Uryu S, Harada J, Hisamoto M, Oda T. Troglitazone inhibits both post-glutamate neurotoxicity and low-potassium-induced apoptosis in cerebellar granule neurons.
Brain Res 2002;
924:229-36. [PMID:
11750908 DOI:
10.1016/s0006-8993(01)03242-5]
[Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Both excitotoxicity and apoptosis contribute to neuronal loss in various neurodegenerative diseases such as Alzheimer's disease as well as stroke, and a drug inhibiting both types of cell death may lead to practical treatment for these diseases. Post-treatment with troglitazone, a potent and specific activator of peroxisome proliferator-activated receptor (PPAR)-gamma attenuated the cell death of cerebellar granule neurons, triggered by glutamate exposure. The inhibitory effect of troglitazone against glutamate excitotoxicity, in vitro, was observed even when added 2.5 h after the end of glutamate exposure, a time when glutamate antagonists are no longer neuroprotective. However, troglitazone did not block the glutamate-induced elevation of calcium influx, suggesting that troglitazone interfered with downstream consequences of excitotoxic glutamate receptor overactivation. In addition, troglitazone also suppressed low-potassium-induced apoptosis in cerebellar granule neurons in a phosphatidylinositol 3-kinase independent manner. In conclusion, although the mechanisms of troglitazone's neuroprotective effects are unknown, the post-treatment-neuroprotective effect and the dual-inhibitory-activity against both excitotoxicity and apoptosis may provide a novel therapy for various neurodegenerative diseases.
Collapse