1
|
Min V, Corradini N, Macagno N, Orbach D, Reguerre Y, Petit P, Blay JY, Verschuur A. Gastrointestinal stromal tumours (GIST) in children: An update of this orphan disease. Bull Cancer 2025; 112:348-357. [PMID: 39455327 DOI: 10.1016/j.bulcan.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Gastrointestinal stromal tumours (GIST) are tumours of the digestive tract that mainly develop in adults. Recommendations for the management of GIST in pediatrics are limited. MATERIAL AND METHODS We performed an updated review of the literature serving as a basis for the development of diagnostic and therapeutic recommendations for GIST in children and young adults (YA). RESULTS GIST in pediatric population can have a sporadic presentation but occur more often in a syndromic and/or familial context. Currently more than 170 cases of sporadic GIST or in association with Carney-Stratakis syndrome or Carney's triad family cases of familial GIST have been described in children and YA. These syndromes are frequently associated with germline or somatic alterations in a sub-unit of Succinate Dehydrogenase (SDH). In contrast, the frequency of somatic KIT and PDGFRα oncogene mutations (±15%) is significantly lower as compared to adults with GIST. The recommendations for the management of children with GIST are generally comparable to those used for adult patients, although certain biological differences influence the therapeutic attitude. CONCLUSIONS International collaborations have been deployed in order to increase the clinical and biological knowledge of this orphan pathology in pediatrics.
Collapse
Affiliation(s)
- Victoria Min
- Pediatric Hematology Oncology Department, La Timone Children's Hospital, AP-HM, 264, rue St Pierre, 13385 Marseille cedex, France
| | - Nadège Corradini
- Pediatric Hematology Oncology Department, Institute of Pediatric Hematology and Oncology (IHOPe), Léon Bérard Cancer Centre, Lyon, France
| | | | - Daniel Orbach
- SIREDO Oncology Centre (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Yves Reguerre
- Pediatric Oncology Department, University Hospital Center La Reunion, Saint-Denis, Reunion
| | - Philippe Petit
- Department of pediatric and prenatal radiology, La Timone Children's Hospital, Aix Marseille University, AP-HM, 264, rue St-Pierre, 13385 Marseille cedex, France
| | - Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France
| | - Arnauld Verschuur
- Pediatric Hematology Oncology Department, La Timone Children's Hospital, AP-HM, 264, rue St Pierre, 13385 Marseille cedex, France.
| |
Collapse
|
2
|
Kim Y, Lee SH. Pathologic diagnosis and molecular features of gastrointestinal stromal tumors: a mini-review. Front Oncol 2024; 14:1487467. [PMID: 39629000 PMCID: PMC11611718 DOI: 10.3389/fonc.2024.1487467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal, predominantly affecting the stomach and small intestine, with rare occurrences in the duodenum, rectum, and extraintestinal sites. Histologically, GISTs can present as spindle cells, epithelioid cells, or mixed morphologies, with immunohistochemical staining revealing expression of KIT (CD117) and discovered on GIST 1 (DOG1). Approximately 80% of GISTs harbor activating mutations in KIT or platelet derived growth factor receptor α (PDGFRA), which influence their clinical behavior and treatment response. SDH-deficient GISTs, associated with syndromes such as Carney triad and Carney-Stratakis syndrome, represent a distinct subgroup with unique characteristics and management challenges. The standard treatment includes surgery and imatinib for metastatic cases; however, resistance to tyrosine kinase inhibitors remains a significant hurdle, especially in pediatric and wildtype GISTs. This highlights the need for advanced therapeutic strategies and emphasizes the importance of molecular profiling in guiding treatment decisions and improving outcomes for GIST patients.
Collapse
Affiliation(s)
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Hashimoto T, Nakamura Y, Komatsu Y, Yuki S, Takahashi N, Okano N, Hirano H, Ohtsubo K, Ohta T, Oki E, Nishina T, Yasui H, Kawakami H, Esaki T, Machida N, Doi A, Boku S, Kudo T, Yamamoto Y, Kanazawa A, Denda T, Goto M, Iida N, Ozaki H, Shibuki T, Imai M, Fujisawa T, Bando H, Naito Y, Yoshino T. Different efficacy of tyrosine kinase inhibitors by KIT and PGFRA mutations identified in circulating tumor DNA for the treatment of refractory gastrointestinal stromal tumors. BJC REPORTS 2024; 2:54. [PMID: 39516322 PMCID: PMC11523999 DOI: 10.1038/s44276-024-00073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND While advanced gastrointestinal stromal tumors (GISTs) are primarily treated with tyrosine kinase inhibitors (TKIs), acquired resistance from specific mutations in KIT or PDGFRA frequently occurs. We aimed to assess the utility of circulating tumor DNA (ctDNA) as a modality of therapeutic decision-making in advanced GIST. METHODS We conducted a pooled analysis of SCRUM-Japan studies for advanced GIST patients. We compared patient characteristics analyzed with tissue and blood samples, assessed gene alteration profiles, and evaluated prognostic implications from ctDNA status. RESULTS In 133 patients, tissue and blood samples were analyzed for 89 and 44 patients, respectively. ctDNA was detected in 72.7% of cases; no prior treatment or progressive disease was significantly associated with ctDNA-positivity. ctDNA-positive patients had significantly shorter progression-free survival compared with ctDNA-negative patients (hazard ratio = 3.92; P = 0.007). ctDNA genotyping revealed a complex landscape of gene alterations, characterized by multi-exonic mutations in KIT, compared with tissue-based analysis. Patients who received TKIs matched to the identified KIT mutation in ctDNA demonstrated significantly longer PFS than those with unmatched treatment (median, 8.23 vs. 2.43 months; P < 0.001). CONCLUSIONS ctDNA-based analysis facilitates assessment of disease status and genomic profiles, thus potentially assisting in identifying optimal therapeutic strategies for advanced GIST patients.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji, Japan
| | - Koushiro Ohtsubo
- Department of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takashi Ohta
- Department of Clinical Oncology, Kansai Rosai Hospital, Hyogo, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Hospital, Osaka, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Nozomu Machida
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Ayako Doi
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University, Osaka, Japan
| | - Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Akiyoshi Kanazawa
- Department of Surgery Shimane Prefectural Central Hospital, Shimane, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Naoko Iida
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Ozaki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taro Shibuki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
4
|
Adle-Biassette H, Ricci R, Martin A, Martini M, Ravegnini G, Kaci R, Gélébart P, Poirot B, Sándor Z, Lehman-Che J, Tóth E, Papp B. Sarco/endoplasmic reticulum calcium ATPase 3 (SERCA3) expression in gastrointestinal stromal tumours. Pathology 2024; 56:343-356. [PMID: 38184384 DOI: 10.1016/j.pathol.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 01/08/2024]
Abstract
Accurate characterisation of gastrointestinal stromal tumours (GIST) is important for prognosis and the choice of targeted therapies. Histologically the diagnosis relies on positive immunostaining of tumours for KIT (CD117) and DOG1. Here we report that GISTs also abundantly express the type 3 Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA3). SERCA enzymes transport calcium ions from the cytosol into the endoplasmic reticulum and play an important role in regulating the intensity and the periodicity of calcium-induced cell activation. GISTs from various localisations, histological and molecular subtypes or risk categories were intensely immunopositive for SERCA3 with the exception of PDGFRA-mutated cases where expression was high or moderate. Strong SERCA3 expression was observed also in normal and hyperplastic interstitial cells of Cajal. Decreased SERCA3 expression in GIST was exceptionally observed in a zonal pattern, where CD117 staining was similarly decreased, reflecting clonal heterogeneity. In contrast to GIST, SERCA3 immunostaining of spindle cell tumours and other gastrointestinal tumours resembling GIST was negative or weak. In conclusion, SERCA3 immunohistochemistry may be useful for the diagnosis of GIST with high confidence, when used as a third marker in parallel with KIT and DOG1. Moreover, SERCA3 immunopositivity may be particularly helpful in cases with negative or weak KIT or DOG1 staining, a situation that may be encountered de novo, or during the spontaneous or therapy-induced clonal evolution of GIST.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; INSERM NeuroDiderot, DMU DREAM, France
| | - Riccardo Ricci
- Department of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy; UOC di Anatomia Patologica, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Antoine Martin
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Paris, France; Inserm UMR U978, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Maurizio Martini
- Dipartimento di patologia umana dell'adulto e dell'età evolutiva 'Gaetano Barresi' Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Messina, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Rachid Kaci
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Pascal Gélébart
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brigitte Poirot
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zsuzsanna Sándor
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Jacqueline Lehman-Che
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Bela Papp
- INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France; CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
5
|
Incorvaia L, De Biase D, Nannini M, Fumagalli E, Vincenzi B, De Luca I, Brando C, Perez A, Pantaleo MA, Gasperoni S, D’Ambrosio L, Grignani G, Maloberti T, Pedone E, Bazan Russo TD, Mazzocca A, Algeri L, Dimino A, Barraco N, Serino R, Gristina V, Galvano A, Bazan V, Russo A, Badalamenti G. KIT/PDGFRA Variant Allele Frequency as Prognostic Factor in Gastrointestinal Stromal Tumors (GISTs): Results From a Multi-Institutional Cohort Study. Oncologist 2024; 29:e141-e151. [PMID: 37463014 PMCID: PMC10769785 DOI: 10.1093/oncolo/oyad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The patient selection for optimal adjuvant therapy in gastrointestinal stromal tumors (GISTs) is provided by nomogram based on tumor size, mitotic index, tumor location, and tumor rupture. Although mutational status is not currently used to risk assessment, tumor genotype showed a prognostic influence on natural history and tumor relapse. Innovative measures, such as KIT/PDGFRA-mutant-specific variant allele frequency (VAF) levels detection from next-generation sequencing (NGS), may act as a surrogate of tumor burden and correlate with prognosis and overall survival of patients with GIST, helping the choice for adjuvant treatment. PATIENTS AND METHODS This was a multicenter, hospital-based, retrospective/prospective cohort study to investigate the prognostic role of KIT or PDGFRA-VAF of GIST in patients with radically resected localized disease. In the current manuscript, we present the results from the retrospective phase of the study. RESULTS Two-hundred (200) patients with GIST between 2015 and 2022 afferent to 6 Italian Oncologic Centers in the EURACAN Network were included in the study. The receiver operating characteristic (ROC) curves analysis was used to classify "low" vs. "high" VAF values, further normalized on neoplastic cellularity (nVAF). When RFS between the low and high nVAF groups were compared, patients with GIST with KIT/PDGFRA nVAF > 50% showed less favorable RFS than patients in the group of nVAF ≤ 50% (2-year RFS, 72.6% vs. 93%, respectively; P = .003). The multivariable Cox regression model confirmed these results. In the homogeneous sub-population of intermediate-risk, patients with KIT-mutated GIST, the presence of nVAF >50% was statistically associated with higher disease recurrence. CONCLUSION In our study, we demonstrated that higher nVAF levels were independent predictors of GIST prognosis and survival in localized GIST patients with tumors harboring KIT or PDGFRA mutations. In the cohort of intermediate-risk patients, nVAF could be helpful to improve prognostication and the use of adjuvant imatinib.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Experimental, Diagnostic and Specialized Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Fumagalli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Biomedico University of Rome, Rome, Italy
| | - Ida De Luca
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Maria A Pantaleo
- Department of Experimental, Diagnostic and Specialized Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Silvia Gasperoni
- Department of Oncology and Robotic Surgery, Translational Oncology Unit, University Hospital Careggi, Firenze, Italy
| | - Lorenzo D’Ambrosio
- Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Candiolo, TO, Italy
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Candiolo, TO, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Erika Pedone
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Mazzocca
- Department of Medical Oncology, Campus Biomedico University of Rome, Rome, Italy
| | - Laura Algeri
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandra Dimino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Roberta Serino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Arita A, Takahashi T, Nakajima K, Kurokawa Y, Hirota S, Nishida T, Yamashita K, Saito T, Tanaka K, Makino T, Yamasaki M, Kawai K, Motoyama Y, Morii E, Eguchi H, Doki Y. Surgery for multiple gastric gastrointestinal stromal tumors and large esophageal diverticulum related to germline mutation of the KIT gene: a case report. Surg Case Rep 2023; 9:183. [PMID: 37870660 PMCID: PMC10593636 DOI: 10.1186/s40792-023-01766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Familial gastrointestinal stromal tumors (GISTs) are mesenchymal tumors of the digestive tract caused by germline gain-of-function mutations in the KIT gene or platelet-derived growth factor receptor alpha gene (PDGFRA). These mutations cause not only multiple GISTs but also diffuse hyperplasia of interstitial cells of Cajal (ICCs), which is related to esophageal motility disorder. CASE PRESENTATION A 53-year-old man was referred to our hospital because of anemia and dysphagia. Fifteen years earlier, he had undergone a laparoscopic partial gastrectomy for multiple gastric GISTs with a germline mutation in exon 17 of the KIT gene. An upper gastrointestinal endoscopy revealed that the patient had multiple gastric GISTs and a large esophageal diverticulum directly above the esophagogastric junction. The largest gastric tumor was 7 cm, with a delle that might cause bleeding. Because the patient presented with dysphagia, we performed video-assisted thoracic esophagectomy and laparoscopic-assisted proximal gastrectomy simultaneously. The patient had survived without metastasis for 4 years after surgery and dysphagia had improved. CONCLUSIONS This is the first report of successful laparoscopic-thoracoscopic surgery for a patient with familial gastric GISTs accompanied with a large esophageal diverticulum.
Collapse
Affiliation(s)
- Asami Arita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Seiichi Hirota
- Department of Pathology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya City, Hyogo 663-8501 Japan
| | - Toshirou Nishida
- Department of Surgery, Japan Community Healthcare Organization, Osaka Hospital, 4-2-78, Fukushima, Fukushima-Ku, Osaka 553-0003 Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Kunihiko Kawai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Yuichi Motoyama
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871 Japan
| |
Collapse
|
7
|
Obata Y, Kurokawa K, Tojima T, Natsume M, Shiina I, Takahashi T, Abe R, Nakano A, Nishida T. Golgi retention and oncogenic KIT signaling via PLCγ2-PKD2-PI4KIIIβ activation in gastrointestinal stromal tumor cells. Cell Rep 2023; 42:113035. [PMID: 37616163 DOI: 10.1016/j.celrep.2023.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIβ (PKD2-PI4KIIIβ) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.
Collapse
Affiliation(s)
- Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
8
|
Rahimi-Ardabily A, Murdande S, Dong M, Gu KW, Zhang B, Miller K, Aploks K, Da Dong X. Liver resection for metastatic GIST tumor improves survival in the era of tyrosine kinase inhibitors: a systematic review and meta-analysis. Langenbecks Arch Surg 2023; 408:373. [PMID: 37740754 DOI: 10.1007/s00423-023-03052-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/08/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Survival for gastrointestinal stromal tumor (GIST) has been increasing over the years after the introduction of tyrosine kinase inhibitors. However, the role of metastasectomy for GIST is still controversial. Patients are currently treated with imatinib or sunitinib in case of imatinib failures as optimal medical therapy for metastatic GIST. METHODS The Pubmed, EMBASE, and Cochrane Library were systematically searched. Overall survival following liver resection ± tyrosine kinase inhibitor treatment for metastatic GIST was compared to treatment with tyrosine kinase inhibitors alone. RESULTS Eleven studies including both randomized control trials and retrospective cohort studies were included in the final analysis with a total of 988 patients. Seven studies encompassed data on 556 patients with isolated liver metastases (219 surgery ± drug groups and 337 drug-only groups) were included. Overall survival was significantly improved in patients undergoing liver resection ± drug therapy in comparison to drug therapy alone. [HR (95%CI) = 2.10 (1.58, 2.79); p<0.00001]. Subgroup analysis showed that patients also had improved progression free survival based on 4 studies. [HR (95%CI) = 1.92 (1.43, 2.56); p<0.00001]. In case of concurrent liver and peritoneal metastases, patients showed improved overall survival with aggressive surgical approaches based on 10 studies. [HR (95%CI) = 1.90 (1.56, 2.31); p<0.00001]. CONCLUSION This meta-analysis found that liver resection for patients with metastatic GIST regardless of peritoneal metastases improved progression free and overall survival in conjunction with tyrosine kinase inhibitors as compared with medical therapy alone. Furthermore, liver resections did not have any immediate detrimental impact on survival in the group of patients selected.
Collapse
Affiliation(s)
- Arash Rahimi-Ardabily
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA
| | - Sanjana Murdande
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA
| | - Michael Dong
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA
| | - Katie W Gu
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA
| | - Brianna Zhang
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA
| | - Kendall Miller
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA
| | - Krist Aploks
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA
| | - Xiang Da Dong
- Division of Surgical Oncology, Department of Surgery, Nuvance Health, Whittingham Cancer Center, 34 Maple Street, Norwalk, CT, 06856, USA.
| |
Collapse
|
9
|
Sano D, Kihara T, Yuan J, Kimura N, Ohkouchi M, Hashikura Y, Ohkubo S, Hirota S. Characterization of cell line with dedifferentiated GIST-like features established from cecal GIST of familial GIST model mice. Pathol Int 2023; 73:181-187. [PMID: 36825754 PMCID: PMC11551817 DOI: 10.1111/pin.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
Approximately 40 families with multiple gastrointestinal stromal tumors (GISTs) and germline c-kit gene mutations have been reported. Three knock-in mouse models have been generated, and all the models showed a cecal GIST. In the present study, we established a cell line derived from cecal GIST in a familial GIST model mouse with KIT-Asp818Tyr. Since the established cells showed spindle-shaped morphology with atypical nuclei, and since immunohistochemistry revealed that they were positive for α-SMA but negative for KIT, CD34 and desmin, the phenotypes of the cells were reminiscent of dedifferentiated GIST-like ones but not the usual GIST-like ones. Gene expression analysis showed that the cell line, designated as DeGISTL1 cell, did not express c-kit gene apparently, but highly expressed HSP90 families and glutaminase 1. Pathway analysis of the cells revealed that metabolic pathway might promote their survival and growth. Pimitespib, a heat shock protein 90α/β inhibitor, and Telaglenastat, a selective glutaminase 1 inhibitor, inhibited proliferation of DeGISTL1 cells and the combination of these showed an additive effect. DeGISTL1 cells might be a good model of dedifferentiated GISTs, and combination of Pimitespib and Telaglenastat could be a possible candidate for treatment strategy for them.
Collapse
Affiliation(s)
- Daisuke Sano
- Department of Surgical PathologyHyogo Medical University School of MedicineNishinomiyaJapan
| | - Takako Kihara
- Department of Surgical PathologyHyogo Medical University School of MedicineNishinomiyaJapan
| | - Jiayin Yuan
- Department of PathologyThe First People's Hospital of FoshanFoshanRepublic of China
| | - Neinei Kimura
- Department of Surgical PathologyHyogo Medical University School of MedicineNishinomiyaJapan
| | - Mizuka Ohkouchi
- Department of Surgical PathologyHyogo Medical University School of MedicineNishinomiyaJapan
| | - Yuka Hashikura
- Department of Surgical PathologyHyogo Medical University School of MedicineNishinomiyaJapan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co. LtdTsukubaJapan
| | - Seiichi Hirota
- Department of Surgical PathologyHyogo Medical University School of MedicineNishinomiyaJapan
| |
Collapse
|
10
|
Li B, Chen H, Yang S, Chen F, Xu L, Li Y, Li M, Zhu C, Shao F, Zhang X, Deng C, Zeng L, He Y, Zhang C. Advances in immunology and immunotherapy for mesenchymal gastrointestinal cancers. Mol Cancer 2023; 22:71. [PMID: 37072770 PMCID: PMC10111719 DOI: 10.1186/s12943-023-01770-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Mesenchymal gastrointestinal cancers are represented by the gastrointestinal stromal tumors (GISTs) which occur throughout the whole gastrointestinal tract, and affect human health and economy globally. Curative surgical resections and tyrosine kinase inhibitors (TKIs) are the main managements for localized GISTs and recurrent/metastatic GISTs, respectively. Despite multi-lines of TKIs treatments prolonged the survival time of recurrent/metastatic GISTs by delaying the relapse and metastasis of the tumor, drug resistance developed quickly and inevitably, and became the huge obstacle for stopping disease progression. Immunotherapy, which is typically represented by immune checkpoint inhibitors (ICIs), has achieved great success in several solid tumors by reactivating the host immune system, and been proposed as an alternative choice for GIST treatment. Substantial efforts have been devoted to the research of immunology and immunotherapy for GIST, and great achievements have been made. Generally, the intratumoral immune cell level and the immune-related gene expressions are influenced by metastasis status, anatomical locations, driver gene mutations of the tumor, and modulated by imatinib therapy. Systemic inflammatory biomarkers are regarded as prognostic indicators of GIST and closely associated with its clinicopathological features. The efficacy of immunotherapy strategies for GIST has been widely explored in pre-clinical cell and mouse models and clinical experiments in human, and some patients did benefit from ICIs. This review comprehensively summarizes the up-to-date advancements of immunology, immunotherapy and research models for GIST, and provides new insights and perspectives for future studies.
Collapse
Affiliation(s)
- Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hui Chen
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shaohua Yang
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Liangliang Xu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Mingzhe Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chengming Zhu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Fangyuan Shao
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, Institute of Translational Medicine, Cancer Center, University of Macau, Macau SAR, 999078, China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road, Guangzhou, 510080, China
| | - Chuxia Deng
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, Institute of Translational Medicine, Cancer Center, University of Macau, Macau SAR, 999078, China.
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
11
|
El Charif MH, Amro S, Boulos F, Khalife M, Shamseddine A, Assi H, Sbaity E. Extra-gastrointestinal stromal tumors (EGISTs): A case report for a mischief entity. Medicine (Baltimore) 2023; 102:e33394. [PMID: 37000068 PMCID: PMC10063283 DOI: 10.1097/md.0000000000033394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Extra-gastrointestinal stromal tumor is a rare subtype of soft tissue sarcomas with significantly variable presentation, management, and prognosis. This makes it crucial to report the different institutional experiences of encountering extra-gastrointestinal stromal tumors (EGIST). CASE PRESENTATION We report 3 cases of EGIST diagnosis at American University of Beirut Medical Center for 2 males and 1 female in the 5th, 6th, and 7th decades of life, respectively. For the first case, the tumor was initially suspected to be ovarian cancer, but biopsy revealed a diagnosis of EGIST, and the patient was started on neoadjuvant therapy. In the second case, the tumor was retro-gastric and prelim diagnosis was gastric cancer but again biopsy revealed an EGIST histopathology, and the patient underwent surgery and adjuvant treatment. For the third case, a previous history of testicular cancer prompted an initial suspicion of recurrence with metastasis but biopsy and immunohistochemistry staining revealed EGIST with related markers. The patient underwent treatment at a different institution in his home country. CONCLUSION This report sheds light on the importance of keeping EGIST amongst any differential list for abdominal and pelvic tumors. It also shows that EGIST-focused studies are needed to assess the effectiveness of the different treatment modalities available when utilized specifically for EGIST. This would allow for better oncological outcomes and improved quality of life.
Collapse
Affiliation(s)
- Mohamad Hadi El Charif
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sara Amro
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fouad Boulos
- Department of Pathology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Khalife
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem Assi
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Eman Sbaity
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
12
|
Masucci MT, Motti ML, Minopoli M, Di Carluccio G, Carriero MV. Emerging Targeted Therapeutic Strategies to Overcome Imatinib Resistance of Gastrointestinal Stromal Tumors. Int J Mol Sci 2023; 24:6026. [PMID: 37046997 PMCID: PMC10094678 DOI: 10.3390/ijms24076026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common malignant mesenchymal neoplasms of the gastrointestinal tract. The gold standard for the diagnosis of GISTs is morphologic analysis with an immunohistochemical evaluation plus genomic profiling to assess the mutational status of lesions. The majority of GISTs are driven by gain-of-function mutations in the proto-oncogene c-KIT encoding the tyrosine kinase receptor (TKR) known as KIT and in the platelet-derived growth factor-alpha receptor (PDGFRA) genes. Approved therapeutics are orally available as tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA oncogenic activation. Among these, imatinib has changed the management of patients with unresectable or metastatic GISTs, improving their survival time and delaying disease progression. Nevertheless, the majority of patients with GISTs experience disease progression after 2-3 years of imatinib therapy due to the development of secondary KIT mutations. Today, based on the identification of new driving oncogenic mutations, targeted therapy and precision medicine are regarded as the new frontiers for GISTs. This article reviews the most important mutations in GISTs and highlights their importance in the current understanding and treatment options of GISTs, with an emphasis on the most recent clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Masucci
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Letizia Motti
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| |
Collapse
|
13
|
Ge Q, Liu Y, Yang F, Sun G, Guo J, Sun S. Chinese Pedigree with Hereditary Gastrointestinal Stromal Tumors: A Case Report and Literature Review. Int J Mol Sci 2023; 24:ijms24010830. [PMID: 36614290 PMCID: PMC9820900 DOI: 10.3390/ijms24010830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Familial gastrointestinal stromal tumor (GIST) is a rare autosomal dominant genetic disorder with only a few affected families reported to date. Here, we report a case of familial GISTs harboring a novel germline mutation within exon 18 of KIT. A 58-year-old male patient presented with gastric subepithelial lesions accompanied by cutaneous hyperpigmentation, which were subsequently diagnosed as multinodular GISTs. Endoscopic surgery was initially conducted to remove the larger lesions, and pathological examinations were then conducted for the diagnosis of GISTs. Family history revealed that some other family members had similar cutaneous pigmentations. Whole-exome sequencing was used to search for potential driver mutations, and Sanger sequencing was used for mutation validation. A novel primary driver mutation of KIT (c.G2485C, p.A829P) was detected in these hereditary GISTs, which has been reported in some targeted chemotherapy-resistant GISTs. Cell models were subsequently established for the rapid screening of candidate drugs and exploring potential mechanisms. This mutation could lead to cell proliferation and imatinib resistance by ligand-independent activation of KIT; however, ripretinib administration was identified as an applicable targeted therapy for this mutation. The mutation activated the JAK/STAT3 and MAPK/ERK pathways, which could be inhibited by ripretinib administration. To the best of our knowledge, this is the first report of the KIT-A829P mutation in familial GISTs, complementing the pathogenesis of familial GISTs and providing valuable information for the precision treatment of this disease.
Collapse
Affiliation(s)
- Qichao Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
| | - Guangwei Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
- Correspondence: (J.G.); (S.S.); Tel.: +86-189-4025-6654 (J.G.); Fax: +86-24-23892617 (J.G.)
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
- Correspondence: (J.G.); (S.S.); Tel.: +86-189-4025-6654 (J.G.); Fax: +86-24-23892617 (J.G.)
| |
Collapse
|
14
|
Mandelker D, Marra A, Mehta N, Selenica P, Yelskaya Z, Yang C, Somar J, Mehine M, Misyura M, Basturk O, Latham A, Carlo M, Walsh M, Stadler ZK, Offit K, Bandlamudi C, Hameed M, Chi P, Reis-Filho JS, Ceyhan-Birsoy O. Expanded genetic testing of GIST patients identifies high proportion of non-syndromic patients with germline alterations. NPJ Precis Oncol 2023; 7:1. [PMID: 36593350 PMCID: PMC9807588 DOI: 10.1038/s41698-022-00342-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Traditional genetic testing for patients with gastrointestinal stromal tumors (GISTs) focus on those with syndromic features. To assess whether expanded genetic testing of GIST patients could identify hereditary cancer predisposition, we analyzed matched tumor-germline sequencing results from 103 patients with GISTs over a 6-year period. Germline pathogenic/likely pathogenic (P/LP) variants in GIST-associated genes (SDHA, SDHB, SDHC, NF1, KIT) were identified in 69% of patients with KIT/PDGFRA-wildtype GISTs, 63% of whom did not have any personal or family history of syndromic features. To evaluate the frequency of somatic versus germline variants identified in tumor-only sequencing of GISTs, we analyzed 499 de-identified tumor-normal pairs. P/LP variants in certain genes (e.g., BRCA1/2, SDHB) identified in tumor-only sequencing of GISTs were almost exclusively germline in origin. Our results provide guidance for genetic testing of GIST patients and indicate that germline testing should be offered to all patients with KIT/PDGFRA-wildtype GISTs regardless of their history of syndromic features.
Collapse
Affiliation(s)
- Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikita Mehta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zarina Yelskaya
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ciyu Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Somar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miika Mehine
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Bandlamudi
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meera Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Mathias-Machado MC, de Jesus VHF, de Carvalho Oliveira LJ, Neumann M, Peixoto RD. Current Molecular Profile of Gastrointestinal Stromal Tumors and Systemic Therapeutic Implications. Cancers (Basel) 2022; 14:5330. [PMID: 36358751 PMCID: PMC9656487 DOI: 10.3390/cancers14215330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are malignant mesenchymal tumors arising from the intestinal pacemaker cells of Cajal. They compose a heterogenous group of tumors due to a variety of molecular alterations. The most common gain-of-function mutations in GISTs are either in the KIT (60-70%) or platelet-derived growth factor receptor alpha (PDGFRA) genes (10-15%), which are mutually exclusive. However, a smaller subset, lacking KIT and PDGFRA mutations, is considered wild-type GISTs and presents distinct molecular findings with the activation of different proliferative pathways, structural chromosomal and epigenetic changes, such as inactivation of the NF1 gene, mutations in the succinate dehydrogenase (SDH), BRAF, and RAS genes, and also NTRK fusions. Currently, a molecular evaluation of GISTs is imperative in many scenarios, aiding in treatment decisions from the (neo)adjuvant to the metastatic setting. Here, we review the most recent data on the molecular profile of GISTs and highlight therapeutic implications according to distinct GIST molecular subtypes.
Collapse
Affiliation(s)
| | | | | | - Marina Neumann
- Centro Paulista de Oncologia (Oncoclínicas), São Paulo 04538-132, Brazil
| | | |
Collapse
|
16
|
Yuan W, Huang W, Ren L, Xu C, Luan LJ, Huang J, Xue AW, Fang Y, Gao XD, Shen KT, Lv JH, Hou YY. Familial gastrointestinal stromal tumors with KIT germline mutation in a Chinese family: A case report. World J Clin Cases 2022; 10:4878-4885. [PMID: 35801023 PMCID: PMC9198863 DOI: 10.12998/wjcc.v10.i15.4878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/29/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Familial gastrointestinal stromal tumors (GISTs) is a rare autosomal dominant disorder characterized by an array of clinical manifestations. Only 35 kindreds with germline KIT mutations and six with germline PDGFRA mutations have been reported so far. It is often characterized by a series of manifestations, such as multiple lesions and hyperpigmentation. However, the effect of imatinib treatment in these patients is still uncertain.
CASE SUMMARY Here, we report two patients (father and daughter) in a Chinese family (for the first time) with germline KIT mutation, and described their pathology, genetics and clinical manifestations. A 25-year-old Chinese woman went to hospital because of abdominal pain, and computed tomography showed multiple tumors in the small intestine. Small pigmented spots appeared on the skin within a few months after birth. Her father also had multiple pigmented spots and a history of multifocal GISTs. Multiple GISTs associated with diffuse interstitial Cajal cells (ICCs) hyperplasia were positive for CD117 and DOG-1. Gene sequencing revealed a germline mutation at codon 560 of exon 11 (p.V560G) of KIT gene in these two patients. Imatinib therapy showed the long-lasting disease stability after resection. Remarkably, the hypopigmentation of the skin could also be observed. Luckily germline KIT mutation has not been identified yet in the 3-year-old daughter of the female patient.
CONCLUSION Diagnosis of familial GISTs depends on combination of diffuse ICCs hyperplasia, germline KIT/PDGFRA mutation, hyperpigmentation and family history.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Ren
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li-Juan Luan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - An-Wei Xue
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Fang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Dong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kun-Tang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing-Huan Lv
- Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Ying-Yong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Extra gastrointestinal stromal tumor in the recto-vesical pouch: A case report and literature review. Ann Med Surg (Lond) 2022; 74:103283. [PMID: 35127068 PMCID: PMC8807970 DOI: 10.1016/j.amsu.2022.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Extra-gastrointestinal stromal tumors (EGISTs) are rare mesenchymal tumors located outside the gastrointestinal tract, and exhibit the same phenotypic and morphological profile of gastrointestinal stromal tumors (GISTs). Case report We report the case of a 20-year-old male patient consulted for chronic discomfort in the hypogastric region. Abdominal ultrasound and abdomino-pelvic CT scan identified a retro-vesical mass measuring 16 × 9 cm. He underwent an exploratory laparotomy and a total resection of the mass R0. The histopathological panel of the surgical specimen confirmed the diagnosis of EGIST. Clinical discussion The primary localization in the recto-vesical pouch of EGIST is a very rare entity. Their clinical and radiological presentations are unusual, and their definitive diagnosis is largely based on immunohistochemistry staining. Conclusion the origin of extra gastrointestinal stromal tumors EGIST can remain unclear. Extra gastrointestinal stromal tumors (EGISTs) are very rare primary entities that develop outside the digestive tract. Their primary localization in the recto-vesical pouch is a very rare entity. Their definitive diagnosis is largely based on immunohistochemistry staining. The only accepted treatment for non-metastatic EGISTs is a complete surgical resection.
Collapse
|
18
|
Dermawan JK, Rubin BP. Molecular Pathogenesis of Gastrointestinal Stromal Tumor: A Paradigm for Personalized Medicine. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:323-344. [PMID: 34736340 DOI: 10.1146/annurev-pathol-042220-021510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three to four decades, the molecular pathogenesis of gastrointestinal stromal tumors (GISTs) has been elucidated in great detail. In this review, we discuss the biological genesis of GISTs, identification of the various primary activating driver mutations (focusing on KIT and PDGFRA), oncogene addiction and targeted therapies with imatinib and other tyrosine kinase inhibitors, and the subsequent characterization of the various mechanisms of drug resistance. We illustrate how GIST has become a quintessential paradigm for personalized medicine. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| |
Collapse
|
19
|
Kihara T, Yuan J, Watabe T, Kitajima K, Kimura N, Ohkouchi M, Hashikura Y, Ohkubo S, Takahashi T, Hirota S. Pimitespib is effective on cecal GIST in a mouse model of familial GISTs with KIT-Asp820Tyr mutation through KIT signaling inhibition. Exp Mol Pathol 2021; 123:104692. [PMID: 34606780 DOI: 10.1016/j.yexmp.2021.104692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
Three families with multiple gastrointestinal stromal tumors (GISTs) caused by a germline Asp820Tyr mutation at exon 17 of the c-kit gene (KIT-Asp820Tyr) have been reported. We previously generated a knock-in mouse model of the family, and the mice with KIT-Asp818Tyr corresponding to human KIT-Asp820Tyr showed a cecal tumor equivalent to human GIST. In the model mice, we reported that tyrosine kinase inhibitor, imatinib, could stabilize but not decrease the cecal tumor volume. In this report, we examined whether a heat shock protein 90 inhibitor, pimitespib (TAS-116), has an inhibitory effect on phosphorylation of KIT-Asp818Tyr and can decrease the cecal tumor volume in the model mice. First, we showed that pimitespib inhibited KIT phosphorylation both dose- and time-dependently in KIT-Asp818Tyr transfected murine Ba/F3 cells. Then, four 1-week courses of pimitespib were orally administered to heterozygous (KIT-Asp818Tyr/+) model mice. Each course consisted of once-daily administration for consecutive 5 days followed by 2 days-off. Cecal tumors were dissected, and tumor volume was histologically analyzed, Ki-67 labeling index was immunohistochemically examined, and apoptotic figures were counted. Compared to the vehicle treated mice, pimitespib administered mice showed statistically significantly smaller cecal tumor volume, lower Ki-67 labeling index, and higher number of apoptotic figures in 10 high power fields (P = 0.0344, P = 0.0019 and P = 0.0269, respectively). Western blotting revealed that activation of KIT signaling molecules was strongly inhibited in the tumor tissues of pimitespib-administered mice compared to control mice. Thus, pimitespib seemed to inhibit in vivo tumor progression effectively in the model mice. These results suggest that the progression of multiple GISTs in patients with germline KIT-Asp820Tyr might be controllable by pimitespib.
Collapse
Affiliation(s)
- Takako Kihara
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiayin Yuan
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadashi Watabe
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Kitajima
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Neinei Kimura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mizuka Ohkouchi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuka Hashikura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
20
|
Recent Progress and Challenges in the Diagnosis and Treatment of Gastrointestinal Stromal Tumors. Cancers (Basel) 2021; 13:cancers13133158. [PMID: 34202544 PMCID: PMC8268322 DOI: 10.3390/cancers13133158] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Gastrointestinal stromal tumors (GIST) are potentially malignant tumors and require evidence-based surgical and/or medical treatment. Laparoscopy has similar safety and prognostic outcomes to those of laparotomy and is currently a standard procedure for localized GISTs. However, surgery for gastric GISTs less than 2 cm may be re-evaluated due to the indolent nature of the GIST and other competing risks among GIST patients. A work-up with endoscopy and endoscopic ultrasonography as well as endoscopic or percutaneous biopsy is important for the preoperative diagnosis of GISTs. Medical treatment with tyrosine kinase inhibitors is the mainstay for recurrent/metastatic GISTs. The activity of an individual drug is well correlated with gene alterations, and, in the era of precision medicine, cancer genome profiling should be considered before medical treatment. Abstract Gastrointestinal stromal tumors (GISTs) are the most frequent malignant mesenchymal tumors in the gastrointestinal tract. The clinical incidence of GISTs is estimated 10/million/year; however, the true incidence is complicated by frequent findings of tiny GISTs, of which the natural history is unknown. The initial work-up with endoscopy and endoscopic ultrasonography plays important roles in the differential diagnosis of GISTs. Surgery is the only modality for the permanent cure of localized GISTs. In terms of safety and prognostic outcomes, laparoscopy is similar to laparotomy for GIST treatment, including tumors larger than 5 cm. GIST progression is driven by mutations in KIT or PDGFRA or by other rare gene alterations, all of which are mutually exclusive. Tyrosine kinase inhibitors (TKIs) are the standard therapy for metastatic/recurrent GISTs. Molecular alterations are the most reliable biomarkers for TKIs and for other drugs, such as NTRK inhibitors. The pathological and genetic diagnosis prior to treatment has been challenging; however, a newly developed endoscopic device may be useful for diagnosis. In the era of precision medicine, cancer genome profiling by targeted gene panel analysis may enable potential targeted therapy even for GISTs without KIT or PDGFRA mutations.
Collapse
|
21
|
Hashimoto M, Takahashi T, Nakajima K, Kurokawa Y, Miyazaki Y, Tanaka K, Makino T, Yamasaki M, Eguchi H, Mori M, Doki Y. Laparoscopic surgery for familial multiple gastrointestinal stromal tumors with germ line c-kit gene mutation. Asian J Endosc Surg 2021; 14:250-253. [PMID: 32648338 DOI: 10.1111/ases.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 11/28/2022]
Abstract
Familial gastrointestinal stromal tumor (GIST) is an exceedingly rare disease characterized by mutations in the c-kit and platelet-derived growth factor receptor alpha genes. We report the case of a 73-year-old woman with multiple submucosal tumors (SMTs) in the stomach and small intestine. Her elder sister had previously presented with multiple SMTs on examination and underwent surgery to remove the tumors because they showed a tendency to increase in size during follow-up. The sister's tumors were pathologically diagnosed as GISTs, and a germ line mutation was recognized in exon 17 of c-kit. Subsequently, the patient presented with multiple SMTs and the same germ line mutation as her sister. After 9 years of follow-up, a single tumor was found to have grown in size, and SILS was performed for this SMT, which was also pathologically diagnosed as a GIST. To our knowledge, this is the first report of laparoscopic surgery for a case of familial GIST.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
22
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
23
|
Abstract
Gastrointestinal stromal tumours (GIST) have an incidence of ~1.2 per 105 individuals per year in most countries. Around 80% of GIST have varying molecular changes, predominantly mutually exclusive activating KIT or PDGFRA mutations, but other, rare subtypes also exist. Localized GIST are curable, and surgery is their standard treatment. Risk factors for relapse are tumour size, mitotic index, non-gastric site and tumour rupture. Patients with GIST with KIT or PDGFRA mutations sensitive to the tyrosine kinase inhibitor (TKI) imatinib that are at high risk of relapse have improved survival with adjuvant imatinib treatment. In advanced disease, median overall survival has improved from 18 months to >70 months since the introduction of TKIs. The role of surgery in the advanced setting remains unclear. Resistance to TKIs arise mainly from subclonal selection of cells with resistance mutations in KIT or PDGFRA when they are the primary drivers. Advanced resistant GIST respond to second-line sunitinib and third-line regorafenib, as well as to the new broad-spectrum TKI ripretinib. Rare molecular forms of GIST with alterations involving NF1, SDH genes, BRAF or NTRK genes generally show primary resistance to standard TKIs, but some respond to specific inhibitors of the activated genes. Despite major advances, many questions in both advanced and localized disease remain unanswered.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France.
| | - Yoon-Koo Kang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Toshiroo Nishida
- Surgery Department, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
24
|
Sobral-Leite M, da Silva JL, Pimenta-Inada HK, Mendes Boisson AS, Romeiro PDA, Soares Parago FM, Valadão da Silva MVM, de Melo AC. Gastrointestinal Stromal Tumor in Monozygotic Twins Shows Distinct Mutational Status: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e929887. [PMID: 33674549 PMCID: PMC7949489 DOI: 10.12659/ajcr.929887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Case series Patients: Female, 62-year-old • Female, 62-year-old Final Diagnosis: Gastrointestinal stromal tumor (GIST) Symptoms: Abdominal pain • fatigue Medication: — Clinical Procedure: Genetic analysis Specialty: Oncology
Collapse
Affiliation(s)
- Marcelo Sobral-Leite
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Pharmacology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Jesse Lopes da Silva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil.,Department of Surgery, Galeão Air Force Hospital, Rio de Janeiro, RJ, Brazil
| | - Haynna Kimie Pimenta-Inada
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Brčić I, Argyropoulos A, Liegl-Atzwanger B. Update on Molecular Genetics of Gastrointestinal Stromal Tumors. Diagnostics (Basel) 2021; 11:diagnostics11020194. [PMID: 33525726 PMCID: PMC7912114 DOI: 10.3390/diagnostics11020194] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. The majority are sporadic, solitary tumors that harbor mutually exclusive KIT or PDGFRA gain-of-function mutations. The type of mutation in addition to risk stratification corresponds to the biological behavior of GIST and response to treatment. Up to 85% of pediatric GISTs and 10–15% of adult GISTs are devoid of these (KIT/PDGFRA) mutations and are referred to as wild-type GISTs (wt-GIST). It has been shown that these wt-GISTs are a heterogeneous tumor group with regard to their clinical behavior and molecular profile. Recent advances in molecular pathology helped to further sub-classify the so-called “wt-GISTs”. Based on their significant clinical and molecular heterogeneity, wt-GISTs are divided into a syndromic and a non-syndromic (sporadic) subgroup. Recently, the use of succinate dehydrogenase B (SDHB) by immunohistochemistry has been used to stratify GIST into an SDHB-retained and an SDHB-deficient group. In this review, we focus on GIST sub-classification based on clinicopathologic, and molecular findings and discuss the known and yet emerging prognostic and predictive genetic alterations. We also give insights into the limitations of targeted therapy and highlight the mechanisms of secondary resistance.
Collapse
|
26
|
Fornasarig M, Gasparotto D, Foltran L, Campigotto M, Lombardi S, Del Savio E, Buonadonna A, Puglisi F, Sulfaro S, Canzonieri V, Cannizzaro R, Maestro R. A Novel Kindred with Familial Gastrointestinal Stromal Tumors Caused by a Rare KIT Germline Mutation (N655K): Clinico-Pathological Presentation and TKI Sensitivity. J Pers Med 2020; 10:jpm10040234. [PMID: 33212994 PMCID: PMC7711910 DOI: 10.3390/jpm10040234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs), the most common mesenchymal tumors of the gastrointestinal tract, are characterized by activating mutations in KIT or PDGFRA genes. The vast majority of GISTs are sporadic, but rare hereditary forms have been reported, often featuring multifocality and younger age of onset. We here report the identification of a novel kindred affected by familial GIST caused by a KIT germline mutation in exon 13 (N655K). No family affected by hereditary GIST due to this KIT variant has been reported in literature so far. We were able to track the mutation in three members of the family (proband, mother, and second-degree cousin), all affected by multiple GISTs. Due to its rarity, the N655K variant is poorly characterized. We conducted in vitro drug sensitivity assays that indicated that most tyrosine kinase inhibitors (TKIs) currently included in the therapeutic armamentarium for GISTs have a limited inhibitory activity toward this mutation. However, when compared to a classical imatinib-resistant KIT mutation (T670I), N655K was slightly more sensitive to imatinib, and encouraging responses were observed with last-generation TKIs.
Collapse
Affiliation(s)
- Mara Fornasarig
- Unit of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (M.F.); (R.C.)
| | - Daniela Gasparotto
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (D.G.); (S.L.); (E.D.S.)
| | - Luisa Foltran
- Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (L.F.); (A.B.); (F.P.)
| | - Michele Campigotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (M.C.); (V.C.)
| | - Sara Lombardi
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (D.G.); (S.L.); (E.D.S.)
| | - Elisa Del Savio
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (D.G.); (S.L.); (E.D.S.)
| | - Angela Buonadonna
- Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (L.F.); (A.B.); (F.P.)
| | - Fabio Puglisi
- Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (L.F.); (A.B.); (F.P.)
- Department of Medicine, University of Udine, 3310 Udine, Italy
| | - Sandro Sulfaro
- Unit of Pathology, Santa Maria Degli Angeli General Hospital, 33170 Pordenone, Italy;
| | - Vincenzo Canzonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (M.C.); (V.C.)
- Unit of Pathology, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy
| | - Renato Cannizzaro
- Unit of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (M.F.); (R.C.)
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, 33081 Aviano, Italy; (D.G.); (S.L.); (E.D.S.)
- Correspondence:
| |
Collapse
|
27
|
Ramaswamy A, Chaudhari V, Bhargava P, Bhandare M, Kumar R, Shrikhande SV, Ostwal V. Gastrointestinal Stromal Tumor – An Overview. Indian J Med Paediatr Oncol 2020. [DOI: 10.4103/ijmpo.ijmpo_45_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractGastrointestinal stromal tumors (GISTs) are rare tumors but are most common mesenchymal tumors of the digestive tract. They are commonly seen in the stomach (60%) and small intestine (30%). GISTs are likely derived from the interstitial cells of Cajal or their stem cell precursors. They are best characterized by computerized tomography and have a specific staining pattern on immunohistochemistry, i.e., C-Kit and DOG-1. The treatment of GIST is based on the risk assessment for relapse, and patients with localized GIST require resection with or without adjuvant imatinib mesylate (IM). Advanced unresectable tumors are usually treated with IM, with a number of further options available for patients post progression on IM. There is an increasing emphasis on identifying C-Kit and platelet-derived growth factor receptor alpha mutations in all patients with GIST, as these are driver mutations with current and future therapeutic implications.
Collapse
Affiliation(s)
- Anant Ramaswamy
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Vikram Chaudhari
- GI and HPB Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Prabhat Bhargava
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Manish Bhandare
- GI and HPB Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rajiv Kumar
- Department of Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Shailesh v Shrikhande
- GI and HPB Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vikas Ostwal
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| |
Collapse
|
28
|
Wang Y, Call J. Mutational Testing in Gastrointestinal Stromal Tumor. Curr Cancer Drug Targets 2020; 19:688-697. [PMID: 30914028 DOI: 10.2174/1568009619666190326123945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
Targeted treatment has become a major modality in cancer management. Such cancer drugs are generally designed to treat tumors with certain genetic/genomic makeups. Mutational testing prior to prescribing targeted therapy is crucial in identifying who can receive clinical benefit from specific cancer drugs. Over the last two decades, gastrointestinal stromal tumors (GISTs) have evolved from histogenetically obscure to being identified as distinct gastrointestinal mesenchymal tumors with well-defined clinical and molecular characteristics, for which multiple lines of targeted therapies are available. Although the National Comprehensive Cancer Network (NCCN) strongly recommends mutational testing for optimal management of GIST, many GIST patients still have neither a mutation test performed or any mutation-guided cancer management. Here, we review the mutation-guided landscape of GIST, mutational testing methods, and the recent development of new therapies targeting GIST with specific mutations.
Collapse
Affiliation(s)
- Yu Wang
- The Life Raft Group, 155 US-46 Wayne, NJ 07470, United States
| | - Jerry Call
- The Life Raft Group, 155 US-46 Wayne, NJ 07470, United States
| |
Collapse
|
29
|
Ahmed M. Recent advances in the management of gastrointestinal stromal tumor. World J Clin Cases 2020; 8:3142-3155. [PMID: 32874969 PMCID: PMC7441252 DOI: 10.12998/wjcc.v8.i15.3142] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is a rare but an important clinical entity seen in our clinical practice. It is the most common mesenchymal tumor of the gastrointestinal tract and most common malignancy of the small intestine. Although the exact prevalence of GIST is not known, the incidence of GIST has been increasing. GISTs arise from interstitial cells of Cajal. Most of the GISTs occur due to mutation in c-kit gene or platelet derived growth factor receptor alpha gene. 15% of GISTs do not have these mutations and they are called wild-type GISTs. Almost all GISTs express KIT receptor tyrosine kinase. Histologically, GISTs look like spindle cell tumors most of the time but they can be epitheloid or mixed type. The median size of GISTs varies from 2.7 cm to 8.9 cm. Clinically, patients with small GISTs remain asymptomatic but as the GIST size increases, patients present with various symptoms depending on the location of the GIST. Most of GISTs are located in the stomach or small bowel. Diagnosis is suspected on imaging and endoscopic studies, and confirmed by tissue acquisition with immunohistochemical staining. The aggressiveness of GISTs depends on the size, mitotic index and location. Surgical resection is the treatment of choice. But various endoscopic modalities of resection are increasingly being tried. Tyrosine kinase inhibitors are extremely useful in the management of large GISTs, unresectable GISTs and metastatic GISTs. Treatment options for metastatic GISTs also include radiotherapy, chemotherapy, hepatic artery embolization, chemoembolization and radiofrequency ablation.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
30
|
Guérin A, Martire D, Trenquier E, Lesluyes T, Sagnol S, Pratlong M, Lefebvre E, Chibon F, de Santa Barbara P, Faure S. LIX1 regulates YAP activity and controls gastrointestinal cancer cell plasticity. J Cell Mol Med 2020; 24:9244-9254. [PMID: 32633461 PMCID: PMC7417687 DOI: 10.1111/jcmm.15569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumours (GISTs), the most common mesenchymal neoplasm of the gastrointestinal tract, result from deregulated proliferation of transformed KIT‐positive interstitial cells of Cajal that share mesenchymal progenitors with smooth muscle cells. Despite the identification of selective KIT inhibitors, primary resistance and relapse remain a major concern. Moreover, most patients develop resistance partly through reactivation of KIT and its downstream signalling pathways. We previously identified the Limb Expression 1 (LIX1) gene as a unique marker of digestive mesenchyme immaturity. We also demonstrated that LIX1 regulates mesenchymal progenitor proliferation and differentiation by controlling the Hippo effector YAP1, which is constitutively activated in many sarcomas. Therefore, we wanted to determine LIX1 role in GIST development. We found that LIX1 is strongly up‐regulated in GIST samples and this is associated with unfavourable prognosis. Moreover, LIX1 controls GIST cell proliferation in vitro and in vivo. Upon LIX1 inactivation in GIST cells, YAP1/TAZ activity is reduced, KIT (the GIST signature) is down‐regulated, and cells acquire smooth muscle lineage features. Our data highlight LIX1 role in digestive mesenchyme‐derived cell‐fate decisions and identify this novel regulator as a target for drug design for GIST treatment by influencing its differentiation status.
Collapse
Affiliation(s)
- Amandine Guérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Delphine Martire
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Eva Trenquier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Tom Lesluyes
- Cancer Research Center of Toulouse, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Sébastien Sagnol
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Marine Pratlong
- MGX, Biocampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Elise Lefebvre
- MGX, Biocampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Fréderic Chibon
- Cancer Research Center of Toulouse, University of Toulouse, INSERM, CNRS, Toulouse, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
31
|
Castel P, Rauen KA, McCormick F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat Rev Cancer 2020; 20:383-397. [PMID: 32341551 PMCID: PMC7787056 DOI: 10.1038/s41568-020-0256-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
Human oncoproteins promote transformation of cells into tumours by dysregulating the signalling pathways that are involved in cell growth, proliferation and death. Although oncoproteins were discovered many years ago and have been widely studied in the context of cancer, the recent use of high-throughput sequencing techniques has led to the identification of cancer-associated mutations in other conditions, including many congenital disorders. These syndromes offer an opportunity to study oncoprotein signalling and its biology in the absence of additional driver or passenger mutations, as a result of their monogenic nature. Moreover, their expression in multiple tissue lineages provides insight into the biology of the proto-oncoprotein at the physiological level, in both transformed and unaffected tissues. Given the recent paradigm shift in regard to how oncoproteins promote transformation, we review the fundamentals of genetics, signalling and pathogenesis underlying oncoprotein duality.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine A Rauen
- MIND Institute, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Carrera S, Beristain E, Sancho A, Iruarrizaga E, Rivero P, Mañe JM, López Vivanco G. Germline c.1A>C heterozygous pathogenic variant in SDHA reported for the first time in a young adult with a gastric gastrointestinal stromal tumour (GIST): a case report. Hered Cancer Clin Pract 2019; 17:23. [PMID: 31413764 PMCID: PMC6688230 DOI: 10.1186/s13053-019-0124-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gastrointestinal stromal tumors (GISTs) represent the most frequent mesenchymal tumor of the gastrointestinal tract. Less than 5% of them seem to be hereditary, being succinate dehydrogenase complex (SDHx) deficient disorders and neurofibromatosis type 1 the more related inherited conditions. Wild type (WT) KIT and PDGFRα GISTs constitute a clue for a hypothetical underlying germline condition. Case presentation We present a case of a 20 years old female diagnosed of a gastric WT GIST who developed hepatic metastases during her clinical course. No significant or typical phenotypic features suggestive of a specific syndrome were detected by physical examination. Also, her family history seemed to be irrelevant, since no other cases of GISTs, paragangliomas or pheochromocytomas were reported. Her paternal grandfather died as a consequence of a pituitary adenoma. In light of the age of tumor presentation and somatic features of gastric GIST, we performed genetic testing of SDHx genes. Analysis obtained from peripheral blood sample revealed the presence, in heterozygous state, of the c.1A > C; p.(Met1?) pathogenic variant in the SDHA. Conclusions To the best of our knowledge, this is the first published report in which the c.1A > C; p.(Met1?) pathogenic variant in the SDHA is associated with a GIST. SDHA pathogenic variants increase the risk of paraganglioma, pheochromocytoma, GIST, pituitary adenoma and renal cancer in an autosomal dominant inherited condition named paraganglioma syndrome type 5. The absence of family history of tumors in SDHA pathogenic variants carriers could be related to its low penetrance. All patients diagnosed with WT GISTs should be referred to a hereditary cancer genetic counseling unit regardless of the age at presentation or the absence of a suspicious family history.
Collapse
Affiliation(s)
- Sergio Carrera
- 1Hereditary Cancer Genetic Counseling Unit- Medical Oncology Department, Cruces University Hospital, Plaza de Cruces s/n., 48903 Baracaldo, Bizkaia Spain
| | - Elena Beristain
- Molecular Genetics Laboratory, Araba University Hospital, Vitoria, Spain
| | - Aintzane Sancho
- 3Medical Oncology Department, Cruces University Hospital, Baracaldo, Spain
| | - Eluska Iruarrizaga
- 3Medical Oncology Department, Cruces University Hospital, Baracaldo, Spain
| | - Pilar Rivero
- 3Medical Oncology Department, Cruces University Hospital, Baracaldo, Spain
| | - Juan Manuel Mañe
- 3Medical Oncology Department, Cruces University Hospital, Baracaldo, Spain
| | | |
Collapse
|
33
|
Li GZ, Raut CP. Targeted therapy and personalized medicine in gastrointestinal stromal tumors: drug resistance, mechanisms, and treatment strategies. Onco Targets Ther 2019; 12:5123-5133. [PMID: 31308690 PMCID: PMC6612765 DOI: 10.2147/ott.s180763] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. Since the discovery that the KIT and PDGFRA receptor tyrosine kinases are the primary oncogenic drivers in the vast majority of GISTs, targeted therapy with tyrosine kinase inhibitors has been the mainstay of treatment for this disease. Using molecular profiling of tumor specimens, researchers also discovered that KIT and PDGFRA mutations are non-random and occur in specific regions of the receptors, and furthermore, that particular genotypes predicted response or resistance to targeted therapy. Imatinib, the first tyrosine kinase inhibitor used to treat GIST, remains the first-line therapy in advanced GIST and the only therapy confirmed through clinical trials in the adjuvant or neoadjuvant setting for resectable disease. Resistance to imatinib is well described and is either primary or secondary. Primary resistance is associated with specific tumor genotypes, so genotyping of individual patient tumors helps guide decision-making into whether to offer imatinib and at what dose. Secondary resistance occurs due to the acquisition of secondary mutations during therapy. Currently, the main strategy to combat imatinib resistance is to switch to another tyrosine kinase inhibitor, because imatinib-resistant GIST is usually still oncogenically addicted to KIT/PDGFRA signaling. Surgery can also be used to combat resistant disease in select settings. Unfortunately, progression-free and overall survival remains dismal for patients who develop imatinib-resistant disease, and further research into alternative strategies is still needed.
Collapse
Affiliation(s)
- George Z Li
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Chandrajit P Raut
- Center for Sarcoma and Bone Oncology, Dana Farber Cancer Center, Boston, MA, USA
| |
Collapse
|
34
|
Wu CE, Tzen CY, Wang SY, Yeh CN. Clinical Diagnosis of Gastrointestinal Stromal Tumor (GIST): From the Molecular Genetic Point of View. Cancers (Basel) 2019; 11:cancers11050679. [PMID: 31100836 PMCID: PMC6563074 DOI: 10.3390/cancers11050679] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) originating from the interstitial cells of Cajal are mesenchymal tumors of the gastrointestinal tract and have been found to harbor c-KIT mutations and KIT (CD117) expression since 1998. Later, PDGFRA mutations, SDH alterations, and other drive mutations were identified in GISTs. In addition, more and more protein markers such as DOG1, PKCθ were found to be expressed in GISTs which might help clinicians diagnose CD117-negative GISTs. Therefore, we plan to comprehensively review the molecular markers and genetics of GISTs and provide clinicians useful information in diagnostic and therapeutic strategies of GISTs. Twenty years after the discovery of KIT in GISTs, the diagnosis of GISTs became much more accurate by using immunohistochemical (IHC) panel (CD117/DOG1) and molecular analysis (KIT/PDGFRA), both of which constitute the gold standard of diagnosis in GISTs. The accurately molecular diagnosis of GISTs guides clinicians to precision medicine and provides optimal treatment for the patients with GISTs. Successful treatment in GISTs prolongs the survival of GIST patients and causes GISTs to become a chronic disease. In the future, the development of effective treatment for GISTs resistant to imatinib/sunitinib/regorafenib and KIT/PDGFRA-WT GISTs will be the challenge for GISTs.
Collapse
Affiliation(s)
- Chiao-En Wu
- GIST Team, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chin-Yuan Tzen
- Forlab Clinic, F2, No 14, Sec 2, Zhongxiao East Rd, Taipei 100, Taiwan.
| | - Shang-Yu Wang
- GIST Team, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chun-Nan Yeh
- GIST Team, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
35
|
Yu JS. From discovery of tyrosine phosphorylation to targeted cancer therapies: The 2018 Tang Prize in Biopharmaceutical Science. Biomed J 2019; 42:80-83. [PMID: 31130251 PMCID: PMC6541884 DOI: 10.1016/j.bj.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023] Open
Abstract
Protein tyrosine kinases (TKs) are a family of enzymes that catalyze the phosphorylation of proteins at tyrosine residues. TKs play key roles in controlling cell growth and many other functions by modulating the status of tyrosine phosphorylation of regulatory proteins critical for numerous cellular signaling pathways. Dysregulation of TKs caused by genetic abnormalities (mutation, amplification, fusion, etc.) results in uncontrolled cell growth, and ultimately leads to cancer. Thus, identification of dysregulated TK(s) in a specific cancer type and development of TK inhibitors (TKIs) that can potently block activity of the dysregulated TK establish the foundation of modern targeted cancer therapies. The 2018 Tang Prize in Biopharmaceutical Science was awarded to Tony Hunter as well as Brian Druker and John Mendelsohn for their great contributions in discovering oncogene src as a TK and developing small molecule TKIs or therapeutic monoclonal antibodies against receptor TK, respectively.
Collapse
Affiliation(s)
- Jau-Song Yu
- Department of Cell & Molecular Biology, Graduate Institute of Biomedical Sciences, and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
36
|
Halpern AL, Torphy RJ, McCarter MD, Sciotto CG, Glode LM, Robinson WA. A familial germline mutation in KIT associated with achalasia, mastocytosis and gastrointestinal stromal tumors shows response to kinase inhibitors. Cancer Genet 2019; 233-234:1-6. [PMID: 31109590 DOI: 10.1016/j.cancergen.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/16/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Activating mutations of the tyrosine kinase receptor KIT have been described in both mastocytosis and gastrointestinal stromal tumors (GIST), but are usually found in separate domains and often respond differently to signal transduction inhibitors. We describe here a large family with both GIST, mastocytosis, and achalasia. Affected family members have a unique activating mutation in exon 9 of KIT which show promise to a novel signal transduction inhibitor. METHODS Clinical data was collected from 15 family members, 7 of whom were variably affected with GIST, achalasia and mastocytosis. DNA was prepared from WBC of 12 subjects (6 affected and 6 unaffected) and exons 9, 11, 13 and 17 of KIT were amplified by PCR and directly sequenced. RESULTS A unique activating single base pair mutation in the extracellular domain of KIT was found in all 6 affected subjects resulting in a K>I amino acid change at codon 509. CONCLUSIONS In the family reported here, a unique mutation in the extracellular domain leads to receptor activation resulting in GIST and mastocytosis as well as achalasia. Initial data suggests that this activation can be suppressed by signal transduction inhibitors and these patients may benefit from such therapy.
Collapse
Affiliation(s)
- Alison L Halpern
- Department of Surgery, University of Colorado, 12801 E.17th Ave. Mail Stop 310, PO Box 6511, Aurora, CO 80045, United States.
| | - Robert J Torphy
- Department of Surgery, University of Colorado, 12801 E.17th Ave. Mail Stop 310, PO Box 6511, Aurora, CO 80045, United States
| | - Martin D McCarter
- Department of Surgery, University of Colorado, 12801 E.17th Ave. Mail Stop 310, PO Box 6511, Aurora, CO 80045, United States
| | - Cosimo G Sciotto
- Department of Pathology, Penrose Hospital, Colorado Springs CO, United States
| | - L Michael Glode
- Departments of Medicine and Dermatology, University of Colorado Aurora CO, United States
| | - William A Robinson
- Departments of Medicine and Dermatology, University of Colorado Aurora CO, United States
| |
Collapse
|
37
|
Remarkable effects of imatinib in a family with young onset gastrointestinal stromal tumors and cutaneous hyperpigmentation associated with a germline KIT-Trp557Arg mutation: case report and literature overview. Fam Cancer 2019; 17:247-253. [PMID: 28710566 DOI: 10.1007/s10689-017-0024-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) occur mostly sporadically. GISTs associated with a familial syndrome are very rare and are mostly wild type for KIT and platelet-derived growth factor alpha (PDGFRA). To date 35 kindreds and 8 individuals have been described with GISTs associated with germline KIT mutations. This is the third family described with a germline p.Trp557Arg mutation in exon 11 of the KIT gene. The effect of imatinib in patients harboring a germline KIT mutation has been rarely described. Moreover, in some studies imatinib treatment was withheld considering the lack of evidence for efficacy of this treatment in GIST patients harboring a germline KIT mutation. This paper describes a 52-year old patient with a de novo germline p.Trp557Arg mutation with multiple GISTs throughout the gastrointestinal tract and cutaneous hyperpigmentation. Imatinib treatment showed long-term regression of the GISTs and evident pathological response was seen after resection. Remarkably, the hyperpigmentation of the skin also diminished during imatinib treatment. Genetic screening of the family revealed the same mutation in two daughters, both with similar cutaneous hyperpigmentation. One daughter, aged 23, was diagnosed with multiple small intestine GISTs, which were resected. She was treated with adjuvant imatinib which prompted rapid regression of the cutaneous hyperpigmentation. Imatinib treatment in GIST patients harboring a germline KIT mutation shows favorable and long-term responses in both the tumor and the phenotypical hyperpigmentation.
Collapse
|
38
|
Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci 2018; 19:ijms19113491. [PMID: 30404198 PMCID: PMC6274851 DOI: 10.3390/ijms19113491] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
Collapse
|
39
|
SOCS1 gene therapy has antitumor effects in imatinib-resistant gastrointestinal stromal tumor cells through FAK/PI3 K signaling. Gastric Cancer 2018; 21:968-976. [PMID: 29623544 DOI: 10.1007/s10120-018-0822-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most of the gastrointestinal stromal tumors (GIST) have mutations in the KIT gene, encoding a receptor tyrosine kinase. Imatinib, a receptor tyrosine kinase inhibitor, is the first-line therapy for unresectable and metastatic GISTs. Despite the revolutionary effects of imatinib, some patients are primarily resistant to imatinib and many become resistant because of acquisition of secondary mutations in KIT. This study investigated the antitumor effects of SOCS1 gene therapy, which targets several signaling pathways. METHODS We used GIST-T1 (imatinib-sensitive) and GIST-R8 (imatinib-resistant) cells. We infected both cell lines with an adenovirus expressing SOCS1 (AdSOCS1) and examined antitumor effect and mechanisms of its agent. RESULTS The latter harboured with secondary KIT mutation and had imatinib resistance > 1000-fold higher than the former cells. We demonstrated that AdSOCS1 significantly decreased the proliferation and induced apoptosis in both cell lines. Moreover, SOCS1 overexpression inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3), AKT, and focal adhesion kinase (FAK) in both of them. Inhibition of JAK signaling did not affect the proliferation enough. However, inhibition of the FAK signaling with an FAK inhibitor or RNA interference significantly showed inhibitory effect on cell growth and suppressed the phosphorylation of AKT, indicating a cross-talk between the AKT and FAK pathways in both the imatinib-sensitive and imatinib-resistant GIST cells. CONCLUSIONS Our results indicate that the activation of FAK signaling is critical for proliferation of both imatinib-sensitive and -resistant GIST cells and the interference with FAK/AKT pathway might be beneficial for therapeutic target.
Collapse
|
40
|
Menge F, Jakob J, Kasper B, Smakic A, Gaiser T, Hohenberger P. Clinical Presentation of Gastrointestinal Stromal Tumors. Visc Med 2018; 34:335-340. [PMID: 30498699 DOI: 10.1159/000494303] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. They constitute 1-2% of all gastrointestinal neoplasms but are the most common subtype of soft tissue sarcomas, accounting for 20-25%. In the late 1990s, GISTs were more and more recognized as a particular tumor entity. The tumors are supposed to originate from the interstitial pacemaker cells of Cajal. They are usually well circumscribed and can be located in every part of the tubular gastrointestinal tract. Most often GISTs occur in the stomach, followed by the small bowel and colon/rectum. In contrast to epithelial tumors, GISTs grow transmurally and submucosal. GISTs can be found with highly variable growth features including tumors with intraluminal, intra- or transmural, and pedunculated appearance. Here we describe the most common clinical presentation of GISTs on the basis of our 809 patients managed from 2004 to 2017. The median age of our patients was 59 years and the average size of GIST was 75 mm (range: 4 mm to 35 cm). The clinical presentation is very heterogeneous, depending on tumor site, size, and growth pattern. GISTs of the stomach is the group with the lowest rate of acute or emergency symptoms with 31%, followed by GISTs of the duodenum with 42%, whereas GISTs of the small bowel show acute symptoms in more than 50% of the cases and have an emergency surgery rate of almost 15%. Many patients are diagnosed accidentally, through screening examinations, or with latent, unspecific symptoms.
Collapse
Affiliation(s)
- Franka Menge
- Division of Surgical Oncology, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Jakob
- Department of Surgery, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernd Kasper
- Interdisciplinary Tumor Center, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Armand Smakic
- Institute of Clinical Radiology and Nuclear Medicine, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Hohenberger
- Division of Surgical Oncology, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
41
|
Thacoor A. Gastrointestinal stromal tumours: advances in surgical and pharmacological management options. J Gastrointest Oncol 2018; 9:573-578. [PMID: 29998023 DOI: 10.21037/jgo.2018.01.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal neoplasm of the gastrointestinal tract. The stomach is most commonly affected. Advances in immunopathology have identified a mutation in the c-KIT proto-oncogene, leading to the development of the tyrosine-kinase inhibitor Imatinib as targeted therapy for advanced disease. Surgery, however, remains the only curative treatment of resectable primary GIST. This review article aims at reviewing the management of primary GISTs, investigating recurrences, exploring the role of surgery in metastatic disease and looking into combined surgery and molecular therapy for GISTs.
Collapse
|
42
|
Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med 2018; 215:1009-1022. [PMID: 29549114 PMCID: PMC5881472 DOI: 10.1084/jem.20172306] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Important insights from monogenic disorders into the immunopathogenesis of allergic diseases and reactions are discussed. Monogenic disorders have provided fundamental insights into human immunity and the pathogenesis of allergic diseases. The pathways identified as critical in the development of atopy range from focal defects in immune cells and epithelial barrier function to global changes in metabolism. A major goal of studying heritable single-gene disorders that lead to severe clinical allergic diseases is to identify fundamental pathways leading to hypersensitivity that can be targeted to provide novel therapeutic strategies for patients with allergic diseases, syndromic and nonsyndromic alike. Here, we review known single-gene disorders leading to severe allergic phenotypes in humans, discuss how the revealed pathways fit within our current understanding of the atopic diathesis, and propose how some pathways might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Taddei A, Castiglione F, Degl'Innocenti DR, Buccoliero AM, Garbini F, Tommasi C, Freschi G, Bechi P, Messerini L, Taddei GL. NF2 Expression Levels of Gastrointestinal Stromal Tumors: A Quantitative Real-Time PCR Study. TUMORI JOURNAL 2018; 94:551-5. [DOI: 10.1177/030089160809400417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gastrointestinal stromal tumors are the most common mesenchymal tumors of the gastrointestinal tract. Until today, there have been few markers specific for the tumor. This has complicated the differential diagnosis of the neoplasm from tumors of smooth muscle origin. Recently, the proto-oncogene c-kit has been shown to be a very relevant marker as it almost invariably is expressed in gastrointestinal stromal tumors. Radiation exposure, hormonal and genetic factors, particularly neurofibromatosis 2, have been implicated in their development and growth. GIST initiation, either in NF2-associated or in sporadic cases, is linked to inactivation of members of the proteins 4.1 superfamily. The majority of the mutations identified in the NF2 gene result in a truncated protein and are clinically associated with a severe phenotype. Occasionally, missense mutations associated with a mild phenotype may occur. We compared NF2 gene expression in 5 cases with gastrointestinal stromal tumors by quantitative real-time polymerase chain reaction analysis. NF2 gene mRNA expression was assessed in fresh tissue of stomach from 5 consecutive patients. We detected no alterations in NF2 gene expression in the quantitative analyses of the 5 tumors.
Collapse
Affiliation(s)
- Antonio Taddei
- Department of Surgical Pathology, University of Florence, School of Medicine, Florence, Italy
| | - Francesca Castiglione
- Department of Human Pathology and Oncology, University of Florence, School of Medicine, Florence, Italy
| | | | - Anna Maria Buccoliero
- Department of Human Pathology and Oncology, University of Florence, School of Medicine, Florence, Italy
| | - Francesca Garbini
- Department of Human Pathology and Oncology, University of Florence, School of Medicine, Florence, Italy
| | - Cinzia Tommasi
- Department of Surgical Pathology, University of Florence, School of Medicine, Florence, Italy
| | - Giancarlo Freschi
- Department of Surgical Pathology, University of Florence, School of Medicine, Florence, Italy
| | - Paolo Bechi
- Department of Surgical Pathology, University of Florence, School of Medicine, Florence, Italy
| | - Luca Messerini
- Department of Surgical Pathology, University of Florence, School of Medicine, Florence, Italy
| | - Gian Luigi Taddei
- Department of Surgical Pathology, University of Florence, School of Medicine, Florence, Italy
| |
Collapse
|
44
|
Sarmiento R, Bonginelli P, Cacciamani F, Salerno F, Gasparini G. Gastrointestinal Stromal Tumors (GISTs): From Science to Targeted Therapy. Int J Biol Markers 2018; 23:96-110. [DOI: 10.1177/172460080802300206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs represent a distinct category of tumors characterized by oncogenic mutations of the KIT receptor tyrosine kinase in a majority of patients. KIT is useful not only for the diagnosis but also for targeted therapy of this disease. Imatinib, a tyrosine kinase inhibitor, is widely used in advanced and metastatic GISTs. This agent revolutionized the treatment strategy of advanced disease and is being tested in the neoadjuvant and adjuvant settings with encouraging results. New therapeutic agents like sunitinib have now been approved, enriching the treatment scenario for imatinib-resistant GISTs. The present review reports on the peculiar characteristics of this disease through its biology and molecular patterns, focusing on the predictive value of KIT mutations and their correlation with clinical outcome as well as on the activity of and resistance to approved targeted drugs.
Collapse
Affiliation(s)
- R. Sarmiento
- Division of Medical Oncology, San Filippo Neri Hospital, Rome - Italy
| | - P. Bonginelli
- Division of Medical Oncology, San Filippo Neri Hospital, Rome - Italy
| | - F. Cacciamani
- Division of Medical Oncology, San Filippo Neri Hospital, Rome - Italy
| | - F. Salerno
- Division of Medical Oncology, San Filippo Neri Hospital, Rome - Italy
| | - G. Gasparini
- Division of Medical Oncology, San Filippo Neri Hospital, Rome - Italy
| |
Collapse
|
45
|
Niinuma T, Suzuki H, Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol 2018; 3:2. [PMID: 29441367 DOI: 10.21037/tgh.2018.01.02] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) harbor activating mutations in the receptor tyrosine kinase gene KIT or platelet-derived growth factor receptor alpha (PDGFRA), and the resultant activation of downstream signals plays a pivotal role in the development of GISTs. The sites of the tyrosine kinase gene mutations are associated with the biological behavior of GISTs, including risk category, clinical outcome and drug response. Mutations in RAS signaling pathway genes, including KRAS and BRAF, have also been reported in KIT/PDGFRA wild-type GISTs, though they are rare. Neurofibromin 1 (NF1) is a tumor suppressor gene mutated in neurofibromatosis type 1. Patients with NF1 mutations are at high risk of developing GISTs. Recent findings suggest that altered expression or mutation of members of succinate dehydrogenase (SDH) heterotetramer are causally associated with GIST development through induction of aberrant DNA methylation. At present, GISTs with no alterations in KIT, PDGFRA, RAS signaling genes or SDH family genes are referred to as true wild-type GISTs. KIT and PDGFRA mutations are thought as the earliest events in GIST development, and subsequent accumulation of chromosomal aberrations and other molecular alterations are required for malignant progression. In addition, recent studies have shown that epigenetic alterations and noncoding RNAs also play key roles in the pathogenesis of GISTs.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
46
|
Obata Y, Horikawa K, Shiina I, Takahashi T, Murata T, Tasaki Y, Suzuki K, Yonekura K, Esumi H, Nishida T, Abe R. Oncogenic Kit signalling on the Golgi is suppressed by blocking secretory trafficking with M-COPA in gastrointestinal stromal tumours. Cancer Lett 2017; 415:1-10. [PMID: 29196126 DOI: 10.1016/j.canlet.2017.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023]
Abstract
Most gastrointestinal stromal tumours (GISTs) are caused by constitutively active mutations in Kit tyrosine kinase. The drug imatinib, a specific Kit inhibitor, improves the prognosis of metastatic GIST patients, but these patients become resistant to the drug by acquiring secondary mutations in the Kit kinase domain. We recently reported that a Kit mutant causes oncogenic signals only on the Golgi apparatus in GISTs. In this study, we show that in GIST, 2-methylcoprophilinamide (M-COPA, also known as "AMF-26"), an inhibitor of biosynthetic protein trafficking from the endoplasmic reticulum (ER) to the Golgi, suppresses Kit autophosphorylation at Y703/Y721/Y730/Y936, resulting in blockade of oncogenic signalling. Results of our M-COPA treatment assay show that Kit Y703/Y730/Y936 in the ER are dephosphorylated by protein tyrosine phosphatases (PTPs), thus the ER-retained Kit is unable to activate downstream molecules. ER-localized Kit Y721 is not phosphorylated, but not due to PTPs. Importantly, M-COPA can inhibit the activation of the Kit kinase domain mutant, resulting in suppression of imatinib-resistant GIST proliferation. Our study demonstrates that Kit autophosphorylation is spatio-temporally regulated and may offer a new strategy for treating imatinib-resistant GISTs.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Keita Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Keita Yonekura
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Hiroyasu Esumi
- Division of Clinical Research, Research Institute for Biomedical Sciences, Tokyo, University of Science, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan.
| |
Collapse
|
47
|
|
48
|
Charville GW, Longacre TA. Surgical Pathology of Gastrointestinal Stromal Tumors: Practical Implications of Morphologic and Molecular Heterogeneity for Precision Medicine. Adv Anat Pathol 2017; 24:336-353. [PMID: 28820749 DOI: 10.1097/pap.0000000000000166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal stromal tumor (GIST), the most common mesenchymal neoplasm of the gastrointestinal tract, exhibits diverse histologic and clinical manifestations. With its putative origin in the gastrointestinal pacemaker cell of Cajal, GIST can arise in association with any portion of the tubular gastrointestinal tract. Morphologically, GISTs are classified as spindled or epithelioid, though each of these subtypes encompasses a broad spectrum of microscopic appearances, many of which mimic other histologic entities. Despite this morphologic ambiguity, the diagnosis of GIST is aided in many cases by immunohistochemical detection of KIT (CD117) or DOG1 expression. The natural history of GIST ranges from that of a tumor cured by surgical resection to that of a locally advanced or even widely metastatic, and ultimately fatal, disease. This clinicopathologic heterogeneity is paralleled by an underlying molecular diversity: the majority of GISTs are associated with spontaneous activating mutations in KIT, PDGFRA, or BRAF, while additional subsets are driven by genetic lesions-often inherited-of NF1 or components of the succinate dehydrogenase enzymatic complex. Specific gene mutations correlate with particular anatomic or morphologic characteristics and, in turn, with distinct clinical behaviors. Therefore, prognostication and treatment are increasingly dictated not only by morphologic clues, but also by accompanying molecular genetic features. In this review, we provide a comprehensive description of the heterogenous molecular underpinnings of GIST, including implications for the practicing pathologist with regard to morphologic identification, immunohistochemical diagnosis, and clinical management.
Collapse
|
49
|
Direct engagement of the PI3K pathway by mutant KIT dominates oncogenic signaling in gastrointestinal stromal tumor. Proc Natl Acad Sci U S A 2017; 114:E8448-E8457. [PMID: 28923937 DOI: 10.1073/pnas.1711449114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic KitV558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant KitV558Δ/+ mice, double-mutant KitV558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in KitV558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing KitV558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha-restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant KitV558Δ;T669I/+ tumors.
Collapse
|
50
|
Innes J, Reali L, Clayton-Smith J, Hall G, Lim DHK, Burghel GJ, French K, Khan U, Walker D, Lalloo F, Evans DGR, McMullan D, Maher ER, Woodward ER. CNVs affecting cancer predisposing genes (CPGs) detected as incidental findings in routine germline diagnostic chromosomal microarray (CMA) testing. J Med Genet 2017; 55:89-96. [DOI: 10.1136/jmedgenet-2017-104892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/03/2022]
Abstract
BackgroundIdentification of CNVs through chromosomal microarray (CMA) testing is the first-line investigation in individuals with learning difficulties/congenital abnormalities. Although recognised that CMA testing may identify CNVs encompassing a cancer predisposition gene (CPG), limited information is available on the frequency and nature of such results.MethodsWe investigated CNV gains and losses affecting 39 CPGs in 3366 pilot index case individuals undergoing CMA testing, and then studied an extended cohort (n=10 454) for CNV losses at 105 CPGs and CNV gains at 9 proto-oncogenes implicated in inherited cancer susceptibility.ResultsIn the pilot cohort, 31/3366 (0.92%) individuals had a CNV involving one or more of 16/39 CPGs. 30/31 CNVs involved a tumour suppressor gene (TSG), and 1/30 a proto-oncogene (gain of MET). BMPR1A, TSC2 and TMEM127 were affected in multiple cases. In the second stage analysis, 49/10 454 (0.47%) individuals in the extended cohort had 50 CNVs involving 24/105 CPGs. 43/50 CNVs involved a TSG and 7/50 a proto-oncogene (4 gains, 3 deletions). The most frequently involved genes, FLCN (n=10) and SDHA (n=7), map to the Smith-Magenis and cri-du-chat regions, respectively.ConclusionIncidental identification of a CNV involving a CPG is not rare and poses challenges for future cancer risk estimation. Prospective data collection from CPG-CNV cohorts ascertained incidentally and through syndromic presentations is required to determine the risks posed by specific CNVs. In particular, ascertainment and investigation of adults with CPG-CNVs and adults with learning disability and cancer, could provide important information to guide clinical management and surveillance.
Collapse
|