1
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
2
|
Induction of Apoptosis in Metastatic Breast Cancer Cells: XV. Downregulation of DNA Polymerase-α - Helicase Complex (Replisomes) and Glyco-Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:199-221. [PMID: 30637700 DOI: 10.1007/978-981-13-3065-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.
Collapse
|
3
|
Gao Y, Li MY, Zhao J, Zhang YC, Xie QJ, Chen DH. Genome-wide analysis of RING finger proteins in the smallest free-living photosynthetic eukaryote Ostreococus tauri. Mar Genomics 2015; 26:51-61. [PMID: 26751716 DOI: 10.1016/j.margen.2015.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
RING finger proteins and ubiquitination marks are widely involved in diverse aspects of growth and development, biological processes, and stress or environmental responses. As the smallest free-living photosynthetic eukaryote known so far, the green alga Ostreococus tauri has become an excellent model for investigating the origin of different gene families in the green lineage. Here, 65 RING domains in 65 predicted proteins were identified from O. tauri and on the basis of one or more substitutions at the metal ligand positions and spacing between them they were divided into eight canonical or modified types (RING-CH, -H2, -v, -C2, -C3HCHC2, -C2HC5, -C3GC3S, and -C2SHC4), in which the latter four were newly identified and might represent the intermediate states between RING domain and other similar domains, respectively. RING finger proteins were classified into eight classes based on the presence of additional domains, including RING-Only, -Plus, -C3H1, -PHD, -WD40, -PEX, -TM, and -DEXDc classes. These RING family genes usually lack introns and are distributed over 17 chromosomes. In addition, 29 RING-finger proteins in O. tauri share different degrees of homology with those in the model flowering plant Arabidopsis, indicating they might be necessary for the basic survival of free-living eukaryotes. Therefore, our results provide new insight into the general classification and evolutionary conservation of RING domain-containing proteins in O. tauri.
Collapse
Affiliation(s)
- Yan Gao
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Ming-Yi Li
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zhao
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Yan-Cui Zhang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Qiu-Jiao Xie
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China; College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2014. [DOI: 10.4161/cib.13844] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Saner N, Karschau J, Natsume T, Gierliński M, Retkute R, Hawkins M, Nieduszynski CA, Blow JJ, de Moura AP, Tanaka TU. Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 2013; 202:1001-12. [PMID: 24062338 PMCID: PMC3787376 DOI: 10.1083/jcb.201306143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023] Open
Abstract
Inside the nucleus, DNA replication is organized at discrete sites called replication factories, consisting of DNA polymerases and other replication proteins. Replication factories play important roles in coordinating replication and in responding to replication stress. However, it remains unknown how replicons are organized for processing at each replication factory. Here we address this question using budding yeast. We analyze how individual replicons dynamically organized a replication factory using live-cell imaging and investigate how replication factories were structured using super-resolution microscopy. Surprisingly, we show that the grouping of replicons within factories is highly variable from cell to cell. Once associated, however, replicons stay together relatively stably to maintain replication factories. We derive a coherent genome-wide mathematical model showing how neighboring replicons became associated stochastically to form replication factories, which was validated by independent microscopy-based analyses. This study not only reveals the fundamental principles promoting replication factory organization in budding yeast, but also provides insight into general mechanisms by which chromosomes organize sub-nuclear structures.
Collapse
Affiliation(s)
- Nazan Saner
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Jens Karschau
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Toyoaki Natsume
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Renata Retkute
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Michelle Hawkins
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Alessandro P.S. de Moura
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Tomoyuki U. Tanaka
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
6
|
Bétous R, Glick GG, Zhao R, Cortez D. Identification and characterization of SMARCAL1 protein complexes. PLoS One 2013; 8:e63149. [PMID: 23671665 PMCID: PMC3650004 DOI: 10.1371/journal.pone.0063149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
SMARCAL1 is an ATPase in the SNF2 family that functions at damaged replication forks to promote their stability and restart. It acts by translocating on DNA to catalyze DNA strand annealing, branch migration, and fork regression. Many SNF2 enzymes work as motor subunits of large protein complexes. To determine if SMARCAL1 is also a member of a protein complex and to further understand how it functions in the replication stress response, we used a proteomics approach to identify interacting proteins. In addition to the previously characterized interaction with replication protein A (RPA), we found that SMARCAL1 forms complexes with several additional proteins including DNA-PKcs and the WRN helicase. SMARCAL1 and WRN co-localize at stalled replication forks independently of one another. The SMARCAL1 interaction with WRN is indirect and is mediated by RPA acting as a scaffold. SMARCAL1 and WRN act independently to prevent MUS81 cleavage of the stalled fork. Biochemical experiments indicate that both catalyze fork regression with SMARCAL1 acting more efficiently and independently of WRN. These data suggest that RPA brings a complex of SMARCAL1 and WRN to stalled forks, but that they may act in different pathways to promote fork repair and restart.
Collapse
Affiliation(s)
- Rémy Bétous
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gloria G. Glick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
7
|
Liao S, Guay C, Toczylowski T, Yan H. Analysis of MRE11's function in the 5'-->3' processing of DNA double-strand breaks. Nucleic Acids Res 2012; 40:4496-506. [PMID: 22319209 PMCID: PMC3378884 DOI: 10.1093/nar/gks044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 11/13/2022] Open
Abstract
The resection of DNA double-strand breaks (DSBs) into 3' single-strand tails is the initiating step of homology-dependent repair pathways. A key player in this process is the MRE11-RAD50-NBS1 complex, but its contribution to and mechanistic role in resection are not well understood. In this study, we took advantage of the Xenopus egg extract system to address these questions. We found that depletion of MRE11 caused a dramatic inhibition of 5'-resection, even for the first nucleotide at the 5'-end. Depletion of Xenopus CtIP also inhibited 5'-strand resection, but this inhibition could be alleviated by excess MRN. Both MRE11 and CtIP could be bypassed by a DNA that carried a 3'-ss-tail. Finally, using purified proteins, we found that MRN could stimulate both the WRN-DNA2-RPA pathway and the EXO1 pathway of resection. These findings provide important insights into the function of MRE11 in 5'-strand resection.
Collapse
Affiliation(s)
| | | | | | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
8
|
Hyun M, Park S, Kim E, Kim DH, Lee SJ, Koo HS, Seo YS, Ahn B. Physical and functional interactions of Caenorhabditis elegans WRN-1 helicase with RPA-1. Biochemistry 2012; 51:1336-45. [PMID: 22257160 DOI: 10.1021/bi200791p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Caenorhabditis elegans Werner syndrome protein, WRN-1, a member of the RecQ helicase family, has a 3'-5' DNA helicase activity. Worms with defective wrn-1 exhibit premature aging phenotypes and an increased level of genome instability. In response to DNA damage, WRN-1 participates in the initial stages of checkpoint activation in concert with C. elegans replication protein A (RPA-1). WRN-1 helicase is stimulated by RPA-1 on long DNA duplex substrates. However, the mechanism by which RPA-1 stimulates DNA unwinding and the function of the WRN-1-RPA-1 interaction are not clearly understood. We have found that WRN-1 physically interacts with two RPA-1 subunits, CeRPA73 and CeRPA32; however, full-length WRN-1 helicase activity is stimulated by only the CeRPA73 subunit, while the WRN-1(162-1056) fragment that harbors the helicase activity requires both the CeRPA73 and CeRPA32 subunits for the stimulation. We also found that the CeRPA73(1-464) fragment can stimulate WRN-1 helicase activity and that residues 335-464 of CeRPA73 are important for physical interaction with WRN-1. Because CeRPA73 and the CeRPA73(1-464) fragment are able to bind single-stranded DNA (ssDNA), the stimulation of WRN-1 helicase by RPA-1 is most likely due to the ssDNA binding activity of CeRPA73 and the direct interaction of WRN-1 and CeRPA73.
Collapse
Affiliation(s)
- Moonjung Hyun
- Department of Life Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liao S, Toczylowski T, Yan H. Mechanistic analysis of Xenopus EXO1's function in 5'-strand resection at DNA double-strand breaks. Nucleic Acids Res 2011; 39:5967-77. [PMID: 21490081 PMCID: PMC3152354 DOI: 10.1093/nar/gkr216] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The processing of DNA double-strand breaks (DSBs) into 3' single-stranded tails is the first step of homology-dependent DSB repair. A key player in this process is the highly conserved eukaryotic exonuclease 1 (EXO1), yet its precise mechanism of action has not been rigorously determined. To address this issue, we reconstituted 5'-strand resection in cytosol derived from unfertilized interphase eggs of the frog Xenopus laevis. Xenopus EXO1 (xEXO1) was found to display strong 5'→3' dsDNA exonuclease activity but no significant ssDNA exonuclease activity. Depletion of xEXO1 caused significant inhibition of 5' strand resection. Co-depletion of xEXO1 and Xenopus DNA2 (xDNA2) showed that these two nucleases act in parallel pathways and by distinct mechanisms. While xDNA2 acts on ssDNA unwound mainly by the Xenopus Werner syndrome protein (xWRN), xEXO1 acts directly on dsDNA. Furthermore, xEXO1 and xWRN are required for both the initiation stage and the extension stage of resection. These results reveal important novel information on the mechanism of 5'-strand resection in eukaryotes.
Collapse
Affiliation(s)
- Shuren Liao
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
10
|
Yan H, Toczylowski T, McCane J, Chen C, Liao S. Replication protein A promotes 5'-->3' end processing during homology-dependent DNA double-strand break repair. ACTA ACUST UNITED AC 2011; 192:251-61. [PMID: 21263027 PMCID: PMC3172182 DOI: 10.1083/jcb.201005110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The single-strand DNA–binding protein RPA promotes 5′-strand resection to generate 3′ single strands for homology-dependent DNA double-strand repair. Replication protein A (RPA), the eukaryotic single-strand deoxyribonucleic acid (DNA [ss-DNA])–binding protein, is involved in DNA replication, nucleotide damage repair, mismatch repair, and DNA damage checkpoint response, but its function in DNA double-strand break (DSB) repair is poorly understood. We investigated the function of RPA in homology-dependent DSB repair using Xenopus laevis nucleoplasmic extracts as a model system. We found that RPA is required for single-strand annealing, one of the homology-dependent DSB repair pathways. Furthermore, RPA promotes the generation of 3′ single-strand tails (ss-tails) by stimulating both the Xenopus Werner syndrome protein (xWRN)–mediated unwinding of DNA ends and the subsequent Xenopus DNA2 (xDNA2)–mediated degradation of the 5′ ss-tail. Purified xWRN, xDNA2, and RPA are sufficient to carry out the 5′-strand resection of DNA that carries a 3′ ss-tail. These results provide strong biochemical evidence to link RPA to a specific DSB repair pathway and reveal a novel function of RPA in the generation of 3′ ss-DNA for homology-dependent DSB repair.
Collapse
Affiliation(s)
- Hong Yan
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | |
Collapse
|
11
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2011; 4:118-37. [PMID: 21509200 PMCID: PMC3073292 DOI: 10.4161/cib.4.1.13844] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 12/20/2022] Open
Abstract
Helicases are motor proteins that catalyze the unwinding of duplex nucleic acids in an ATP-dependent manner. They are involved in almost all the nucleic acid transactions. In the present study, we report a comprehensive analysis of helicase gene family in human and its comparison with homologs in model organisms. The human genome encodes for 95 non-redundant helicase proteins, of which 64 are RNA helicases and 31 are DNA helicases. 57 RNA helicases are validated based on annotations and occurrence of conserved helicase signature motifs. These include 14 DExH and 37 DExD subfamily members, six other members such as U5.snRNP, ATR-X, Suv3, FANCJ, and two of superkiller viralicidic activity 2-like helicases. 31 DNA helicases are also identified, which include RecQ, MCM and RuvB-like helicases. Finding a set of helicases in human and almost similar sequences in model organisms suggests that the "core" members of helicase gene family are highly conserved throughout evolution. The present study gives an overview of members of RNA and DNA helicases encoded by the human genome along with their conserved motifs, phylogeny and homologs in model organisms. The study on comparing these homologs will spread light on the organization and complexity of helicase gene family in model organisms. The comprehensive analysis of human helicases presented in this study will further provide an invaluable resource for elaborate biological research on these helicases.
Collapse
Affiliation(s)
- Pavan Umate
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | | | | |
Collapse
|
12
|
Rossi ML, Ghosh AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010; 9:331-44. [PMID: 20075015 DOI: 10.1016/j.dnarep.2009.12.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1 in Schizosaccharomyces pombe, and homologs in Caenorhabditis elegans, Xenopus laevis, and Drosophila melanogaster. Defects in three of the RecQ helicases, RecQ4, BLM, and WRN, cause human pathologies linked with cancer predisposition and premature aging. Mutations in the WRN gene are the causative factor of Werner syndrome (WS). WRN is one of the best characterized of the RecQ helicases and is known to have roles in DNA replication and repair, transcription, and telomere maintenance. Studies both in vitro and in vivo indicate that the roles of WRN in a variety of DNA processes are mediated by post-translational modifications, as well as several important protein-protein interactions. In this work, we will summarize some of the early studies on the cellular roles of WRN and highlight the recent findings that shed some light on the link between the protein with its cellular functions and the disease pathology.
Collapse
Affiliation(s)
- Marie L Rossi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
13
|
[Utilization of Werner syndrome mouse model in studying premature aging and tumor]. YI CHUAN = HEREDITAS 2009; 31:785-90. [PMID: 19689938 DOI: 10.3724/sp.j.1005.2009.00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive genetic disease in human. It is considered as a good model disease in studying human premature syndrome. Werner protein (WRN) is a nuclear protein mutated in WS. Recent biochemical and genetic studies indicated that WRN plays important roles in DNA replication, DNA repair, and telomere maintenance. Here, we reviewed the molecular genetics of WS and the importance of telomere and WRN in the development of WS. Knocking out both telomerase and Wrn genes in mouse faithfully manifests human WS. The mouse model provides a unique genetic platform to explore the crosstalk of premature aging and tumor.
Collapse
|
14
|
Nyunoya T, Monick MM, Klingelhutz AL, Glaser H, Cagley JR, Brown CO, Matsumoto E, Aykin-Burns N, Spitz DR, Oshima J, Hunninghake GW. Cigarette smoke induces cellular senescence via Werner's syndrome protein down-regulation. Am J Respir Crit Care Med 2008; 179:279-87. [PMID: 19011155 DOI: 10.1164/rccm.200802-320oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Werner's syndrome is a genetic disorder that causes premature aging due to loss-of-function mutations in a gene encoding a member of the RecQ helicase family. Both Werner's syndrome and cigarette smoking accelerate aging. No studies have examined the effect of cigarette smoke on Werner's syndrome protein. OBJECTIVES To investigate the role of Werner's syndrome protein in cigarette smoke-induced cellular senescence. METHODS Cellular senescence and amounts of Werner's syndrome protein were measured in fibroblasts isolated from patients with emphysema and compared with age-matched nonsmokers. The in vitro effects of cigarette smoke on amounts of Werner's syndrome protein, function, and senescence were also evaluated in primary human lung fibroblasts and epithelial cells. MEASUREMENTS AND MAIN RESULTS Cultured lung fibroblasts isolated from patients with emphysema exhibited a senescent phenotype accompanied by a decrease in Werner's syndrome protein. Cigarette smoke extract decreased Werner's syndrome protein in cultured fibroblasts and epithelial cells. Werner's syndrome protein-deficient fibroblasts were more susceptible to cigarette smoke-induced cellular senescence and cell migration impairment. In contrast, exogenous overexpression of Werner's syndrome protein attenuated the cigarette smoke effects. CONCLUSIONS Cigarette smoke induces cellular senescence and cell migration impairment via Werner's syndrome protein down-regulation. Rescue of Werner's syndrome protein down-regulation may represent a potential therapeutic target for smoking-related diseases.
Collapse
Affiliation(s)
- Toru Nyunoya
- Division of Pulmonary, Critical Care, and Occupational Medicine, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA. WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 2008; 19:3923-33. [PMID: 18596239 PMCID: PMC2526706 DOI: 10.1091/mbc.e07-07-0698] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 04/25/2008] [Accepted: 06/20/2008] [Indexed: 12/18/2022] Open
Abstract
Werner syndrome (WS) is a human genetic disorder characterized by extensive clinical features of premature aging. Ataxia-telengiectasia (A-T) is a multisystem human genomic instability syndrome that includes premature aging in some of the patients. WRN and ATM, the proteins defective in WS and A-T, respectively, play significant roles in the maintenance of genomic stability and are involved in several DNA metabolic pathways. A role for WRN in DNA repair has been proposed; however, this study provides evidence that WRN is also involved in ATM pathway activation and in a S-phase checkpoint in cells exposed to DNA interstrand cross-link-induced double-strand breaks. Depletion of WRN in such cells by RNA interference results in an intra-S checkpoint defect, and interferes with activation of ATM as well as downstream phosphorylation of ATM target proteins. Treatment of cells under replication stress with the ATM kinase inhibitor KU 55933 results in a S-phase checkpoint defect similar to that observed in WRN shRNA cells. Moreover, gamma H2AX levels are higher in WRN shRNA cells than in control cells 6 and 16 h after exposure to psoralen DNA cross-links. These results suggest that WRN and ATM participate in a replication checkpoint response, in which WRN facilitates ATM activation in cells with psoralen DNA cross-link-induced collapsed replication forks.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- *Laboratory of Molecular Gerontology and
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742
| | - Diana Muftic
- *Laboratory of Molecular Gerontology and
- Department of Genetics, Microbiology, and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; and
| | | | - Lale Dawut
- *Laboratory of Molecular Gerontology and
| | - Christa Morris
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Thomas Helleday
- Department of Genetics, Microbiology, and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; and
| | - Yosef Shiloh
- David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
16
|
RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 2008; 117:219-33. [DOI: 10.1007/s00412-007-0142-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/08/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
|
17
|
Kappei D, Londoño-Vallejo JA. Telomere length inheritance and aging. Mech Ageing Dev 2007; 129:17-26. [PMID: 18054991 DOI: 10.1016/j.mad.2007.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/16/2007] [Accepted: 10/24/2007] [Indexed: 01/19/2023]
Abstract
Telomere shortening accompanies human aging, and premature aging syndromes are often associated with short telomeres. These two observations are central to the hypothesis that telomere length directly influences longevity. If true, genetically determined mechanisms of telomere length homeostasis should significantly contribute to variations of longevity in the human population. On the other hand, telomere shortening is also observed in the course of many aging-associated disorders but determining whether it is a cause or a consequence is not an easy task. Here, we review the most relevant experimental and descriptive data relating telomere length, as a quantitative trait, to aging and longevity.
Collapse
Affiliation(s)
- Dennis Kappei
- Telomeres & Cancer Laboratory, UMR7147, Institut Curie-CNRS-UPMC, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | |
Collapse
|
18
|
Cheng WH, Muftuoglu M, Bohr VA. Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 2007; 42:871-8. [PMID: 17587522 DOI: 10.1016/j.exger.2007.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/23/2007] [Accepted: 04/27/2007] [Indexed: 12/14/2022]
Abstract
Werner syndrome (WS) is an excellent model system for the study of human aging. WRN, a nuclear protein mutated in WS, plays multiple roles in DNA metabolism. Our understanding about the metabolic regulation and function of this RecQ helicase has advanced greatly during the past decade, largely due to the availability of purified WRN protein, WRN knockdown cells, and WRN knockout mice. Recent biochemical and genetic studies indicate that WRN plays significant roles in DNA replication, DNA repair, and telomere maintenance. Interestingly, many WRN functions require handling of DNA ends during S-phase, and evidence suggests that WRN plays both upstream and downstream roles in the response to DNA damage. Future research should focus on the mechanism(s) of WRN in the regulation of the various DNA metabolism pathways and development of therapeutic approaches to treat premature aging syndromes such as WS.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
19
|
Wu L, Hickson ID. DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 2007; 40:279-306. [PMID: 16856806 DOI: 10.1146/annurev.genet.40.110405.090636] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA helicases are found in all kingdoms of life and function in all DNA metabolic processes where the two strands of duplex DNA require to be separated. Here, we review recent developments in our understanding of the roles that helicases play in the intimately linked processes of replication fork repair and homologous recombination, and highlight how the cell has evolved many distinct, and sometimes antagonistic, uses for these enzymes.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | | |
Collapse
|
20
|
A new molecular model of cellular aging based on Werner syndrome. Med Hypotheses 2007; 68:770-80. [DOI: 10.1016/j.mehy.2006.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 01/20/2023]
|
21
|
Toczylowski T, Yan H. Mechanistic analysis of a DNA end processing pathway mediated by the Xenopus Werner syndrome protein. J Biol Chem 2006; 281:33198-205. [PMID: 16959775 DOI: 10.1074/jbc.m605044200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The first step of homology-dependent repair of DNA double-strand breaks is the strand-specific processing of DNA ends to generate 3' single-strand tails. Despite its importance, the molecular mechanism underlying end processing is poorly understood in eukaryotic cells. We have taken a biochemical approach to investigate DNA end processing in nucleoplasmic extracts derived from the unfertilized eggs of Xenopus laevis. We found that double-strand DNA ends are specifically degraded in the 5' --> 3' direction in this system. The reaction consists of two steps: an ATP-dependent unwinding of double-strand ends and an ATP-independent 5' --> 3' degradation of single-strand tails. We also found that the Xenopus Werner syndrome protein, a member of the RecQ helicase family, plays an important role in DNA end processing. Mechanistically, Xenopus Werner syndrome protein (xWRN) is required for the unwinding of DNA ends but not for the degradation of single-strand tails. The xWRN-mediated end processing is remarkably similar to the end processing that has been proposed for the Escherichia coli RecQ helicase and RecJ single-strand nuclease, suggesting that this mechanism might be conserved in prokaryotes and eukaryotes.
Collapse
|
22
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
23
|
Sasakawa N, Fukui T, Waga S. Accumulation of FFA-1, the Xenopus homolog of Werner helicase, and DNA polymerase delta on chromatin in response to replication fork arrest. J Biochem 2006; 140:95-103. [PMID: 16798775 DOI: 10.1093/jb/mvj130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Werner syndrome is a genetic disorder characterized by premature aging and cancer-prone symptoms, and is caused by mutation of the WRN gene. WRN is a member of the RecQ helicase family and is thought to function in processes implicated in DNA replication and repair to maintain genome stability; however, its precise function is still unclear. We found that replication fork arrest markedly enhances chromatin binding of focus-forming activity 1 (FFA-1), a Xenopus WRN homolog, in Xenopus egg extracts. In addition to FFA-1, DNA polymerase delta (Poldelta) and replication protein A, but not DNA polymerase epsilon and proliferating cell nuclear antigen, accumulated increasingly on replication-arrested chromatin. Elevated accumulation of these proteins was dependent on formation of pre-replicative complexes (pre-RCs). Double-strand break (DSB) formation also enhanced chromatin binding of FFA-1, but not Poldelta, independently of pre-RC formation. In contrast to FFA-1, chromatin binding of Xenopus Bloom syndrome helicase (xBLM) only slightly increased after replication arrest or DSB formation. Thus, WRN-specific, distinct processes can be reproduced in the in vitro system in egg extracts, and this system is useful for biochemical analysis of WRN functions during DNA metabolism.
Collapse
Affiliation(s)
- Noriko Sasakawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043
| | | | | |
Collapse
|
24
|
Yan H, McCane J, Toczylowski T, Chen C. Analysis of the Xenopus Werner syndrome protein in DNA double-strand break repair. ACTA ACUST UNITED AC 2006; 171:217-27. [PMID: 16247024 PMCID: PMC2171202 DOI: 10.1083/jcb.200502077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Werner syndrome is associated with premature aging and increased risk of cancer. Werner syndrome protein (WRN) is a RecQ-type DNA helicase, which seems to participate in DNA replication, double-strand break (DSB) repair, and telomere maintenance; however, its exact function remains elusive. Using Xenopus egg extracts as the model system, we found that Xenopus WRN (xWRN) is recruited to discrete foci upon induction of DSBs. Depletion of xWRN has no significant effect on nonhomologous end-joining of DSB ends, but it causes a significant reduction in the homology-dependent single-strand annealing DSB repair pathway. These results provide the first direct biochemical evidence that links WRN to a specific DSB repair pathway. The assay for single-strand annealing that was developed in this study also provides a powerful biochemical system for mechanistic analysis of homology-dependent DSB repair.
Collapse
Affiliation(s)
- Hong Yan
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
25
|
Doherty KM, Sommers JA, Gray MD, Lee JW, von Kobbe C, Thoma NH, Kureekattil RP, Kenny MK, Brosh RM. Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases. J Biol Chem 2005; 280:29494-505. [PMID: 15965237 DOI: 10.1074/jbc.m500653200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The single-stranded DNA-binding protein replication protein A (RPA) interacts with several human RecQ DNA helicases that have important roles in maintaining genomic stability; however, the mechanism for RPA stimulation of DNA unwinding is not well understood. To map regions of Werner syndrome helicase (WRN) that interact with RPA, yeast two-hybrid studies, WRN affinity pull-down experiments and enzyme-linked immunosorbent assays with purified recombinant WRN protein fragments were performed. The results indicated that WRN has two RPA binding sites, a high affinity N-terminal site, and a lower affinity C-terminal site. Based on results from mapping studies, we sought to determine if the WRN N-terminal region harboring the high affinity RPA interaction site was important for RPA stimulation of WRN helicase activity. To accomplish this, we tested a catalytically active WRN helicase domain fragment (WRN(H-R)) that lacked the N-terminal RPA interaction site for its ability to unwind long DNA duplex substrates, which the wild-type enzyme can efficiently unwind only in the presence of RPA. WRN(H-R) helicase activity was significantly reduced on RPA-dependent partial duplex substrates compared with full-length WRN despite the presence of RPA. These results clearly demonstrate that, although WRN(H-R) had comparable helicase activity to full-length WRN on short duplex substrates, its ability to unwind RPA-dependent WRN helicase substrates was significantly impaired. Similarly, a Bloom syndrome helicase (BLM) domain fragment, BLM(642-1290), that lacked its N-terminal RPA interaction site also unwound short DNA duplex substrates similar to wild-type BLM, but was severely compromised in its ability to unwind long DNA substrates that full-length BLM helicase could unwind in the presence of RPA. These results suggest that the physical interaction between RPA and WRN or BLM helicases plays an important role in the mechanism for RPA stimulation of helicase-catalyzed DNA unwinding.
Collapse
Affiliation(s)
- Kevin M Doherty
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Françon P, Lemaître JM, Dreyer C, Maiorano D, Cuvier O, Méchali M. A hypophosphorylated form of RPA34 is a specific component of pre-replication centers. J Cell Sci 2005; 117:4909-20. [PMID: 15456845 DOI: 10.1242/jcs.01361] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replication protein A (RPA) is a three subunit single-stranded DNA-binding protein required for DNA replication. In Xenopus, RPA assembles in nuclear foci that form before DNA synthesis, but their significance in the assembly of replication initiation complexes has been questioned. Here we show that the RPA34 regulatory subunit is dephosphorylated at the exit of mitosis and binds to chromatin at detergent-resistant replication foci that co-localize with the catalytic RPA70 subunit, at both the initiation and elongation stages of DNA replication. By contrast, the RPA34 phosphorylated form present at mitosis is not chromatin bound. We further demonstrate that RPA foci assemble on chromatin before initiation of DNA replication at sites functionally defined as initiation replication sites. Association of RPA with these sites does not require nuclear membrane formation, and is sensitive to the S-CDK inhibitor p21. We also provide evidence that RPA34 is present at initiation complexes formed in the absence of MCM3, but which contain MCM4. In such conditions, replication foci can form, and short RNA-primed nascent DNAs of discrete size are synthesized. These data show that in Xenopus, the hypophosphorylated form of RPA34 is a component of the pre-initiation complex.
Collapse
Affiliation(s)
- Patricia Françon
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | | |
Collapse
|
28
|
Chang S. A mouse model of Werner Syndrome: what can it tell us about aging and cancer? Int J Biochem Cell Biol 2004; 37:991-9. [PMID: 15743673 DOI: 10.1016/j.biocel.2004.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/20/2004] [Accepted: 11/01/2004] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms involved in mammalian aging and the consequent organ dysfunction/degeneration pathologies are not well understood. Studies of progeroid syndromes such as Werner Syndrome have advanced our understanding of how certain genetic pathways can influence the aging process on both cellular and molecular levels. In addition, improper maintenance of telomere length and the consequent cellular responses to dysfunctional telomeres have been proposed to promote replicative senescence that impact upon the onset of premature aging and cancer. Recent studies of the telomerase-Werner double null mouse link telomere dysfunction to accelerated aging and tumorigenesis in the setting of Werner deficiency. This mouse model thus provides a unique genetic platform to explore molecular mechanisms by which telomere dysfunction and loss of WRN gene function leads to the onset of premature aging and cancer.
Collapse
Affiliation(s)
- Sandy Chang
- Department of Molecular Genetics, Box 11, The M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
29
|
Kipling D, Davis T, Ostler EL, Faragher RGA. What can progeroid syndromes tell us about human aging? Science 2004; 305:1426-31. [PMID: 15353794 DOI: 10.1126/science.1102587] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human genetic diseases that resemble accelerated aging provide useful models for gerontologists. They combine known single-gene mutations with deficits in selected tissues that are reminiscent of changes seen during normal aging. Here, we describe recent progress toward linking molecular and cellular changes with the phenotype seen in two of these disorders. One in particular, Werner syndrome, provides evidence to support the hypothesis that the senescence of somatic cells may be a causal agent of normal aging.
Collapse
Affiliation(s)
- David Kipling
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
30
|
Abstract
DNA helicases are molecular 'motor' enzymes that use the energy of NTP hydrolysis to separate transiently energetically stable duplex DNA into single strands. They are therefore essential in nearly all DNA metabolic transactions. They act as essential molecular tools for the cellular machinery. Since the discovery of the first DNA helicase in Escherichia coli in 1976, several have been isolated from both prokaryotic and eukaryotic systems. DNA helicases generally bind to ssDNA or ssDNA/dsDNA junctions and translocate mainly unidirectionally along the bound strand and disrupt the hydrogen bonds between the duplexes. Most helicases contain conserved motifs which act as an engine to drive DNA unwinding. Crystal structures have revealed an underlying common structural fold for their function. These structures suggest the role of the helicase motifs in catalytic function and offer clues as to how these proteins can translocate and unwind DNA. The genes containing helicase motifs may have evolved from a common ancestor. In this review we cover the conserved motifs, structural information, mechanism of DNA unwinding and translocation, and functional aspects of DNA helicases.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | | |
Collapse
|
31
|
Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 2004; 36:877-82. [PMID: 15235603 DOI: 10.1038/ng1389] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 05/20/2004] [Indexed: 11/09/2022]
Abstract
Mutational inactivation of the gene WRN causes Werner syndrome, an autosomal recessive disease characterized by premature aging, elevated genomic instability and increased cancer incidence. The capacity of enforced telomerase expression to rescue premature senescence of cultured cells from individuals with Werner syndrome and the lack of a disease phenotype in Wrn-deficient mice with long telomeres implicate telomere attrition in the pathogenesis of Werner syndrome. Here, we show that the varied and complex cellular phenotypes of Werner syndrome are precipitated by exhaustion of telomere reserves in mice. In late-generation mice null with respect to both Wrn and Terc (encoding the telomerase RNA component), telomere dysfunction elicits a classical Werner-like premature aging syndrome typified by premature death, hair graying, alopecia, osteoporosis, type II diabetes and cataracts. This mouse model also showed accelerated replicative senescence and accumulation of DNA-damage foci in cultured cells, as well as increased chromosomal instability and cancer, particularly nonepithelial malignancies typical of Werner syndrome. These genetic data indicate that the delayed manifestation of the complex pleiotropic of Wrn deficiency relates to telomere shortening.
Collapse
Affiliation(s)
- Sandy Chang
- Department of Molecular Genetics, M.D. Anderson Cancer Center, Box 11, 1515 Holcombe Blvd., Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shen JC, Lao Y, Kamath-Loeb A, Wold MS, Loeb LA. The N-terminal domain of the large subunit of human replication protein A binds to Werner syndrome protein and stimulates helicase activity. Mech Ageing Dev 2004; 124:921-30. [PMID: 14499497 DOI: 10.1016/s0047-6374(03)00164-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Werner syndrome (WS) is a recessive inherited human disease characterized by the early onset of aging. The gene mutated in WS encodes a DNA helicase that unwinds the double helical structure of DNA in the 3'-->5' direction as well as a 3'-->5' exonuclease. Our previous studies indicated that the activity of Werner syndrome helicase (WRN) could be stimulated by human replication protein A (hRPA), a heterotrimeric single-stranded DNA binding protein. We now localize the interaction between WRN and hRPA by measuring the stimulation of helicase activity and the binding of WRN by hRPA and its derivatives. The large subunit of hRPA (hRPA70) stimulates WRN helicase to the same extent as the hRPA heterotrimer, whereas the dimer of the two smaller subunits (hRPA 32.14) does not stimulate. By examining hRPA70 mutants with progressive deletions from either the C- or N-terminus, we found that the domain responsible for stimulation lies in the N-terminal half of the protein. By using enzyme-linked immunosorbent assay (ELISA) to examine physical interaction between WRN and the same deletion mutants, we found that the WRN-binding motif is located within amino acids 100-300 and overlaps with the single-stranded DNA binding domain (amino acids 150-450). We suggest that hRPA, by engaging in both protein-protein and protein-DNA interactions, facilitates unwinding events catalyzed by WRN helicase during DNA synthetic processes. These data should help further elucidation of the molecular mechanisms of genetic instability and premature aging phenotypes manifested by WS.
Collapse
Affiliation(s)
- Jiang-Cheng Shen
- Department of Pathology, University of Washington, Seattle, Washington 98195-7705, USA
| | | | | | | | | |
Collapse
|
33
|
Plchova H, Hartung F, Puchta H. Biochemical characterization of an exonuclease from Arabidopsis thaliana reveals similarities to the DNA exonuclease of the human Werner syndrome protein. J Biol Chem 2003; 278:44128-38. [PMID: 12937173 DOI: 10.1074/jbc.m303891200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human Werner syndrome protein (hWRN-p) possessing DNA helicase and exonuclease activities is essential for genome stability. Plants have no homologue of this bifunctional protein, but surprisingly the Arabidopsis genome contains a small open reading frame (ORF) (AtWRNexo) with homology to the exonuclease domain of hWRN-p. Expression of this ORF in Escherichia coli revealed an exonuclease activity for AtWRN-exo-p with similarities but also some significant differences to hWRN-p. The protein digests recessed strands of DNA duplexes in the 3' --> 5' direction but hardly single-stranded DNA or blunt-ended duplexes. In contrast to the Werner exonuclease, AtWRNexo-p is also able to digest 3'-protruding strands. DNA with recessed 3'-PO4 and 3'-OH termini is degraded to a similar extent. AtWRNexo-p hydrolyzes the 3'-recessed strand termini of duplexes containing mismatched bases. AtWRNexo-p needs the divalent cation Mg2+ for activity, which can be replaced by Mn2+. Apurinic sites, cholesterol adducts, and oxidative DNA damage (such as 8-oxoadenine and 8-oxoguanine) inhibit or block the enzyme. Other DNA modifications, including uracil, hypoxanthine and ethenoadenine, did not inhibit AtWRNexo-p. A mutation of a conserved residue within the exonuclease domain (E135A) completely abolished the exonucleolytic activity. Our results indicate that a type of WRN-like exonuclease activity seems to be a common feature of the DNA metabolism of animals and plants.
Collapse
Affiliation(s)
- Helena Plchova
- Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | |
Collapse
|
34
|
Harmon FG, Brockman JP, Kowalczykowski SC. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III. J Biol Chem 2003; 278:42668-78. [PMID: 12909639 DOI: 10.1074/jbc.m302994200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Together, RecQ helicase and topoisomerase III (Topo III) of Escherichia coli comprise a potent DNA strand passage activity that can catenate covalently closed DNA (Harmon, F. G., DiGate, R. J., and Kowalczykowski, S. C. (1999) Mol. Cell 3, 611-620). Here we directly assessed the structure of the catenated DNA species formed by RecQ helicase and Topo III using atomic force microscopy. The images show complex catenated DNA species involving crossovers between multiple double-stranded DNA molecules that are consistent with full catenanes. E. coli single-stranded DNA-binding protein significantly stimulated both the topoisomerase activity of Topo III alone and the DNA strand passage activity of RecQ helicase and Topo III. Titration data suggest that an intermediate of the RecQ helicase unwinding process, perhaps a RecQ helicase-DNA fork, is the target for Topo III action. Catenated DNA is the predominant product under conditions of molecular crowding; however, we also discovered that RecQ helicase and single-stranded DNA-binding protein greatly stimulated the intramolecular strand passage ("supercoiling") activity of Topo III, as revealed by changes in the linking number of uncatenated DNA. Together our results demonstrate that RecQ helicase and Topo III function together to comprise a potent and concerted single-strand DNA passage activity that can mediate both catenation-decatenation processes and changes in DNA topology.
Collapse
Affiliation(s)
- Frank G Harmon
- Division of Biological Sciences, Section of Microbiology, Center for Genetics and Development, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Wu L, Davies SL, Hickson ID. Roles of RecQ family helicases in the maintenance of genome stability. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:573-81. [PMID: 12760076 DOI: 10.1101/sqb.2000.65.573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- L Wu
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom
| | | | | |
Collapse
|
36
|
Bernstein DA, Keck JL. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res 2003; 31:2778-85. [PMID: 12771204 PMCID: PMC156711 DOI: 10.1093/nar/gkg376] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RecQ DNA helicases function in DNA replication, recombination and repair. Although the precise cellular roles played by this family of enzymes remain elusive, the importance of RecQ proteins is clear; mutations in any of three human RecQ genes lead to genomic instability and cancer. In this report, proteolysis is used to define a two-domain structure for Escherichia coli RecQ, revealing a large (approximately 59 kDa) N-terminal and a small (approximately 9 kDa) C-terminal domain. A short N-terminal segment (7 or 21 residues) is also shown to be sensitive to proteases. The effects of removing these regions of RecQ are tested in vitro. Removing 21 N-terminal residues from RecQ severely diminishes its DNA-dependent ATPase and helicase activities, but does not affect its ability to bind DNA in electrophoretic mobility shift assays. In contrast, removing the approximately 9 kDa C-terminal domain from RecQ results in a fragment with normal levels of ATPase and helicase activity, but that has lost the ability to stably associate with DNA. These results establish the biochemical roles of an N-terminal sequence motif in RecQ catalytic function and for the C-terminal RecQ domain in stable DNA binding.
Collapse
Affiliation(s)
- Douglas A Bernstein
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin, Madison, WI 53706-1532, USA
| | | |
Collapse
|
37
|
Szüts D, Kitching L, Christov C, Budd A, Peak-Chew S, Krude T. RPA is an initiation factor for human chromosomal DNA replication. Nucleic Acids Res 2003; 31:1725-34. [PMID: 12626714 PMCID: PMC152871 DOI: 10.1093/nar/gkg269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The initiation of chromosomal DNA replication in human cell nuclei is not well understood because of its complexity. To allow investigation of this process on a molecular level, we have recently established a cell-free system that initiates chromosomal DNA replication in an origin-specific manner under cell cycle control in isolated human cell nuclei. We have now used fractionation and reconstitution experiments to functionally identify cellular factors present in a human cell extract that trigger initiation of chromosomal DNA replication in this system. Initial fractionation of a cytosolic extract indicates the presence of at least two independent and non-redundant initiation factors. We have purified one of these factors to homogeneity and identified it as the single-stranded DNA binding protein RPA. The prokaryotic single-stranded DNA binding protein SSB cannot substitute for RPA in the initiation of human chromosomal DNA replication. Antibodies specific for human RPA inhibit the initiation step of human chromosomal DNA replication in vitro. RPA is recruited to DNA replication foci and becomes phosphorylated concomitant with the initiation step in vitro. These data establish a direct functional role for RPA as an essential factor for the initiation of human chromosomal DNA replication.
Collapse
Affiliation(s)
- Dávid Szüts
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | | | | | |
Collapse
|
38
|
Pickford A, Braccini L, Macino G, Cogoni C. The QDE-3 homologue RecQ-2 co-operates with QDE-3 in DNA repair in Neurospora crassa. Curr Genet 2003; 42:220-7. [PMID: 12589473 DOI: 10.1007/s00294-002-0351-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2002] [Revised: 09/15/2002] [Accepted: 09/28/2002] [Indexed: 12/26/2022]
Abstract
The post-transcriptional gene silencing mechanism in Neurospora crassa, called quelling, was shown to involve the products of three genes termed quelling-defective. A homologue to the qde-3 gene encoding a putative RecQ-type DNA helicase was isolated and was named RecQ-2. Characterisation of the RecQ-2 gene has revealed that it is not involved in quelling, but may co-operate with the qde-3 gene product in a pathway that repairs damage to DNA caused by the chemical mutagens methyl methanesulfonate and N-methyl- N'-nitro- N-nitrosoguanidine. These results indicate that the qde-3 RecQ helicase may have a dual role in N. crassa, either acting alone as an essential component of the quelling mechanism or together with the RecQ-2 RecQ helicase, as part of a process to repair DNA lesions during replication.
Collapse
Affiliation(s)
- A Pickford
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari e Ematologia, Università degli Studi La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy
| | | | | | | |
Collapse
|
39
|
Abstract
When replication forks stall or collapse at sites of DNA damage, there are two avenues for fork rescue. Mutagenic translesion synthesis by a special class of DNA polymerases can move a fork past the damage, but can leave behind mutations. The alternative nonmutagenic pathways for fork repair involve cellular recombination systems. In bacteria, nonmutagenic repair of replication forks may occur as often as once per cell per generation, and is the favored path for fork restoration under normal growth conditions. Replication fork repair is almost certainly the major function of bacterial recombination systems, and was probably the impetus for the evolution of recombination systems. Increasingly, the nonmutagenic repair of replication forks is seen as a major function of eukaryotic recombination systems as well.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin at Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| |
Collapse
|
40
|
Abstract
RecQ family DNA helicases are defined as proteins sharing a homologous region with Escherichia coli RecQ and are basically regarded as enzymes involved in recombination. Humans have five RecQ family members, and deficiencies in three of them, BLM, WRN, and RTS, cause Bloom's, Werner's, and Rothmund-Thomson syndromes, respectively, each characterized by genomic instability and cancer predisposition. In this context, an important function of the RecQ homologs appears to be the unwinding of intermediates of recombination, thereby preventing its uncontrolled execution. As a consequence, their deficiencies give rise to elevated levels of recombination (the hyper-recombination phenotype), which result in chromosomal aberrations including loss of heterozygosity, a common chromosomal change associated with malignancies. Thus, those helicases qualify as caretaker-type tumor suppressor proteins. In addition, BLM and WRN deficiencies have been shown to attenuate p53-mediated apoptosis, suggesting that they also belong to the gatekeeper class of tumor suppressor proteins.
Collapse
Affiliation(s)
- Hiroaki Nakayama
- Kyushu University (Emeritus), Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
41
|
Ahmad F, Kaplan CD, Stewart E. Helicase activity is only partially required for Schizosaccharomyces pombe Rqh1p function. Yeast 2002; 19:1381-98. [PMID: 12478586 DOI: 10.1002/yea.917] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RecQ-related family of DNA helicases is required for the maintenance of genomic stability in organisms ranging from bacteria to humans. In humans, mutation of three RecQ-related helicases, BLM, WRN and RecQL4, cause the cancer-prone and premature ageing diseases of Bloom syndrome, Werner's syndrome and Rothmund-Thompson syndrome, respectively. In the fission yeast Schizosaccharomyces pombe, disruption of the rqh1(+) gene, which encodes the single Sz. pombe RecQ-related helicase, causes cells to display reduced viability and elevated levels of chromosome loss. After S-phase arrest or DNA damage, cells lacking rqh1(+) function display elevated levels of homologous recombination and defective chromosome segregation. Here we show that, like other RecQ family members, the Rqh1p protein displays 3' to 5' DNA helicase activity. Interestingly, however, unlike other RecQ family members, the helicase activity of Rqh1p is only partially required for its function in recovery from S-phase arrest or DNA damage. We also report that high cellular levels of Rqh1p result in lethal chromosome segregation defects, while more moderate levels of Rqh1p cause significantly elevated rates of chromosome loss. This suggests that careful regulation of RecQ-like protein levels in eukaryotic cells is vital for maintaining genome stability.
Collapse
Affiliation(s)
- Fouzia Ahmad
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
42
|
Abstract
The faithful replication of the genome is essential for the survival of all organisms. It is not surprising therefore that numerous mechanisms have evolved to ensure that duplication of the genome occurs with only minimal risk of mutation induction. One mechanism of genome destabilization is replication fork demise, which can occur when a translocating fork meets a lesion or adduct in the template. Indeed, the collapse of replication forks has been suggested to occur in every replicative cell cycle making this a potentially significant problem for all proliferating cells. The RecQ helicases, which are essential for the maintenance of genome stability, are thought to function during DNA replication. In particular, RecQ helicase mutants display replication defects and have phenotypes consistent with an inability to efficiently reinitiate replication following replication fork demise. Here, we review some current models for how replication fork repair might be effected, and discuss potential roles for RecQ helicases in this process.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
43
|
McGlynn P, Lloyd RG. Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 2002; 3:859-70. [PMID: 12415303 DOI: 10.1038/nrm951] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome duplication necessarily involves the replication of imperfect DNA templates and, if left to their own devices, replication complexes regularly run into problems. The details of how cells overcome these replicative 'hiccups' are beginning to emerge, revealing a complex interplay between DNA replication, recombination and repair that ensures faithful passage of the genetic material from one generation to the next.
Collapse
Affiliation(s)
- Peter McGlynn
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
44
|
Rodríguez-López AM, Jackson DA, Iborra F, Cox LS. Asymmetry of DNA replication fork progression in Werner's syndrome. Aging Cell 2002; 1:30-9. [PMID: 12882351 DOI: 10.1046/j.1474-9728.2002.00002.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human aging is associated with accumulation of cells that have undergone replicative senescence. The rare premature aging Werner's syndrome (WS) provides a phenocopy of normal human aging and WS patient cells recapitulate the aging phenotype in culture as they rapidly lose the ability to proliferate or replicate their DNA. WS is associated with loss of functional WRN protein. Although the biochemical properties of WRN protein, which possesses both helicase and exonuclease activities, suggest an involvement in DNA metabolism, its action in cells is not clear. Here, we provide experimental evidence for a role of the WRN protein in DNA replication in normally proliferating cells. Most importantly, we demonstrate that in the absence of functional WRN protein, replication forks from origins of bidirectional replication fail to progress normally, resulting in marked asymmetry of bidirectional forks. We propose that WRN acts in normal DNA replication to prevent collapse of replication forks or to resolve DNA junctions at stalled replication forks, and that loss of this capacity may be a contributory factor in premature aging.
Collapse
Affiliation(s)
- Ana M Rodríguez-López
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
45
|
Kobayashi T, Tada S, Tsuyama T, Murofushi H, Seki M, Enomoto T. Focus-formation of replication protein A, activation of checkpoint system and DNA repair synthesis induced by DNA double-strand breaks in Xenopus egg extract. J Cell Sci 2002; 115:3159-69. [PMID: 12118071 DOI: 10.1242/jcs.115.15.3159] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The response to DNA damage was analyzed using a cell-free system consisting of Xenopus egg extract and demembranated sperm nuclei. In the absence of DNA-damaging agents, detergent-resistant accumulation of replication protein A appeared in nuclei after a 30 minute incubation, and a considerable portion of the replication protein A signals disappeared during a further 30 minute incubation. Similar replication protein A accumulation was observed in the nuclei after a 30 minute incubation in the extract containing camptothecin, whereas a further 30 minute incubation generated discrete replication protein A foci. The addition of camptothecin also induced formation of γ-H2AX foci, which have been previously shown to localize at sites of DSBs. Analysis of the time course of DNA replication and results obtained using geminin, an inhibitor of licensing for DNA replication, suggest that the discrete replication protein A foci formed in response to camptothecin-induced DNA damage occur in a DNA-replication-dependent manner. When the nuclei were incubated in the extract containing EcoRI,discrete replication protein A foci were observed at 30 minutes as well as at 60 and 90 minutes after incubation, and the focus-formation of replication protein A was not sensitive to geminin. DNA replication was almost completely inhibited in the presence of EcoRI and the inhibition was sensitive to caffeine, an inhibitor of ataxia telangiectasia mutated protein (ATM) and ATM- and Rad3-related protein (ATR). However, the focus-formation of replication protein A in the presence of EcoRI was not influenced by caffeine treatment. EcoRI-induced incorporation of biotin-dUTP into chromatin was observed following geminin-mediated inhibition of DNA replication, suggesting that the incorporation was the result of DNA repair. The biotin-dUTP signal co-localized with replication protein A foci and was not significantly suppressed or stimulated by the addition of caffeine.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The incidence of aging is different between mammals and their closer ancestors (e.g. reptiles and amphibians). While all studied mammals express a well-defined aging phenotype, many amphibians and reptiles fail to show signs of aging. In addition, mammalian species show great similarities in their aging phenotype, suggesting that a common origin might be at work. The proposed hypothesis is that mammalian aging evolved together with the ancestry of modern mammals. In turn, this suggests that the fundamental cause of human aging is common to most, if not all, mammals and might be a unique phenomenon. Experimental procedures capable of testing these theories and how to map the causes of mammalian and thus, human aging, are predicted.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Department of Biology, Unit of Cellular Biochemistry and Biology, University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur, Belgium.
| | | |
Collapse
|
47
|
Abstract
Werner syndrome (WS) is an autosomal recessive condition characterized by an early onset of age-related symptoms that include ocular cataracts, premature graying and loss of hair, arteriosclerosis and atherosclerosis, diabetes mellitus, osteoporosis, and a high incidence of some types of cancers. A major motivation for the study of WS is the expectation that elucidation of its underlying mechanisms will illuminate the basis for "normal" aging. In 1996, the gene responsible for the syndrome was positionally cloned. This advance launched an explosion of experiments aimed at unraveling the molecular mechanisms that lead to the WS phenotype. Soon thereafter, its protein product, WRN, was expressed, purified, and identified as a DNA helicase-exonuclease, a bifunctional enzyme that both unwinds DNA helices and cleaves nucleotides one at a time from the end of the DNA. WRN was shown to interact physically and functionally with several DNA-processing proteins, and WRN transgenic and null mutant mouse strains were generated and described. The substantial number of excellent reviews on WRN and WS that were published in the past 2 years (1-7) reflects the rapid pace of advances made in the field. Unlike those comprehensive articles, this review focuses on the biochemistry of the WRN protein and some aspects of its cell biology. Also considered are the putative functions of WRN in normal cells and the consequences of the loss of these functions in WS.
Collapse
Affiliation(s)
- Michael Fry
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Post Office Box 9649, Bat Galim Haifa 31096, Israel.
| |
Collapse
|
48
|
Brosh RM, Bohr VA. Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp Gerontol 2002; 37:491-506. [PMID: 11830352 DOI: 10.1016/s0531-5565(01)00227-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Werners syndrome is a disease of premature aging where the patients appear much older than their chronological age. The gene codes for a protein that is a helicase and an exonuclease, and recently we have learned about some of its protein interactions. These interactions are being discussed as they shed light on the molecular pathways in which Werner protein participates. Insight into these pathways brings insight into the aging process.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
49
|
van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 2002; 1:409-59. [PMID: 11701636 DOI: 10.1146/annurev.genom.1.1.409] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA helicases are a highly conserved group of enzymes that unwind DNA. They function in all processes in which access to single-stranded DNA is required, including DNA replication, DNA repair and recombination, and transcription of RNA. Defects in helicases functioning in one or more of these processes can result in characteristic human genetic disorders in which genomic instability and predisposition to cancer are common features. So far, different helicase genes have been found mutated in six such disorders. Mutations in XPB and XPD can result in xeroderma pigmentosum, Cockayne syndrome, or trichothiodystrophy. Mutations in the RecQ-like genes BLM, WRN, and RECQL4 can result in Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. Because XPB and XPD function in both nucleotide excision repair and transcription initiation, the cellular phenotypes associated with a deficiency of each one of them include failure to repair mutagenic DNA lesions and defects in the recovery of RNA transcription after UV irradiation. The functions of the RecQ-like genes are unknown; however, a growing body of evidence points to a function in restarting DNA replication after the replication fork has become stalled. The genomic instability associated with mutations in the RecQ-like genes includes spontaneous chromosome instability and elevated mutation rates. Mouse models for nearly all of these entities have been developed, and these should help explain the widely different clinical features that are associated with helicase mutations.
Collapse
Affiliation(s)
- A J van Brabant
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
50
|
Machwe A, Xiao L, Theodore S, Orren DK. DNase I footprinting and enhanced exonuclease function of the bipartite Werner syndrome protein (WRN) bound to partially melted duplex DNA. J Biol Chem 2002; 277:4492-504. [PMID: 11717307 DOI: 10.1074/jbc.m108880200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner syndrome is a premature aging and cancer-prone hereditary disorder caused by deficiency of the WRN protein that harbors 3' -->5' exonuclease and RecQ-type 3' --> 5' helicase activities. To assess the possibility that WRN acts on partially melted DNA intermediates, we constructed a substrate containing a 21-nucleotide noncomplementary region asymmetrically positioned within a duplex DNA fragment. Purified WRN shows an extremely efficient exonuclease activity directed at both blunt ends of this substrate, whereas no activity is observed on a fully duplex substrate. High affinity binding of full-length WRN protects an area surrounding the melted region of the substrate from DNase I digestion. ATP binding stimulates but is not required for WRN binding to this region. Thus, binding of WRN to the melted region underlies the efficient exonuclease activity directed at the nearby ends. In contrast, a WRN deletion mutant containing only the functional exonuclease domain does not detectably bind or degrade this substrate. These experiments indicate a bipartite structure and function for WRN, and we propose a model by which its DNA binding, helicase, and exonuclease activities function coordinately in DNA metabolism. These studies also suggest that partially unwound or noncomplementary regions of DNA could be physiological targets for WRN.
Collapse
Affiliation(s)
- Amrita Machwe
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536-0305, USA
| | | | | | | |
Collapse
|