameters to maximize neural plasticity to treat postural instabilities and gait difficulties in PwP.
Collapse
Affiliation(s)
- Rupsha Panda
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Joseph A Deluisi
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Sheeba Davis
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | | | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service & GRECC, VAAAHS, Ann Arbor, MI, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Ban R, Ahn J, Simpkins C, Lazarus J, Yang F. Dynamic gait stability in people with mild to moderate Parkinson's disease. Clin Biomech (Bristol, Avon) 2024; 118:106316. [PMID: 39059102 DOI: 10.1016/j.clinbiomech.2024.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Falls are a serious health threat for people with Parkinson's disease. Dynamic gait stability has been associated with fall risk. Developing effective fall prevention interventions requires a sound understanding of how Parkinson's disease affects dynamic gait stability. This study compared dynamic gait stability within the Feasible Stability Region framework between people with and without Parkinson's disease during level walking at a self-selected speed. METHODS Twenty adults with Parkinson's disease and twenty age- and gender-matched healthy individuals were recruited. Dynamic gait stability at two gait instants: touchdown and liftoff, was assessed as the primary outcome measurement. Spatiotemporal gait parameters, including stance phase duration, step length, gait speed, and cadence were determined as explanatory variables. FINDINGS People with Parkinson's disease walked more slowly (p < 0.001) with a shorter step (p = 0.05), and prolonged stance phase (p = 0.04) than their healthy peers with moderate to large effect sizes. Dynamic gait stability did not show any group-associated differences (p > 0.36). INTERPRETATION Despite the different gait parameters between groups, people with Parkinson's disease exhibited similar dynamic gait stability to their healthy counterparts. To compensate for the potential dynamic gait stability deficit resulting from slow gait speed, individuals with Parkinson's disease adopted a short step length to shift the center of mass motion state closer to the Feasible Stability Region. Our findings could provide insight into the impact of Parkinson's disease on the control of dynamic gait stability.
Collapse
Affiliation(s)
- Rebecca Ban
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30303, USA
| | - Jiyun Ahn
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30303, USA
| | - Caroline Simpkins
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30303, USA
| | - Joash Lazarus
- Atlanta Neuroscience Institute, Atlanta, GA 30327, USA
| | - Feng Yang
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
5
|
Kim J, Rider JV, Zinselmeier A, Chiu YF, Peterson D, Longhurst JK. Dual-task gait has prognostic value for cognitive decline in Parkinson's disease. J Clin Neurosci 2024; 126:101-107. [PMID: 38865942 DOI: 10.1016/j.jocn.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Cognitive decline frequently occurs in individuals with Parkinson's disease (PD), but the clinical methods to predict the onset of cognitive changes are limited. Given preliminary evidence of the link between gait and cognition, the purpose of this study was to determine if dual task (DT) gait was related to declines in cognition over two years in PD. METHODS A retrospective two-year longitudinal study of 48 individuals with PD using data from the Parkinson's Progression Markers Initiative of the Michael J. Fox Foundation. The following data were extracted at baseline: spatiotemporal gait (during single and DT), demographics (age, sex), PD disease duration (time since diagnosis), motor function (Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS)), and cognition (Montreal Cognitive Assessment (MoCA)), with MoCA scores also extracted after two years. RESULTS A binomial logistic regression was conducted, with all covariates (above) in block 1 and DT effect (DTE) of gait characteristics in block 2 entered in a stepwise fashion. The final model was statistically significant (χ2(6) = 23.20, p < 0.001) and correctly classified 78.7 % of participants by cognitive status after two years. Only DTE of arm swing asymmetry (ASA) (p = 0.030) was included in block 2 such that a 1 % decline in DTE resulted in 1.6 % increased odds of cognitive decline. CONCLUSIONS Individuals with greater change in arm swing asymmetry from single to DT gait may be more likely to experience a decline in cognition within two years. These results suggested that reduced automaticity or poor utilization of attentional resources may be indicative of subtle changes in cognition and indicate that DT paradigms may hold promise as a marker of future cognitive decline.
Collapse
Affiliation(s)
- Jemma Kim
- Department of Physical Therapy, University of Delaware, 540 South College Avenue Suite 210 Newark, 19713, DE, USA; Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Street, St. Louis 63103, MO, USA.
| | - John V Rider
- School of Occupational Therapy, Touro University Nevada, 874 American Pacific Drive, Henderson 89014, Nevada, USA.
| | - Anne Zinselmeier
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Street, St. Louis 63103, MO, USA.
| | - Yi-Fang Chiu
- Department of Speech, Language, and Hearing Sciences, Saint Louis University, 3750 Lindell Blvd., St. Louis 63103, MO, USA.
| | - Daniel Peterson
- College of Health Solutions, Arizona State University, 550 N 3rd Street Suite 501, Phoenix, Tempe 85004, AZ, USA.
| | - Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Street, Suite 1011, St. Louis 63103, MO, USA.
| |
Collapse
|
6
|
Kazemi D, Chadeganipour AS, Dehghani M, Ghorbali F. Associations of dual-task walking costs with cognition in Parkinson's disease. Gait Posture 2024; 110:48-52. [PMID: 38484647 DOI: 10.1016/j.gaitpost.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Gait and cognition are closely associated in Parkinson's disease (PD), with specific cognitive domains being associated with different motor symptoms. By identifying gait parameters affected by cognition, clinicians can develop targeted interventions that address cognitive impairment, improve gait, and reduce the risk of injury in PD patients. RESEARCH QUESTION What gait parameters are affected by cognition in PD patients during dual-task walking, and how are these parameters related to cognitive function as measured by the Montreal Cognitive Assessment (MoCA)? METHODS 36 patients with available gait data and cognitive assessments were enrolled. Gait data of usual and dual-task walking sessions were recorded using lightweight wireless wearable sensors attached to trunk, lower, and upper extremities. Dual-task costs were calculated from usual and dual-task measures. Statistical analysis included non-parametric tests, Wilcoxon signed-rank test, Spearman's correlation, and stepwise linear regression models. RESULTS Walking speed, cadence, asymmetry in arm swing (ASA), between arms' amplitude symmetry (BAS), average stride time, and jerk of the acceleration movement of the legs were found to be affected during the dual-task walking session (P<0.05). Spearman's correlation showed significant correlations between MoCA scores and ASA (ρ=-0.469, P=0.036) and BAS (ρ=-0.448, P=0.036) costs. Stepwise linear regression models found that MoCA scores were significant predictors of BAS and ASA costs (P<0.05). SIGNIFICANCE This study found a significant association between global cognitive ability and several gait parameters costs under cognitive load caused by dual-task walking in PD patients. The study identified the gait parameters that were affected by cognitive load and found that MoCA scores were significant predictors of those gait parameters. Identifying gait parameters affected by cognition can lead to more targeted interventions for improving gait and reducing injury risk in PD patients.
Collapse
Affiliation(s)
- Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Ghorbali
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Durán-Navarrete MJ, Soto-Voitmann MJ, Torres-Araneda G, Lagos-Gutiérrez LD. [Effects on cognitive processes of dual-task training in people with Parkinson's disease: a systematic review]. Rev Neurol 2024; 78:219-228. [PMID: 38618669 PMCID: PMC11407447 DOI: 10.33588/rn.7808.2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Dual-tasking is a non-pharmacological intervention in people with neurodegenerative conditions, and is used in Parkinson's disease (PD), primarily to enhance motor performance. The aim of this review is to compile the current evidence on how dual-task training affects cognitive processes in people with PD. MATERIAL AND METHODS A systematic review was undertaken, applying PRISMA guidelines, which included articles obtained from the PubMed, Web of Science, Science Direct and Springer Link databases. Methodological quality was assessed using PEDro and ROBINS-I. RESULTS Twelve articles met the inclusion and exclusion criteria: nine of them were randomized controlled trials, and the remaining three were non-randomized studies. Improvements in attention and executive functions were identified, although the diversity of approaches and duration means that reaching definitive conclusions is difficult. CONCLUSIONS Increased research and standardized intervention programmes are essential. Longitudinal and randomized controlled studies in representative samples which provide conclusions that are applicable to other contexts are also important.
Collapse
|
8
|
Subotic A, Gee M, Nelles K, Ba F, Dadar M, Duchesne S, Sharma B, Masellis M, Black SE, Almeida QJ, Smith EE, Pieruccini-Faria F, Montero-Odasso M, Camicioli R. Gray matter loss relates to dual task gait in Lewy body disorders and aging. J Neurol 2024; 271:962-975. [PMID: 37902878 DOI: 10.1007/s00415-023-12052-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Within the spectrum of Lewy body disorders (LBD), both Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by gait and balance disturbances, which become more prominent under dual-task (DT) conditions. The brain substrates underlying DT gait variations, however, remain poorly understood in LBD. OBJECTIVE To investigate the relationship between gray matter volume loss and DT gait variations in LBD. METHODS Seventy-nine participants including cognitively unimpaired PD, PD with mild cognitive impairment, PD with dementia (PDD), or DLB and 20 cognitively unimpaired controls were examined across a multi-site study. PDD and DLB were grouped together for analyses. Differences in gait speed between single and DT conditions were quantified by dual task cost (DTC). Cortical, subcortical, ventricle, and cerebellum brain volumes were obtained using FreeSurfer. Linear regression models were used to examine the relationship between gray matter volumes and DTC. RESULTS Smaller amygdala and total cortical volumes, and larger ventricle volumes were associated with a higher DTC across LBD and cognitively unimpaired controls. No statistically significant interaction between group and brain volumes were found. Adding cognitive and motor covariates or white matter hyperintensity volumes separately to the models did not affect brain volume and DTC associations. CONCLUSION Gray matter volume loss is associated with worse DT gait performance compared to single task gait, across cognitively unimpaired controls through and the LBD spectrum. Impairment in DT gait performance may be driven by age-related cortical neurodegeneration.
Collapse
Affiliation(s)
- Arsenije Subotic
- Department of Medicine, Division of Neurology, University of Alberta, 7-112J CSB, 11350-83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| | - Myrlene Gee
- Department of Medicine, Division of Neurology, University of Alberta, 7-112J CSB, 11350-83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| | - Krista Nelles
- Department of Medicine, Division of Neurology, University of Alberta, 7-112J CSB, 11350-83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| | - Fang Ba
- Department of Medicine, Division of Neurology, University of Alberta, 7-112J CSB, 11350-83 Ave NW, Edmonton, AB, T6G 2G3, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
| | - Mahsa Dadar
- Department of Psychiatry, Douglas Mental Health University Health Centre, McGill University, Montreal, QC, Canada
| | - Simon Duchesne
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Center, Quebec City, QC, Canada
| | - Breni Sharma
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mario Masellis
- Department of Medicine (Division of Neurology), University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Department of Medicine (Division of Neurology), University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Quincy J Almeida
- Movement Disorders Research and Rehabilitation Centre, Carespace Health and Wellness, Waterloo, ON, Canada
| | - Eric E Smith
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Frederico Pieruccini-Faria
- Gait and Brain Lab, Parkwood Institute Lawson Health Research Institute, London, ON, Canada
- Department of Medicine and Division of Geriatric Medicine, Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Manuel Montero-Odasso
- Gait and Brain Lab, Parkwood Institute Lawson Health Research Institute, London, ON, Canada
- Department of Medicine and Division of Geriatric Medicine, Schulich School of Medicine and Dentistry, London, ON, Canada
- Schulich School of Medicine and Dentistry, Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada
| | - Richard Camicioli
- Department of Medicine, Division of Neurology, University of Alberta, 7-112J CSB, 11350-83 Ave NW, Edmonton, AB, T6G 2G3, Canada.
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
DeGutis J, Aul C, Barthelemy OJ, Davis BL, Alshuaib S, Marin A, Kinger SB, Ellis TD, Cronin-Golomb A. Side of motor symptom onset predicts sustained attention deficits and motor improvements after attention training in Parkinson's disease. Neuropsychologia 2023; 190:108698. [PMID: 37806442 DOI: 10.1016/j.neuropsychologia.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) side of motor symptom onset has been associated with distinct cognitive deficits; individuals with left-side onset (LPD) show more visuospatial impairments, whereas those with right-side onset (RPD) show more verbal impairments. Non-spatial attention is a critical cognitive ability associated with motor functioning that is right hemisphere lateralized but has not been characterized with regard to PD side of onset. We compared individuals with LPD and RPD on non-spatial attention tasks and examined differential responses to a 4-week sustained attention training program. METHOD Participants included 9 with LPD and 12 with RPD, who performed both brief and extended go/no-go continuous performance tasks and an attentional blink task. Participants also engaged in an at-home sustained attention training program, Tonic and Phasic Alertness Training (TAPAT), 5 days/week for 4 weeks. We assessed cognitive and motor symptoms before and after training, and after a 4-week no-contact period. RESULTS At baseline, participants with LPD exhibited worse performance than those with RPD on the extended continuous performance task, indicating specific deficits in sustaining attention. Poorer attention was associated with worse clinical motor scores. Notably, side of onset had a significant effect on clinical motor changes after sustained attention training, with only LPD participants improving after training, and 4/9 showing clinically meaningful improvements. CONCLUSIONS Compared to RPD, participants with LPD had poorer sustained attention pre-training and were more likely to improve on clinical motor functioning after sustained attention training. These findings support mechanistic differences between LPD and RPD and suggest potential differential treatment approaches.
Collapse
Affiliation(s)
- Joseph DeGutis
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Boston Attention and Learning Laboratory (BALLAB), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Courtney Aul
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Boston Attention and Learning Laboratory (BALLAB), VA Boston Healthcare System, Boston, MA, USA
| | - Olivier J Barthelemy
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Breanna L Davis
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Shaikhah Alshuaib
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Anna Marin
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Shraddha B Kinger
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Terry D Ellis
- Department of Physical Therapy, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston, MA, USA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Longhurst JK, Rider JV, Cummings JL, John SE, Poston B, Landers MR. Cognitive-motor dual-task interference in Alzheimer's disease, Parkinson's disease, and prodromal neurodegeneration: A scoping review. Gait Posture 2023; 105:58-74. [PMID: 37487365 PMCID: PMC10720398 DOI: 10.1016/j.gaitpost.2023.07.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Cognitive-motor interference (CMI) is a common deficit in Alzheimer's (AD) disease and Parkinson's disease (PD) and may have utility in identification of prodromal neurodegeneration. There is lack of consensus regarding measurement of CMI resulting from dual task paradigms. RESEARCH QUESTION How are individuals with AD, PD, and prodromal neurodegeneration impacted by CMI as measured by dual-task (DT) performance? METHODS A systematic literature search was performed in six datasets using the PRISMA guidelines. Studies were included if they had samples of participants with AD, PD, or prodromal neurodegeneration and reported at least one measure of cognitive-motor DT performance. RESULTS 4741 articles were screened and 95 included as part of this scoping review. Articles were divided into three non-mutually exclusive groups based on diagnoses, with 26 articles in AD, 56 articles in PD, and 29 articles in prodromal neurodegeneration, and results presented accordingly. SIGNIFICANCE Individuals with AD and PD are both impacted by CMI, though the impact is likely different for each disease. We found a robust body of evidence regarding the utility of measures of DT performance in the detection of subtle deficits in prodromal AD and some signals of utility in prodromal PD. There are several key methodological challenges related to DT paradigms for the measurement of CMI in neurodegeneration. Overall, DT paradigms show good potential as a clinical method to probe specific brain regions, networks, and function; however, task selection and effect measurement should be carefully considered.
Collapse
Affiliation(s)
- Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline St. Suite, 1011 St. Louis, MO, USA.
| | - John V Rider
- School of Occupational Therapy, Touro University Nevada, Henderson, NV, USA; Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| | | | - Samantha E John
- Department of Brain Health, University of Nevada, Las Vegas, NV, USA.
| | - Brach Poston
- Department of Kinesiology and Nutrition, University of Nevada, Las Vegas, NV, USA.
| | - Merrill R Landers
- Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
11
|
Barter JD, Thomas D, Ni L, Bay AA, Johnson TM, Prusin T, Hackney ME. Parkinson's Disease and Diabetes Mellitus: Individual and Combined Effects on Motor, Cognitive, and Psychosocial Functions. Healthcare (Basel) 2023; 11:healthcare11091316. [PMID: 37174858 PMCID: PMC10178005 DOI: 10.3390/healthcare11091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND/OBJECTIVE Understanding the effects of multimorbidity on motor and cognitive function is important for tailoring therapies. Individuals with diabetes mellitus (DM) have a greater risk of developing Parkinson's disease (PD). This study investigated if individuals with comorbid PD and DM experienced poorer functional ability compared to individuals with only PD or DM. METHODS A cross-sectional analysis of 424 individuals: healthy older adults (HOA), n = 170; PD without DM (PD-only), n = 162; DM without PD (DM-only), n = 56; and comorbid PD and DM (PD+DM), n = 36. Motor, motor-cognitive, cognitive, and psychosocial functions and PD motor symptoms were compared among groups using a two-way analyses of covariance with PD and DM as factors. RESULTS The PD-only and DM-only participants exhibited slower gait, worse balance, reduced strength, and less endurance. Motor-cognitive function was impaired in individuals with PD but not DM. DM-only participants exhibited impaired inhibition. Individuals with comorbid PD+DM had worse PD motor symptoms and exhibited impaired attention compared to the PD-only group. CONCLUSIONS Having PD or DM was independently associated with poorer physical and mental quality of life, depression, and greater risk for loss of function. Both PD and DM have independent adverse effects on motor function. Comorbid PD+DM further impairs attention compared to the effect of PD-only, suggesting the importance of therapies focusing on attention. Understanding the functional ability levels for motor and cognitive domains will enhance the clinical care for PD, DM, and PD+DM.
Collapse
Affiliation(s)
- Jolie D Barter
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dwaina Thomas
- School of Arts and Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Liang Ni
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Allison A Bay
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Theodore M Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Family and Preventive Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Birmingham/Atlanta VA Geriatric Research Education and Clinical Center, Brookhaven, GA 30319, USA
| | - Todd Prusin
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Madeleine E Hackney
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Birmingham/Atlanta VA Geriatric Research Education and Clinical Center, Brookhaven, GA 30319, USA
- School of Nursing, Emory University, Atlanta, GA 30322, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA 30033, USA
- Department of Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Rider JV, Longhurst JK, Navalta JW, Young DL, Landers MR. Fear of Falling Avoidance Behavior in Parkinson's Disease: Most Frequently Avoided Activities. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2023; 43:228-236. [PMID: 35773954 DOI: 10.1177/15394492221106103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fear of falling avoidance behavior (FFAB) is common in Parkinson's disease (PD). OBJECTIVES The objectives of the study are to determine what activities are most avoided due to FFAB among people with PD and whether any associations exist with demographic factors or fall history. METHOD Cross-sectional analysis of 174 individuals with PD using the Modified FFAB Questionnaire. RESULTS Walking in dimly lit, unfamiliar places, and different surfaces, lifting and carrying objects, walking in crowded places, recreational/leisure activities, and going up/downstairs were most avoided. Fallers reported more FFAB (ps < .029). FFAB for certain activities was associated with increased or decreased odds of falling. CONCLUSION Individuals with PD avoid walking in compromised situations and engaging in recreational/leisure activities due to FFAB. While excessive FFAB may increase the odds of falling, protective forms may be associated with decreased odds. Targeting FFAB among individuals with PD may increase safe participation in meaningful occupations in the home and community.
Collapse
Affiliation(s)
- John V Rider
- Touro University Nevada, Henderson, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | | | | | | | | |
Collapse
|
13
|
Giessler-Gonzalez K, Tracy B, Davies PL, Stephens JA. Revised Dual Task Screen is a Valid Measure of Dual Task Performance: Developing a Motor and Cognitive Dual Task Measure with Healthy Female Athletes. Occup Ther Health Care 2023:1-15. [PMID: 36943802 PMCID: PMC10511656 DOI: 10.1080/07380577.2023.2191280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Multitasking measures, such as dual task assessments, are particularly useful in detecting subtle deficits that can influence occupational performance after injuries, like sports-related concussion (SRC). In past work, our research team developed and revised a dual task assessment, the Dual Task Screen (DTS). Here, we evaluated nineteen healthy athletes using the revised DTS to address two specific research objectives. First, to replicate pilot study findings and demonstrate that the revised DTS is sensitive to dual task motor costs (i.e. poorer motor performance under dual task conditions, compared to single task conditions). Second, to evaluate if the revised DTS is sensitive to dual task cognitive costs (i.e. poorer cognitive performance under dual task conditions, compared to single task conditions). We confirmed that the revised DTS was sensitive to both dual task motor and cognitive costs; thus it is a valid measure of dual task performance. These positive findings support its prospective, future use by occupational therapists to evaluate multitasking performance after injuries, like SRC, or other injuries and illnesses that elicit deficits affecting optimal occupational performance.
Collapse
Affiliation(s)
| | - Brian Tracy
- Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Patricia L Davies
- Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| | - Jaclyn A Stephens
- Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
14
|
Xiao Y, Yang T, Shang H. The Impact of Motor-Cognitive Dual-Task Training on Physical and Cognitive Functions in Parkinson’s Disease. Brain Sci 2023; 13:brainsci13030437. [PMID: 36979247 PMCID: PMC10046387 DOI: 10.3390/brainsci13030437] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Rehabilitation is a high-potential approach to improving physical and cognitive functions in Parkinson’s disease (PD). Dual-task training innovatively combines motor and cognitive rehabilitation in a comprehensive module. Patients perform motor and cognitive tasks at the same time in dual-task training. The previous studies of dual-task training in PD had high heterogeneity and achieved controversial results. In the current review, we aim to summarize the current evidence of the effect of dual-task training on motor and cognitive functions in PD patients to support the clinical practice of dual-task training. In addition, we also discuss the current opinions regarding the mechanism underlying the interaction between motor and cognitive training. In conclusion, dual-task training is suitable for PD patients with varied disease duration to improve their motor function. Dual-task training can improve motor symptoms, single-task gait speed, single-task steep length, balance, and objective experience of freezing of gait in PD. The improvement in cognitive function after dual-task training is mild.
Collapse
|
15
|
The Executive-Function-Related Cognitive-Motor Dual Task Walking Performance and Task Prioritizing Effect on People with Parkinson's Disease. Healthcare (Basel) 2023; 11:healthcare11040567. [PMID: 36833101 PMCID: PMC9956339 DOI: 10.3390/healthcare11040567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
To safely walk in a community environment requires dual cognitive-walking ambulation ability for people with Parkinson's disease (PD). A past study showed inconsistent results on cognitive-walking performance for PD patients, possibly due to the various cognitive tasks used and task priority assignment. This study designed cognitive-walking tests that used executive-related cognitive tasks to evaluate patients with early-stage Parkinson's disease who did not have obvious cognitive deficits. The effect of assigning task prioritization was also evaluated. Sixteen individuals with PD (PD group) and 16 individuals without PD (control group) underwent single cognitive tests, single walking tests, dual walking tests, and prioritizing task tests. Three types of cognitive, spatial memory, Stroops, and calculation tasks were employed. The cognitive performance was evaluated by response time, accuracy, and speed-accuracy trade off composite score. The walking performance was evaluated by the temporal spatial gait characteristics and variation in gait. The results showed that the walking performance of the PD group was significantly worse than the control group in both single and dual walking conditions. The group difference in cognitive performance was shown in composite score under the dual calculation walking task but not under the single task. While assigning priority to walking, no group difference in walking was observed but the response accuracy rate of PD groups declined. This study concluded that the dual task walking test could sharpen the cognitive deficits for early-stage PD patients. The task priority assignment might not be recommended while testing gait deficits since it decreased the ability to discriminate group differences.
Collapse
|
16
|
Zhang M, Gan Y, Wang X, Wang Z, Feng T, Zhang Y. Gait performance and non-motor symptoms burden during dual-task condition in Parkinson's disease. Neurol Sci 2023; 44:181-190. [PMID: 36125574 DOI: 10.1007/s10072-022-06411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Impaired gait is observed in patients with Parkinson's disease (PD) in both single-task (ST) and dual-task (DT) conditions. Non-motor symptoms (NMSs), another vital symptom future experienced along the PD disease trajectory, contribute to gait performance in PD. However, whether DT gait performance is indicative of NMS burden (NMSB) remains unknown. This study investigated correlation between NMS and DT gait performance and whether NMSB is reflected in the DT effects (DTEs) of gait parameters in PD. METHODS Thirty-three idiopathic PD participants were enrolled in this study; the median H-Y staging was 2.5. NMSB was assessed by Non-motor Symptoms Scale (NMSS). Spatiotemporal gait parameters under ST and DT conditions were evaluated by wearable sensors. Gait parameters under ST and DT conditions and DTEs of gait parameters were compared across NMSB groups. The associations between NMS and DTEs of gait parameters were analyzed by correlation analysis and linear regression models. RESULTS Compared to PD patients with mild-moderate NMSB, the severe-very severe NMSB group showed slower gait speed and shorter stride length under both ST and DT conditions (p < 0.05). DT had significantly negative effect on gait parameters in PD patients, including gait speed, stride length, and gait cycle duration (p < 0.05). PD patients with mild-moderate NMSB showed larger DTEs of cadence and bilateral gait cycle duration (p < 0.05). DTEs of bilateral gait cycle duration and swing phase on the more affected (MA) side were significantly correlated with NMSS scores (∣rSp∣ ≥ 0.3, p < 0.05). Gait cycle duration on the less affected (LA) side explained 43% of the variance in NMSS scores, when accounting for demographic and clinical confounders (β = - 1.095 95% CI - 4.061 ~ - 0.058, p = 0.044; adjusted R2 = 0.434). CONCLUSION DT gait performance could reflect NMSB in PD patients at early stage, and gait cycle duration is a valuable gait parameter to further investigate and to provide more evidence for PD management.
Collapse
Affiliation(s)
- Meimei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yawen Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Yumei Zhang
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
17
|
Geritz J, Welzel J, Hansen C, Maetzler C, Hobert MA, Elshehabi M, Knacke H, Aleknonytė-Resch M, Kudelka J, Bunzeck N, Maetzler W. Cognitive parameters can predict change of walking performance in advanced Parkinson's disease - Chances and limits of early rehabilitation. Front Aging Neurosci 2022; 14:1070093. [PMID: 36620765 PMCID: PMC9813446 DOI: 10.3389/fnagi.2022.1070093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Links between cognition and walking performance in patients with Parkinson's disease (PD), which both decline with disease progression, are well known. There is lack of knowledge regarding the predictive value of cognition for changes in walking performance after individualized therapy. The aim of this study is to identify relevant predictive cognitive and affective parameters, measurable in daily clinical routines, for change in quantitative walking performance after early geriatric rehabilitation. Methods Forty-seven acutely hospitalized patients with advanced PD were assessed at baseline (T1) and at the end (T2) of a 2-week early rehabilitative geriatric complex treatment (ERGCT). Global cognitive performance (Montreal Cognitive Assessment, MoCA), EF and divided attention (Trail Making Test B minus A, delta TMT), depressive symptoms, and fear of falling were assessed at T1. Change in walking performance was determined by the difference in quantitative walking parameters extracted from a sensor-based movement analysis over 20 m straight walking in single (ST, fast and normal pace) and dual task (DT, with secondary cognitive, respectively, motor task) conditions between T1 and T2. Bayesian regression (using Bayes Factor BF10) and multiple linear regression models were used to determine the association of non-motor characteristics for change in walking performance. Results Under ST, there was moderate evidence (BF10 = 7.8, respectively, BF10 = 4.4) that lower performance in the ∆TMT at baseline is associated with lower reduction of step time asymmetry after treatment (R 2 adj = 0.26, p ≤ 0.008, respectively, R 2 adj = 0.18, p ≤ 0.009). Under DT walking-cognitive, there was strong evidence (BF10 = 29.9, respectively, BF10 = 27.9) that lower performance in the ∆TMT is associated with more reduced stride time and double limb support (R 2 adj = 0.62, p ≤ 0.002, respectively, R 2 adj = 0.51, p ≤ 0.009). There was moderate evidence (BF10 = 5.1) that a higher MoCA total score was associated with increased gait speed after treatment (R 2 adj = 0.30, p ≤ 0.02). Discussion Our results indicate that the effect of ERGT on change in walking performance is limited for patients with deficits in EF and divided attention. However, these patients also seem to walk more cautiously after treatment in walking situations with additional cognitive demand. Therefore, future development of individualized treatment algorithms is required, which address individual needs of these vulnerable patients.
Collapse
Affiliation(s)
- Johanna Geritz
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany,Department of Psychology, University of Lübeck, Lübeck, Germany,*Correspondence: Johanna Geritz,
| | - Julius Welzel
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Corina Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markus A. Hobert
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Morad Elshehabi
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Henrike Knacke
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Jennifer Kudelka
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
18
|
Effects of dual task training on dual task gait performance and cognitive function in individuals with Parkinson's disease: A meta-analysis and meta-regression. Arch Phys Med Rehabil 2022:S0003-9993(22)01727-0. [PMID: 36574531 DOI: 10.1016/j.apmr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore the effects of dual task (DT) training on DT gait performance and cognitive function in individuals with Parkinson's disease (PD) and to examine factors that might influence the effects of DT training. DATA SOURCES PubMed, Wiley Online Library, Cochrane Library, CINAHL, and Medline were searched for articles published from January 2006 to December 2021. STUDY SELECTION Randomized controlled trials comparing DT training with usual care or general exercise were included. DATA EXTRACTION The outcomes studied were DT gait parameters including speed, step and stride length, cadence, step and stride time variability, dual task cost on gait speed, and Trail Making Tests (TMT) presented as standardized mean differences. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to evaluate the quality of evidence. DATA SYNTHESIS Ten randomized controlled trials with 466 participants were included in the meta-analysis. The included studies presented, in general, with a low to high risk of bias. Meta-analyses used a random-effects model for all analysis. The meta-analysis showed the DT training effects on DT gait speed (SMD=0.825, p=0.012), DT step and stride length (SMD=0.400, p=0.015), TMT-A (SMD=0.533, p=0.010) and TMT-B (SMD=0.516, p=0.012) compared to the control group. Only the effect on TMT-A was maintained at the follow-up assessment. The results of meta-regression showed that participants with slower initial single task gait speed improved more after DT training on DT step and stride length. CONCLUSIONS The DT training improved more in DT gait speed with moderate-quality evidence as compared with usual care or conventional physical training in individuals with PD. The beneficial effects of DT training on DT step and stride length, attention and executive function were also demonstrated in this meta-analysis. Furthermore, the improvement in the DT walking step and stride length was related to the participant's initial single task gait speed.
Collapse
|
19
|
Rogalski Y, Key-DeLyria SE, Hazamy A, Altmann LJP. Global Coherence and Cognition in Parkinson's Disease. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:2962-2977. [PMID: 35930682 PMCID: PMC9911095 DOI: 10.1044/2022_jslhr-21-00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study compared global coherence (GC) in individuals with Parkinson's disease (PD) to a healthy older adult (HOA) group during single (sitting) and dual (stationary cycling) tasks. Additionally, it explored the relationship between GC and cognition in PD. METHOD Thirty-seven individuals with PD and 19 HOAs participated in the prospective, cross-sectional study. Participants completed discourse monologues elicited using published prompts while seated and while pedaling a stationary bicycle. Four rating levels of GC were analyzed (GC1 = no relationship to the topic, GC2 = remote relationship, GC3 = conditional relationship, and GC4 = complete relationship) using a published protocol with good interrater reliability and test-retest stability. Participants completed a battery of cognitive tasks, from which four latent factors were extracted: processing speed, working memory, inhibition, and updating. RESULTS Linear mixed modeling identified significant effects of GC level and GC level interactions with group, processing speed, and inhibition. The Group × GC Level interaction reflected that the PD group had a higher proportion of GC2 and GC1 utterances and fewer GC4 utterances than the HOA group. No differences between single and dual task conditions were found. Faster speed of processing predicted more GC4 utterances, whereas slower speed of processing predicted more G1 utterances. Better inhibition predicted fewer GC2 utterances. Group also predicted GC4 and GC2 proportions. CONCLUSIONS Individuals with PD experienced greater difficulties with GC than HOAs. Processing speed and inhibition contributed significantly to GC across groups. Analysis of GC should be considered an informative addition to assessment of communicative effectiveness in PD. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.20416056.
Collapse
Affiliation(s)
- Yvonne Rogalski
- Department of Speech-Language Pathology and Audiology, Ithaca College, NY
| | | | - Audrey Hazamy
- Department of Communication Arts, Sciences, and Disorders, Brooklyn College, NY
| | - Lori J P Altmann
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville
| |
Collapse
|
20
|
Geritz J, Welzel J, Hansen C, Maetzler C, Hobert MA, Elshehabi M, Sobczak A, Kudelka J, Stiel C, Hieke J, Alpes A, Bunzeck N, Maetzler W. Does Executive Function Influence Walking in Acutely Hospitalized Patients With Advanced Parkinson's Disease: A Quantitative Analysis. Front Neurol 2022; 13:852725. [PMID: 35928127 PMCID: PMC9344922 DOI: 10.3389/fneur.2022.852725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIt is well-known that, in Parkinson's disease (PD), executive function (EF) and motor deficits lead to reduced walking performance. As previous studies investigated mainly patients during the compensated phases of the disease, the aim of this study was to investigate the above associations in acutely hospitalized patients with PD.MethodsA total of seventy-four acutely hospitalized patients with PD were assessed with the delta Trail Making Test (ΔTMT, TMT-B minus TMT-A) and the Movement Disorder Society-revised version of the motor part of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS III). Walking performance was assessed with wearable sensors under single (ST; fast and normal pace) and dual-task (DT; walking and checking boxes as the motor secondary task and walking and subtracting seven consecutively from a given three-digit number as the cognitive secondary task) conditions over 20 m. Multiple linear regression and Bayes factor BF10 were performed for each walking parameter and their dual-task costs while walking (DTC) as dependent variables and also included ΔTMT, MDS-UPDRS III, age, and gender.ResultsUnder ST, significant negative effects of the use of a walking aid and MDS-UPDRS III on gait speed and at a fast pace on the number of steps were observed. Moreover, depending on the pace, the use of a walking aid, age, and gender affected step time variability. Under walking-cognitive DT, a resolved variance of 23% was observed in the overall model for step time variability DTC, driven mainly by age (β = 0.26, p = 0.09). Under DT, no other significant effects could be observed. ΔTMT showed no significant associations with any of the walking conditions.DiscussionThe results of this study suggest that, in acutely hospitalized patients with PD, reduced walking performance is mainly explained by the use of a walking aid, motor symptoms, age, and gender, and EF deficits surprisingly do not seem to play a significant role. However, these patients with PD should avoid walking-cognitive DT situations, as under this condition, especially step time variability, a parameter associated with the risk of falling in PD worsens.
Collapse
Affiliation(s)
- Johanna Geritz
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Psychology and Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- *Correspondence: Johanna Geritz
| | - Julius Welzel
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Corina Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markus A. Hobert
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Morad Elshehabi
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexandra Sobczak
- Department of Psychology and Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jennifer Kudelka
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christopher Stiel
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johanne Hieke
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Annekathrin Alpes
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nico Bunzeck
- Department of Psychology and Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
21
|
Dual task effect on upper and lower extremity skills in different stages of Parkinson's disease. Acta Neurol Belg 2022:10.1007/s13760-022-02007-x. [PMID: 35776407 DOI: 10.1007/s13760-022-02007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/09/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND AND PURPOSE Loss of automaticity and deteriorated executive function give rise to dual task deficits in Parkinson's disease (PD). This study aimed to compare single task and dual task upper and lower extremity skills in people with PD (PwPD) at different stages of PD and to examine the dual task effect (DTE) on upper and lower extremity skills in PwPD at different stages of PD. The second aim was to investigate the relationship between the DTE and the quality of life in PwPD. METHODS 30 patients divided into 2 groups as mild PD group and moderate PD group according to the Modified Hoehn & Yahr Scale. 15 age matched healthy adults were recruited as the control group. The Unified Parkinson's Disease Rating Scale (UPDRS), the Purdue Pegboard Test (PPT), the Timed Up and Go Test (TUG), the 10 Meter Walk Test (10MWT), and the Parkinson's Disease Questionnaire (PDQ-8) were used for assessments. RESULTS Single task and dual task scores of all assessments of all groups were significantly different. The DTE on PPT was greater in mild and moderate PD groups than control group and significantly lower in mild PD group than moderate PD group. However, DTE on the TUG and 10MWT was not different in mild PD group than control group and DTE significantly lower in both groups than moderate PD group. Significant correlations between the DTE on PPT, TUG and 10MWT and the PDQ-8 in PwPD were observed. CONCLUSION Dual task has a worsening effect on upper and lower extremity skills in PwPD. This effect can be observed earlier in upper extremity skills than lower extremity skills. Also, the DTE and the QoL in PwPD are related.
Collapse
|
22
|
Guess TM, Bliss R, Hall JB, Kiselica AM. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture. Gait Posture 2022; 96:130-136. [PMID: 35635988 DOI: 10.1016/j.gaitpost.2022.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Instrumented measurement of spatiotemporal parameters during walking can provide valuable information on an individual's overall function and health. Efficient, inexpensive, and accurate measurement of overground walking spatiotemporal parameters would be a critical component of providing point-of-care assessments of gait function, concussion recovery, fall-risk, and cognitive decline. Depth cameras combined with skeleton pose tracking algorithms, such as the Microsoft Kinect with body tracking software, have been used to measure walking spatiotemporal parameters. However, the ability of the latest generation Microsoft Kinect sensor, the Azure Kinect, to accurately measure overground walking spatiotemporal parameters has not been evaluated in the literature. RESEARCH QUESTION The purpose of this work was to compare overground walking spatiotemporal parameters measurements from a 12 camera Vicon optical motion capture system to measurements of a single Azure Kinect with body tracking SDK (software development kit). METHODS Spatiotemporal parameters of overground walking were simultaneously collected on twenty young healthy participants. Stride length, stride time, step length and step width were derived from ankle joint center locations and measurements from the two instruments were compared using descriptive statistics, scatter plots, Pearson correlation analyses, and Bland-Altman analyses. RESULTS Pearson correlation coefficients were greater than 0.87 for all spatiotemporal parameters with most parameters demonstrating very strong (> 0.9) agreement. The mean of the differences for stride length between measurements was 35.6 mm for the left limb and 39.1 mm for the right limb, both of which are less than 3% of average stride length. Mean of the differences for step width and stride time were less than 2% and 1% of their averages respectively. SIGNIFICANCE A single Microsoft Azure Kinect with body tracking SDK can provide clinically relevant measurement of walking spatiotemporal parameters, providing accessible and objective measurements that can improve clinical decision making across a variety of patient populations.
Collapse
Affiliation(s)
- Trent M Guess
- Department of Physical Therapy, University of Missouri, Columbia, MO, USA; Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.
| | - Rebecca Bliss
- Department of Physical Therapy, University of Missouri, Columbia, MO, USA
| | - Jamie B Hall
- Department of Physical Therapy, University of Missouri, Columbia, MO, USA
| | - Andrew M Kiselica
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
23
|
Shokouhi N, Khodakarami H, Fernando C, Osborn S, Horne M. Accuracy of Step Count Estimations in Parkinson’s Disease Can Be Predicted Using Ambulatory Monitoring. Front Aging Neurosci 2022; 14:904895. [PMID: 35783129 PMCID: PMC9244695 DOI: 10.3389/fnagi.2022.904895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives There are concerns regarding the accuracy of step count in Parkinson’s disease (PD) when wearable sensors are used. In this study, it was predicted that providing the normal rhythmicity of walking was maintained, the autocorrelation function used to measure step count would provide relatively low errors in step count. Materials and Methods A total of 21 normal walkers (10 without PD) and 27 abnormal walkers were videoed while wearing a sensor [Parkinson’s KinetiGraph (PKG)]. Median step count error rates were observed to be <3% in normal walkers but ≥3% in abnormal walkers. The simultaneous accelerometry data and data from a 6-day PKG were examined and revealed that the 5th percentile of the spectral entropy distribution, among 10-s walking epochs (obtained separately), predicted whether subjects had low error rate on step count with reference to the manual step count from the video recording. Subjects with low error rates had lower Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III) scores and UPDRS III Q10–14 scores than the high error rate counterparts who also had high freezing of gait scores (i.e., freezing of gait questionnaire). Results Periods when walking occurred were identified in a 6-day PKG from 190 non-PD subjects aged over 60, and 155 people with PD were examined and the 5th percentile of the spectral entropy distribution, among 10-s walking epochs, was extracted. A total of 84% of controls and 72% of people with PD had low predicted error rates. People with PD with low bradykinesia scores (measured by the PKG) had step counts similar to controls, whereas those with high bradykinesia scores had step counts similar to those with high error rates. On subsequent PKGs, step counts increased when bradykinesia was reduced by treatment and decreased when bradykinesia increased. Among both control and people with PD, low error rates were associated with those who spent considerable time making walks of more than 1-min duration. Conclusion Using a measure of the loss of rhythmicity in walking appears to be a useful method for detecting the likelihood of error in step count. Bradykinesia in subjects with low predicted error in their step count is related to overall step count but when the predicted error is high, the step count should be assessed with caution.
Collapse
Affiliation(s)
| | | | - Chathurini Fernando
- Parkinson’s Laboratory, Florey Institute of Neurosciences and Mental Health, Parkville, VIC, Australia
- Department of Clinical Neurosciences, St Vincent’s Hospital, Fitzroy, VIC, Australia
| | - Sarah Osborn
- Parkinson’s Laboratory, Florey Institute of Neurosciences and Mental Health, Parkville, VIC, Australia
- Department of Clinical Neurosciences, St Vincent’s Hospital, Fitzroy, VIC, Australia
| | - Malcolm Horne
- Parkinson’s Laboratory, Florey Institute of Neurosciences and Mental Health, Parkville, VIC, Australia
- Department of Clinical Neurosciences, St Vincent’s Hospital, Fitzroy, VIC, Australia
- *Correspondence: Malcolm Horne,
| |
Collapse
|
24
|
Kim H, Fraser S. Neural correlates of dual-task walking in people with central neurological disorders: a systematic review. J Neurol 2022; 269:2378-2402. [PMID: 34989867 DOI: 10.1007/s00415-021-10944-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND People with central neurological disorders experience difficulties with dual-task walking due to disease-related impairments. The objective of this review was to provide a comprehensive examination of the neural correlates (structural/functional brain changes) of dual-task walking in people with Parkinson's disease (PD), multiple sclerosis (MS), stroke, and Alzheimer's disease (AD). METHODS A systematic review of the literature was conducted, following PRISMA guidelines, on Medline, Embase, and Scopus. Included studies examined the relationship between structural and functional brain imaging and dual-task walking performance in people with PD, MS, stroke, and AD. Articles that met the inclusion criteria had baseline characteristics, study design, and behavioral and brain outcomes extracted. Twenty-three studies were included in this review. RESULTS Most structural imaging studies (75%) found an association between decreased brain integrity and poor dual-task performance. Specific brain regions that showed this association include the striatum regions and hippocampus in PD and supplementary motor area in MS. Functional imaging studies reported an association between increased prefrontal activity and maintained (compensatory recruitment) or decreased dual-task walking performance in PD and stroke. A subset (n = 2) of the stroke papers found no significant correlations. Increased supplementary motor area activity was associated with decreased performance in MS and stroke. No studies on AD were identified. CONCLUSION In people with PD, MS, and stroke, several neural correlates of dual-task walking have been identified, however, the direction of the association between neural and performance outcomes varied across the studies. The type of cognitive task used and presentation modality (e.g., visual) may have contributed to these mixed findings.
Collapse
Affiliation(s)
- Hyejun Kim
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 125 University Private, Ottawa, ON, K1N 6N5, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON, K1N 7K4, Canada.
| |
Collapse
|
25
|
Wang X, Chen L, Zhou H, Xu Y, Zhang H, Yang W, Tang X, Wang J, Lv Y, Yan P, Peng Y. Enriched Rehabilitation Improves Gait Disorder and Cognitive Function in Parkinson's Disease: A Randomized Clinical Trial. Front Neurosci 2021; 15:733311. [PMID: 34924926 PMCID: PMC8674725 DOI: 10.3389/fnins.2021.733311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Studies on non-pharmacological strategies for improving gait performance and cognition in Parkinson's disease (PD) are of great significance. We aimed to investigate the effect of and mechanism underlying enriched rehabilitation as a potentially effective strategy for improving gait performance and cognition in early-stage PD. Methods: Forty participants with early-stage PD were randomly assigned to receive 12 weeks (2 h/day, 6 days/week) of enriched rehabilitation (ER; n = 20; mean age, 66.14 ± 4.15 years; 45% men) or conventional rehabilitation (CR; n = 20; mean age 65.32 ± 4.23 years; 50% men). In addition, 20 age-matched healthy volunteers were enrolled as a control (HC) group. We assessed the general motor function using the Unified PD Rating Scale-Part III (UPDRS-III) and gait performance during single-task (ST) and dual-task (DT) conditions pre- and post-intervention. Cognitive function assessments included the Montreal Cognitive Assessment (MoCA), the Symbol Digit Modalities Test (SDMT), and the Trail Making Test (TMT), which were conducted pre- and post-intervention. We also investigated alteration in positive resting-state functional connectivity (RSFC) of the left dorsolateral prefrontal cortex (DLPFC) in participants with PD, mediated by ER, using functional magnetic resonance imaging (fMRI). Results: Compared with the HC group, PD participants in both ER and CR groups performed consistently poorer on cognitive and motor assessments. Significant improvements were observed in general motor function as assessed by the UPDRS-III in both ER and CR groups post-intervention. However, only the ER group showed improvements in gait parameters under ST and DT conditions post-intervention. Moreover, ER had a significant effect on cognition, which was reflected in increased MoCA, SDMT, and TMT scores post-intervention. MoCA, SDMT, and TMT scores were significantly different between ER and CR groups post-intervention. The RSFC analysis showed strengthened positive functional connectivity between the left DLPFC and other brain areas including the left insula and left inferior frontal gyrus (LIFG) post-ER. Conclusion: Our findings indicated that ER could serve as a potentially effective therapy for early-stage PD for improving gait performance and cognitive function. The underlying mechanism based on fMRI involved strengthened RSFC between the left DLPFC and other brain areas (e.g., the left insula and LIFG).
Collapse
Affiliation(s)
- Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - LanLan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenrui Yang
- Graduate School, Dalian Medical University, Dalian, China
| | - XiaoJia Tang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Junya Wang
- Medical College, Yangzhou University, Yangzhou, China
| | - Yichen Lv
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Ping Yan
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
26
|
Cholinesterase inhibitors for gait, balance, and fall in Parkinson disease: a meta-analysis. NPJ Parkinsons Dis 2021; 7:103. [PMID: 34824258 PMCID: PMC8617004 DOI: 10.1038/s41531-021-00251-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
Gait disturbance and imbalance are the major symptoms of Parkinson disease (PD), with fall being the most undesirable consequence. However, few effective evidence-based treatments are available for alleviating these symptoms and preventing falls. Cholinesterase inhibitors (ChEIs) are a well-established treatment for PD dementia with possible impacts on gait, balance, and fall reduction. The present study involved a meta-analysis of randomized controlled trials (RCTs) to investigate the effects of ChEIs on gait, balance, and fall in patients with PD. We searched for studies using the PubMed, Embase, and Web of Science databases. The major outcomes were effects on gait parameters, balance, and fall. This study was registered with PROSPERO (CRD42021254733). Five RCTs were included in the present meta-analysis. ChEIs did not significantly increase gait speed in PD patients (mean difference [MD]: 0.03 m/s, 95% confidence interval [CI]: -0.02 to 0.07, p = 0.29). However, ChEI treatment significantly decreased step or stride variability during the single task (standard MD: -0.43, 95% CI = -0.79 to -0.06, p = 0.02). Regarding fall and balance, trending but nonsignificant beneficial effects were observed with ChEI treatment. In conclusion, although ChEI treatment did not significantly improve gait speed and reduce fall, it can significantly reduce step or stride variability. Considering that gait disorder is a challenging issue in patients with PD and that ChEIs are generally tolerable, the present meta-analysis may provide more evidence for the benefit of ChEIs on PD gait disturbance as an alternative treatment consideration.
Collapse
|
27
|
de Moura JA, Chowdhury TI, Leal JC, Pimentel Piemonte ME, Kopczynski MC, Quarles JP, Dos Santos Mendes FA. Virtual functional mobility test: A potential novel tool for assessing mobility of individuals with Parkinson's disease in a multitask condition. J Clin Neurosci 2021; 93:17-22. [PMID: 34656243 DOI: 10.1016/j.jocn.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/20/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
There are few instruments available for evaluating functional mobility during multitasking in people with Parkinson's Disease (PD). Virtual Reality is a potentially tool capable of aiding in the evaluation of functional mobility. The purpose of this study is to verify the potential of the Virtual Functional Mobility Test (VFMT) as a clinical tool to assess functional mobility of people with PD during multitasking condition. 25 people with PD and 25 people without PD, matched for age and sex, were recruited. Participants were evaluated through the Trail Making Test, Timed "UP and GO" test, Timed "UP and GO" test in dual task condition and through the VFMT, composed of 1) a simple task, and 2) a complex task. The VFMT and clinical tests were sensitive to differentiate the groups, except the trail making test part B (p = 0.332) and complex task (p = 0.052). Strong correlations were observed between parts A and B of the trail making test (r = 0.75) and complex task (r = 0.72); Moderate correlations between Timed Up and Go test and Timed Up and Go test in dual task condition with simple task (r = 0.47) and complex task (r = 0.55), respectively, were found. The complex task and simple task showed excellent and moderate reliability intra-rater, respectively. It was concluded that the novel VFMT is feasible, sensible, reliable and has potential as an instrument for the evaluation of functional mobility during multitasking in people with PD.
Collapse
Affiliation(s)
- Júlia Araújo de Moura
- Graduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brazil
| | | | | | - Maria Elisa Pimentel Piemonte
- Fonoaudiology, Physiotherapy and Occupational Therapy Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | - John P Quarles
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, USA.
| | | |
Collapse
|
28
|
Bhatt M, Mahana B, Ko JH, Kolesar TA, Kanitkar A, Szturm T. Computerized Dual-Task Testing of Gait Visuomotor and Cognitive Functions in Parkinson's Disease: Test-Retest Reliability and Validity. Front Hum Neurosci 2021; 15:706230. [PMID: 34335213 PMCID: PMC8320846 DOI: 10.3389/fnhum.2021.706230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mobility and cognitive impairments in Parkinson's disease (PD) often coexist and are prognostic of adverse health events. Consequently, assessment and training that simultaneously address both gait function and cognition are important to consider in rehabilitation and promotion of healthy aging. For this purpose, a computer game-based rehabilitation treadmill platform (GRP) was developed for dual-task (DT) assessment and training. OBJECTIVE The first objective was to establish the test-retest reliability of the GRP assessment protocol for DT gait, visuomotor and executive cognitive function in PD patients. The second objective was to examine the effect of task condition [single task (ST) vs. DT] and disease severity (stage 2 vs. stage 3) on gait, visuomotor and cognitive function. METHODS Thirty individuals aged 55 to 70 years, diagnosed with PD; 15 each at Hoehn and Yahr scale stage 2 (PD-2) and 3 (PD-3) performed a series of computerized visuomotor and cognitive game tasks while sitting (ST) and during treadmill walking (DT). A treadmill instrumented with a pressure mat was used to record center of foot pressure and compute the average and coefficient of variation (COV) of step time, step length, and drift during 1-min, speed-controlled intervals. Visuomotor and cognitive game performance measures were quantified using custom software. Testing was conducted on two occasions, 1 week apart. RESULTS With few exceptions, the assessment protocol showed moderate to high intraclass correlation coefficient (ICC) values under both ST and DT conditions for the spatio-temporal gait measures (average and COV), as well as the visuomotor tracking and cognitive game performance measures. A significant decline in gait, visuomotor, and cognitive game performance measures was observed during DT compared to ST conditions, and in the PD-3 compared to PD-2 groups. CONCLUSION The high to moderate ICC values along with the lack of systematic errors in the measures indicate that this tool has the ability to repeatedly record reliable DT interference (DTI) effects over time. The use of interactive digital media provides a flexible method to produce and evaluate DTI for a wide range of executive cognitive activities. This also proves to be a sensitive tool for tracking disease progression. CLINICAL TRIAL REGISTRATION www.ClinicalTrials.gov, identifier NCT03232996.
Collapse
Affiliation(s)
- Mayank Bhatt
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bhuvan Mahana
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Tiffany A. Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Anuprita Kanitkar
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tony Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
29
|
Zanardi APJ, da Silva ES, Costa RR, Passos-Monteiro E, Dos Santos IO, Kruel LFM, Peyré-Tartaruga LA. Gait parameters of Parkinson's disease compared with healthy controls: a systematic review and meta-analysis. Sci Rep 2021; 11:752. [PMID: 33436993 PMCID: PMC7804291 DOI: 10.1038/s41598-020-80768-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
We systematically reviewed observational and clinical trials (baseline) studies examining differences in gait parameters between Parkinson’s disease (PD) in on-medication state and healthy control. Four electronic databases were searched (November-2018 and updated in October-2020). Independent researchers identified studies that evaluated gait parameters measured quantitatively during self-selected walking speed. Risk of bias was assessed using an instrument proposed by Downs and Black (1998). Pooled effects were reported as standardized mean differences and 95% confidence intervals using a random-effects model. A total of 72 studies involving 3027 participants (1510 with PD and 1517 health control) met the inclusion criteria. The self-selected walking speed, stride length, swing time and hip excursion were reduced in people with PD compared with healthy control. Additionally, PD subjects presented higher cadence and double support time. Although with a smaller difference for treadmill, walking speed is reduced both on treadmill (.13 m s−1) and on overground (.17 m s−1) in PD. The self-select walking speed, stride length, cadence, double support, swing time and sagittal hip angle were altered in people with PD compared with healthy control. The precise determination of these modifications will be beneficial in determining which intervention elements are most critical in bringing about positive, clinically meaningful changes in individuals with PD (PROSPERO protocol CRD42018113042).
Collapse
Affiliation(s)
- Ana Paula Janner Zanardi
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, 750 Felizardo St, Porto Alegre, RS, 90690-200, Brazil.,Univel University Center, Cascavel, Brazil
| | - Edson Soares da Silva
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, 750 Felizardo St, Porto Alegre, RS, 90690-200, Brazil
| | - Rochelle Rocha Costa
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, 750 Felizardo St, Porto Alegre, RS, 90690-200, Brazil
| | - Elren Passos-Monteiro
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, 750 Felizardo St, Porto Alegre, RS, 90690-200, Brazil.,Laboratory of PhysioMechanics of Locomotion, Universidade Federal Do Pará, Castanhal, Brazil
| | - Ivan Oliveira Dos Santos
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, 750 Felizardo St, Porto Alegre, RS, 90690-200, Brazil
| | - Luiz Fernando Martins Kruel
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, 750 Felizardo St, Porto Alegre, RS, 90690-200, Brazil
| | | |
Collapse
|
30
|
Gait Assessment in College Athletes: Do Concussion History, Symptoms, Gender, and Type of Sport Matter? J Sport Rehabil 2021; 30:988-999. [PMID: 33418540 DOI: 10.1123/jsr.2019-0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/20/2020] [Accepted: 10/17/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Though previous research has focused on examining the effects of concussion history using a dual-task paradigm, the influence of factors like symptoms (unrelated to concussion), gender, and type of sport on gait in college athletes is unknown. OBJECTIVE To examine the effect of concussion history, symptoms, gender, and type of sport (noncontact/limited contact/contact) individually on gait among college athletes. DESIGN Exploratory cross-sectional study. SETTING Laboratory. PARTICIPANTS In total, 98 varsity athletes (age, 18.3 [1.0] y; height, 1.79 [0.11] m; mass, 77.5 [19.2] kg; 27 with concussion history, 58 reported at least one symptom, 44 females; 8 played noncontact sports and 71 played contact sports) walked under single- and dual-task (walking while counting backward by 7) conditions. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Dual-task cost (DTC; % difference between single task and dual task) of gait speed, cadence, step length and width, percentage of swing and double-support phases, symptom score, and total symptom severity score. Independent samples t tests and 1-way analysis of variance were conducted (α value = .05). RESULTS Self-reported concussion history resulted in no significant differences (P > .05). Those who reported symptoms at testing time showed significantly greater DTC of step length (mean difference [MD], 2.7%; 95% confidence interval [CI], 0.3% to 5.1%; P = .012), % of swing phase (MD, 1.0%; 95% CI, -0.2 to 2.1%; P = .042), and % of double-support phase (MD, 3.9%; 95% CI, 0.2% to 7.8%; P = .019). Females demonstrated significantly higher DTC of gait speed (MD, 5.3%; 95% CI, 1.3% to 9.3%; P = .005), cadence (MD, 4.0%; 95% CI, 1.4% to 6.5%; P = .002), % of swing phase (MD, 1.2%; 95% CI, 0.1% to 2.3%; P = .019), and % of double-support phase (MD, 4.1%; 95% CI, 0.4% to 7.9%; P = .018). Noncontact sports athletes had significantly greater step width DTC than contact sports athletes (MD, 14.2%; 95% CI, 0.9% to 27.6%; P = .032). CONCLUSIONS Reporting symptoms at testing time may influence gait under dual-task conditions. Additionally, female athletes showed more gait changes during a dual task. Sports medicine professionals should be aware that these variables, while unrelated to injury, may affect an athlete's gait upon analysis.
Collapse
|
31
|
The Effect of a Secondary Task on Kinematics during Turning in Parkinson’s Disease with Mild to Moderate Impairment. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Patients with Parkinson’s disease (PD) show typical gait asymmetries. These peculiar motor impairments are exacerbated by added cognitive and/or mechanical loading. However, there is scarce literature that chains these two stimuli. The aim of this study was to investigate the combined effects of a dual task (cognitive task) and turning (mechanical task) on the spatiotemporal parameters in mild to moderate PD. Participants (nine patients with PD and nine controls (CRs)) were evaluated while walking at their self-selected pace without a secondary task (single task), and while repeating the days of the week backwards (dual task) along a straight direction and a 60° and 120° turn. As speculated, in single tasking, PD patients preferred to walk with a shorter stride length (p < 0.05) but similar timing parameters, compared to the CR group; in dual tasking, both groups walked slower with shorter strides. As the turn angle increased, the speed will be reduced (p < 0.001), whereas the ground–foot contact will become greater (p < 0.001) in all the participants. We showed that the combination of a simple cognitive task and a mechanical task (especially at larger angles) could represent an important training stimulus in PD at the early stages of the pathology.
Collapse
|
32
|
Li Z, Wang T, Liu H, Jiang Y, Wang Z, Zhuang J. Dual-task training on gait, motor symptoms, and balance in patients with Parkinson’s disease: a systematic review and meta-analysis. Clin Rehabil 2020; 34:1355-1367. [DOI: 10.1177/0269215520941142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: The aim of the present study was to systematically evaluate and quantify the effectiveness of dual-task training on gait parameters, motor symptoms and balance in individuals diagnosed with Parkinson’s disease. Data resources: A systematic review of published literature was conducted until May 2020, using PubMed, EMBASE, Cochrane Library, Web of Science, EBSCO and CNKI databases. Methods: We included randomized controlled trials (RCTs) and non-RCTs to evaluate the effects of dual-task training compared with those of non-intervention or other forms of training. The measurements included gait parameters, motor symptoms and balance parameters. Methodological quality was assessed using the PEDro scale. Outcomes were pooled by calculating between-group mean differences using fixed- or random-effects models based on study heterogeneity. Results: A total of 11 RCTs comprising 322 subjects were included in the present meta-analysis. Results showed that dual-task training significantly improved gait speed (standardized mean difference [SMD], −0.23; 95% confidence interval [CI], −0.38 to −0.08; P = 0.002), cadence (SMD, −0.25; 95% CI, −0.48 to −0.02; P = 0.03), motor symptoms (SMD, 0.56; 95% CI, 0.18 to 0.94; P = 0.004) and balance (SMD, −0.44; 95% CI, −0.84 to −0.05; P = 0.03). However, no significant changes were detected in step length or stride length. Conclusion: Dual-task training was effective in improving gait performance, motor symptoms and balance in patients with Parkinson’s disease relative to other forms of training or non-intervention.
Collapse
Affiliation(s)
- Zhenlan Li
- School of Sport Science, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Sciences, Ningbo College of Health Sciences, Zhejiang, Ningbo, China
| | - Tian Wang
- School of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Haoyang Liu
- Department of Rehabilitation Sciences, Ningbo College of Health Sciences, Zhejiang, Ningbo, China
| | - Yan Jiang
- School of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Zhen Wang
- School of Martial Arts, Shanghai University of Sport, Shanghai, China
| | - Jie Zhuang
- School of Sport Science, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
33
|
Combining a Cognitive Concurrent Task with a Motor or Motor-Cognitive Task: Which Is Better to Differentiate Levels of Affectation in Parkinson’s Disease? PARKINSON'S DISEASE 2020; 2020:2189084. [PMID: 32322384 PMCID: PMC7160727 DOI: 10.1155/2020/2189084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 11/30/2022]
Abstract
Introduction Cognitive decline usually coexists with motor impairment in PD. Multitask settings provide appropriate measures to evaluate the complex interaction between motor and cognitive impairments. The main objective was to analyze which concurrent task, i. e., motor or hybrid motor-cognitive, in combination with a cognitive task better differentiates between PD patients with mild and moderate levels of disease. Methods Thirty-seven individuals (19 male and 18 female) with idiopathic PD performed dual and triple tasks combining a cognitive task (phonemic fluency) with motor (pedaling) and/or cognitive-motor hybrid (tracking) tasks. Mild and moderate disability PD groups were specified considering the Hoehn and Yahr scale. Mixed ANOVA analyses for each of the concurrent task were carried out to test differences between the single and dual or triple condition performances comparing the low and high PD disability groups. Supplementary mixed ANCOVA analysis was performed considering the cognitive status as the covariate. Results The only significant differences between disability PD groups were found for performances in the cognitive-motor hybrid (tracking) task, both in dual and triple conditions. Our results showed a better performance for the mild rather than for the moderate disability group in the single condition task and a significant decline of the mild disability group in the dual and triple condition when compared to the levels of those shown by the moderate disability group. The group-condition interaction remained significant when the cognitive status was statistically controlled. Conclusion The hybrid of motor-cognitive task combining with a cognitive task (i. e., fluency) successfully differentiated between mild and moderate PD patients in the context of dual and triple multitask sets even when the cognitive status was statistically controlled. Our results highlight the importance of jointly measuring the complex interplay between motor and cognitive skills in PD.
Collapse
|
34
|
Thies T, Mücke D, Lowit A, Kalbe E, Steffen J, Barbe MT. Prominence marking in parkinsonian speech and its correlation with motor performance and cognitive abilities. Neuropsychologia 2019; 137:107306. [PMID: 31857118 DOI: 10.1016/j.neuropsychologia.2019.107306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/14/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Research suggests that people with Parkinson's disease (PwPD) do not only suffer from motor but also non-motor impairment. This interdisciplinary study investigated how prominence marking is influenced by problems on the motoric and cognitive level. MATERIALS AND METHODS We collected speech production data from 38 native German speakers: 19 PwPD (under medication) with a mild to moderate motor impairment, 13 males and 6 females (mean 66.2 years old, SD = 7.7), and 19 healthy age- and gender-matched control participants (mean 65.4 years old, SD = 9.3). Target words were produced in an accented and unaccented condition within a speech production task. The data were analyzed for intensity, syllable duration, F0 and vowel production. Furthermore, we assessed motor impairment and cognitive functions, i.e. working memory, task-switching, attention control and speed of information processing. RESULTS Both groups were able to mark prominence by increasing pitch, syllable duration and intensity and by adjusting their vowel production. Comparisons between PwPD and control participants revealed that the vowel space was smaller in PwPD even in mildly impaired speakers. Further, task-switching as an executive function, which was tested with the trail making test, was correlated with modulation of F0 and intensity in PwPD: the worse the task-switching performance, the stronger intensity and F0 were modulated (target overshoot). Moreover, motor impairment within the PwPD group was related to a decrease in the acoustic vowel space (target undershoot), which further resulted in a decrease in speech intelligibility and naturalness. This behaviour of target over- and undershoot indicates an inefficient way of prominence marking in PwPD with mildly affected speech. CONCLUSION PwPD with signs of mild dysarthria did not differ from the control speakers with respect to their strategies of prominence marking. However, only the PwPD overused F0 and intensity in prominent positions. Overmodulation of F0 and intensity was correlated with the patient's task-switching ability and reflected abnormalities in the regulatory mechanism for expressing prosodic prominence. This is the first study to report a link between cognitive skills and speech production at the phonetic level in PwPD.
Collapse
Affiliation(s)
- Tabea Thies
- University of Cologne, Faculty of Arts and Humanities, IfL - Phonetics, Herbert-Lewin-Str. 6, 50931, Köln, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Köln, Germany.
| | - Doris Mücke
- University of Cologne, Faculty of Arts and Humanities, IfL - Phonetics, Herbert-Lewin-Str. 6, 50931, Köln, Germany.
| | - Anja Lowit
- University of Strathclyde, School of Psychological Sciences and Health, 40 George Street, G1 1QE, Glasgow, Scotland, UK.
| | - Elke Kalbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Kerpener Str. 62, 50937, Köln, Germany.
| | - Julia Steffen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Köln, Germany.
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Köln, Germany.
| |
Collapse
|
35
|
Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, Hass CJ. A meta-analysis: Parkinson's disease and dual-task walking. Parkinsonism Relat Disord 2018; 62:28-35. [PMID: 30594454 DOI: 10.1016/j.parkreldis.2018.12.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
A growing body of literature has reported the effects of dual tasks on gait performance in people with Parkinson's disease (PD). The purpose of this meta-analysis was to synthesize the existing literature and quantify the overall influence of dual tasks on gait performance in PD. A thorough literature search was conducted, and 19 studies met the stringent inclusion criteria. Two moderator variable analyses examined the dual-task effect by: (a) mean single-task gait speed for each study (≥1.1 m/s or < 1.1 m/s), and (b) the type of dual task (arithmetic, language, memory, and motor). Three main findings were revealed by a random effects model analysis. First, a strong negative effect of dual tasks on walking performance (SMD = -0.68) confirmed that gait performance is adversely affected by dual tasks in people with PD. Second, the significant negative effect of dual tasks is present regardless of the mean level of single-task gait speed in a study. Third, dual-task walking speed deteriorates regardless of the type of dual task. Together, these results confirm that dual tasks severely affect walking performances in people with PD.
Collapse
Affiliation(s)
- Tiphanie E Raffegeau
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Lisa M Krehbiel
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Nyeonju Kang
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA; Division of Sport Science & Sport Science Institute, Incheon National University, Seoul, South Korea
| | - Frency J Thijs
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Lori J P Altmann
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - James H Cauraugh
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Battisto J, Echt KV, Wolf SL, Weiss P, Hackney ME. The Body Position Spatial Task, a Test of Whole-Body Spatial Cognition: Comparison Between Adults With and Without Parkinson Disease. Neurorehabil Neural Repair 2018; 32:961-975. [PMID: 30317924 PMCID: PMC6226349 DOI: 10.1177/1545968318804419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Body Position Spatial Task (BPST) is a novel measure of whole-body spatial cognition involving multidirectional steps and turns. Individuals with Parkinson disease (PD) are affected by motor and cognitive impairments, particularly in spatial function, which is important for mental imagery and navigation. Performance on the BPST may inform understanding of motor-cognitive and spatial cognitive function of individuals with PD. OBJECTIVES We conducted this study to determine feasibility and validity of the BPST with standard, validated, and reliable measures of spatial cognition and motor-cognitive integration and to compare BPST performance in adults with and without PD. METHODS A total of 91 individuals with mild-moderate PD and 112 neurotypical (NT) adults of similar age were recruited for the study to complete the BPST and other measures of mobility and cognition. Correlations were used to determine construct and concurrent validity of BPST with valid measures of spatial cognition and motor-cognitive integration. Performance was compared between PD and NT adults using independent t-tests. RESULTS BPST was feasible to administer. Analyses show evidence of construct validity for spatial cognition and for motor-cognitive integration. Concurrent validity was demonstrated with other tests of mobility and cognition. Relationships were stronger and more significant for individuals with PD than for NT individuals. BPST performance was not significantly different between groups. CONCLUSION Tests that integrate cognitive challenge in mobility contexts are necessary to assess the health of spatial cognitive and motor-cognitive integration. The BPST is a feasible and valid test of whole-body spatial cognition and motor-cognitive integration in individuals with PD.
Collapse
Affiliation(s)
| | - Katharina V. Echt
- Atlanta Veterans Affairs Medical Center, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
- Geriatric Research, Education, and Clinical Center (GRECC), Birmingham/Atlanta Veterans Affairs Medical Centers
- Division of General Medicine and Geriatrics, Department of Medicine, Emory University, Atlanta, Georgia
| | - Steven L. Wolf
- Atlanta Veterans Affairs Medical Center, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
- Emory University Department of Rehabilitation Medicine, Division of Physical Therapy
| | - Paul Weiss
- Atlanta Veterans Affairs Medical Center, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
- Rollins School of Public Health, Emory University
| | - Madeleine E. Hackney
- Atlanta Veterans Affairs Medical Center, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
- Geriatric Research, Education, and Clinical Center (GRECC), Birmingham/Atlanta Veterans Affairs Medical Centers
- Division of General Medicine and Geriatrics, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
Pohl P. The Ronnie Gardiner Method: An Innovative Music-Based Intervention for Neurological Rehabilitation - Theoretical Background and Contemporary Research with Focus on Parkinson’s Disease. ACTA ACUST UNITED AC 2018. [DOI: 10.33805/2641-8991.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ronnie Gardiner Method (RGM) is an innovative, practitioner-led, music-based intervention using sensorimotor and cognitive integration. RGM was originally developed by the Swedish musician Ronnie Gardiner. Since 2010, RGM has been successfully implemented within neurorehabilitation in many countries. The purpose of this article is to outline some of the theoretical assumptions underpinning the potential benefits from this intervention, using Parkinson’s disease as an example.
RGM is based on principles of neuroplasticity, motor learning, and postural control, and uses energizing, beat-based music to provide multisensory input (visual, audio, kinetic, and tactile) in order to stimulate experience-dependent neuroplastic processes. It aims at stimulating cognitive and motor function (e.g., memory, concentration, executive function, multitasking, coordination, mobility, balance, and motor skills). In addition, it may aid body awareness, self-esteem, and social skills. RGM has been scientifically evaluated as a means of multimodal sensory stimulation after stroke and as a means of improving mobility and cognitive function in Parkinson’s disease.
RGM is a complex multi-task intervention with the potential to be beneficial in different settings and in different neurological conditions. It can be performed either while standing up or sitting down and can be practiced with the advantages gained as a group activity or individually, which makes it very flexible. It is currently being used as rehabilitation activity for people with stroke, Parkinson’s disease, multiple sclerosis, dementia, and depression. Furthermore, RGM is used in programs targeting healthy aging, ADHD, autism, and dyslexia, and in ordinary school environments.
Collapse
Affiliation(s)
- Petra Pohl
- Department of Activity and Health, and Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
38
|
Differentiation in Theta and Beta Electrocortical Activity between Visual and Physical Perturbations to Walking and Standing Balance. eNeuro 2018; 5:eN-NWR-0207-18. [PMID: 30105299 PMCID: PMC6088363 DOI: 10.1523/eneuro.0207-18.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Human balance is a complex process in healthy adults, requiring precisely timed coordination among sensory information, cognitive processing, and motor control. It has been difficult to quantify brain dynamics during human balance control due to limitations in brain-imaging modalities. The goal of this study was to determine whether by using high-density electroencephalography (EEG) and independent component analysis, we can identify common cortical responses to visual and physical balance perturbations during walking and standing. We studied the responses of 30 healthy young adults to sensorimotor perturbations that challenged their balance. Subjects performed four 10 min trials of beam walking and tandem stance while either being mediolaterally pulled at the waist or viewing brief 20° field-of-view rotations in virtual reality. We recorded high-density EEG, motion capture, lower leg electromyography (EMG), and neck EMG. We hypothesized that both physical pull and visual rotation perturbations would elicit time-frequency fluctuations in theta (4-8 Hz) and beta (13-30 Hz) bands, with increased occipito-parietal activity during visual rotations compared with pull perturbations. Our results confirmed this hypothesis. For both perturbations, we found early theta synchronization and late alpha-beta (8-30 Hz) desynchronization following perturbation onset. This pattern was strongest in occipito-parietal areas during visual perturbations and strongest in sensorimotor areas during pull perturbations. These results suggest a similar time-frequency electrocortical pattern when humans respond to sensorimotor conflict, but with substantive differences in the brain areas involved for visual versus physical perturbations. Our findings may have important implications for assessing and training balance in individuals with and without motor disabilities.
Collapse
|
39
|
|
40
|
Penko AL, Streicher MC, Koop MM, Dey T, Rosenfeldt AB, Bazyk AS, Alberts JL. Dual-task Interference Disrupts Parkinson's Gait Across Multiple Cognitive Domains. Neuroscience 2018; 379:375-382. [PMID: 29577998 DOI: 10.1016/j.neuroscience.2018.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Gait dysfunction, a hallmark of Parkinson's disease, contributes to a relatively high incidence of falling. Gait function is further diminished during the performance of a motor-cognitive task (i.e., dual-task). It is unclear if Parkinson's disease-related dual-task deficits are related to a specific area of cognitive function or are the result of a more global decline in executive function. The aim of this project was to systematically evaluate gait performance to determine if gait dysfunction is restricted to certain types of executive function or a global phenomenon in individuals with Parkinson's disease. Twenty-three individuals with mild-moderate Parkinson's disease completed a series of dual-task conditions in which gait was paired with cognitive tasks requiring: working memory (0, 1, and 2-back), attention and problem solving (serial-7 subtraction), verbal memory (digit recall), semantic memory (Controlled Oral Word Association) and information processing speed (visual Stroop test). The results demonstrate that individuals with mild-moderate Parkinson's disease have a generalized worsening of spatial-temporal gait parameters regardless of the specific cognitive demand being performed concurrently. Overall, gait velocity decreased (p < 0.01) and stride and stance time both increased (p < 0.01) across all cognitive conditions. The attention and problem solving task resulted in the greatest number of gait parameter decrements. Results indicated that performance on cognitive tasks remained unchanged from single-task to dual-task conditions. Diminished gait performance under dual-task conditions across different cognitive function domains suggests a global Parkinson's disease-related deficit in information processing and regulation of gait.
Collapse
Affiliation(s)
- Amanda L Penko
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | | | - Mandy Miller Koop
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Tanujit Dey
- Department of Quantitative Health Sciences, Cleveland Clinic, OH, USA
| | - Anson B Rosenfeldt
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew S Bazyk
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Jay L Alberts
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
41
|
Beste C, Mückschel M, Paucke M, Ziemssen T. Dual-Tasking in Multiple Sclerosis - Implications for a Cognitive Screening Instrument. Front Hum Neurosci 2018; 12:24. [PMID: 29445335 PMCID: PMC5797790 DOI: 10.3389/fnhum.2018.00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 01/22/2023] Open
Abstract
The monitoring of cognitive functions is central to the assessment and consecutive management of multiple sclerosis (MS). Though, especially cognitive processes that are central to everyday behavior like dual-tasking are often neglected. We examined dual-task performance using a psychological-refractory period (PRP) task in N = 21 patients and healthy controls and conducted standard neuropsychological tests. In dual-tasking, MS patients committed more erroneous responses when dual-tasking was difficult. In easier conditions, performance of MS patients did not differ to controls. Interestingly, the response times were generally not affected by the difficulty of the dual task, showing that the deficits observed do not reflect simple motor deficits or deficits in information processing speed but point out deficits in executive control functions and response selection in particular. Effect sizes were considerably large with d∼0.80 in mild affected patients and the achieved power was above 99%. There are cognitive control and dual tasking deficits in MS that are not attributable to simple motor speed deficits. Scaling of the difficulty of dual-tasking makes the test applied suitable for a wide variety of MS-patients and may complement neuropsychological assessments in clinical care and research setting.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Madlen Paucke
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|