1
|
Li S, Wang L, Bendersky VA, Gao Q, Wang J, Xu H, Kirk AD. Immunomodulation of T cell-mediated alloimmunity by proximity to endothelial cells under the mammalian target of rapamycin blockade. Am J Transplant 2025; 25:284-301. [PMID: 39426498 DOI: 10.1016/j.ajt.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Endothelial cells (ECs) are an initial barrier between vascularized organ allografts and the host immune system and are thus well positioned to initiate and influence alloimmune rejection. The mammalian target of rapamycin inhibitor rapamycin is known to inhibit T cell activation and attenuate acute allograft rejection. It also has numerous effects on ECs. We hypothesized that A mammalian target of rapamycin blockade might directly alter EC alloimmunogenicity and reduce alloimmune responses independent of its effects on T cell function. Here we report that rapamycin treatment modulates EC coinhibitory ligand expression and alters cytokine/chemokine production. It alters the EC transcriptome broadly associated with negative regulation of immune responses. Rapamycin-treated ECs suppress EC-specific T cell proliferation independent of programmed cell death 1/programmed death-ligand interaction and inhibit T cells responding to adjacent allogeneic cells in a contact-independent manner via secreted inhibitory mediators above 10 kDa. The T cell hyporesponsiveness induced by rapamycin-pretreated ECs was rescued by exogenous interleukin 2. Preexposing donor hearts to rapamycin improves the effect of B7 costimulation blockade in prolonging heart allograft survival in a major histocompatibility complex-mismatched mouse model. Our results indicate that rapamycin-treated ECs have reduced alloimmunogenicity and created a local, contact-independent environment that limits T cell alloreactivity via anergy induction and improves the efficacy of B7 costimulation blockade.
Collapse
Affiliation(s)
- Shu Li
- Division of Transplant and Immunobiology Research, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Liuyang Wang
- Departments of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Victoria A Bendersky
- Division of Transplant and Immunobiology Research, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Qimeng Gao
- Division of Transplant and Immunobiology Research, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jun Wang
- Division of Transplant and Immunobiology Research, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - He Xu
- Division of Transplant and Immunobiology Research, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Allan D Kirk
- Division of Transplant and Immunobiology Research, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, USA; Departments of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Li S, Gao Q, Xu H, Kirk AD. Rapamycin Prevents Expansion of Costimulation Blockade-resistant CD8+ Alloreactive Memory Cells following Depletional Induction in Renal Transplant Recipients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1305-1317. [PMID: 39302088 PMCID: PMC11493497 DOI: 10.4049/jimmunol.2400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Alemtuzumab induction with belatacept/rapamycin-based maintenance immunotherapy (ABR) prevents kidney allograft rejection and specifically limits early costimulation blockade-resistant rejection (CoBRR). To evaluate the mechanisms by which this regimen alters CoBRR, we characterized the phenotype and functional response of preexisting memory cells to allogeneic endothelial cells using intracellular cytokine staining and flow cytometry. IL-7-induced lymphocyte proliferation in the presence or absence of rapamycin was assessed to characterize the phenotype of proliferating cells. Lymphocytes from 40 recipients who underwent transplant using the ABR regimen were studied longitudinally. The rapid immunoresponses of preexisting alloreactive cells to allogeneic endothelial cells were predominantly CD8+TNF-α+/IFN-γ+ cells. These cells were effector memory (TEM) and terminally differentiated effector memory cells lacking CD28 expression, and most were CD57+PD1-. Neither rapamycin nor belatacept directly inhibited these cells. IL-7, a cytokine induced during lymphopenia postdepletion, provoked dramatic CD8+ TEM cell proliferation and a low level of CD8+CD57+PD1- cell expansion in vitro. The IL-7 stimulation induced CD8+ cell mTOR phosphorylation, and rapamycin treatment markedly inhibited IL-7-induced TEM and CD57+PD1- cell expansion. This effect was evident in patients receiving the ABR in that the repopulation of CD8+CD57+PD1- TEM cells was substantially suppressed for at least 36 mo after transplant. These findings help define one mechanism by which a costimulation blockade/rapamycin-based therapy following alemtuzumab induction minimizes CoBRR, namely that in the presence of rapamycin, costimulation-resistant alloreactive cells are disproportionately ineffective at repopulating following post-transplant T cell depletion.
Collapse
Affiliation(s)
- Shu Li
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qimeng Gao
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - He Xu
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D. Kirk
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
- Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Shen H, Ojo OA, Ding H, Mullen LJ, Xing C, Hossain MI, Yassin A, Shi VY, Lewis Z, Podgorska E, Andrabi SA, Antoniewicz MR, Bonner JA, Shi LZ. HIF1α-regulated glycolysis promotes activation-induced cell death and IFN-γ induction in hypoxic T cells. Nat Commun 2024; 15:9394. [PMID: 39477954 PMCID: PMC11526104 DOI: 10.1038/s41467-024-53593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Hypoxia is a common feature in various pathophysiological contexts, including tumor microenvironment, and IFN-γ is instrumental for anti-tumor immunity. HIF1α has long been known as a primary regulator of cellular adaptive responses to hypoxia, but its role in IFN-γ induction in hypoxic T cells is unknown. Here, we show that the HIF1α-glycolysis axis controls IFN-γ induction in both human and mouse T cells, activated under hypoxia. Specific deletion of HIF1α in T cells (Hif1α-/-) and glycolytic inhibition suppresses IFN-γ induction. Conversely, HIF1α stabilization by hypoxia and VHL deletion in T cells (Vhl-/-) increases IFN-γ production. Hypoxic Hif1α-/- T cells are less able to kill tumor cells in vitro, and tumor-bearing Hif1α-/- mice are not responsive to immune checkpoint blockade (ICB) therapy in vivo. Mechanistically, loss of HIF1α greatly diminishes glycolytic activity in hypoxic T cells, resulting in depleted intracellular acetyl-CoA and attenuated activation-induced cell death (AICD). Restoration of intracellular acetyl-CoA by acetate supplementation re-engages AICD, rescuing IFN-γ production in hypoxic Hif1α-/- T cells and re-sensitizing Hif1α-/- tumor-bearing mice to ICB. In summary, we identify HIF1α-regulated glycolysis as a key metabolic control of IFN-γ production in hypoxic T cells and ICB response.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Haitao Ding
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Logan J Mullen
- Genomics Core Laboratory, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Chuan Xing
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - M Iqbal Hossain
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA
| | - Abdelrahman Yassin
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Vivian Y Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Zach Lewis
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Ewa Podgorska
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA
| | | | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
- Department of Microbiology and Immunology Institute, UAB-SOM, Birmingham, AL, USA.
| |
Collapse
|
4
|
DeBerge M, Schroth S, Du F, Yeap XY, Wang JJ, Zhang ZJ, Ansari MJ, Scott EA, Thorp EB. Hypoxia inducible factor 2α promotes tolerogenic macrophage development during cardiac transplantation through transcriptional regulation of colony stimulating factor 1 receptor. Proc Natl Acad Sci U S A 2024; 121:e2319623121. [PMID: 38889142 PMCID: PMC11214057 DOI: 10.1073/pnas.2319623121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center, Houston, TX77030
| | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Xin Yi Yeap
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Mohammed Javeed Ansari
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
5
|
Ma Y, Shi R, Li F, Chang H. Emerging strategies for treating autoimmune disease with genetically modified dendritic cells. Cell Commun Signal 2024; 22:262. [PMID: 38715122 PMCID: PMC11075321 DOI: 10.1186/s12964-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.
Collapse
Affiliation(s)
- Yunhan Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Ruobing Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Turka LA. Solid organ transplantation: solid but not yet spectacular. J Clin Invest 2024; 134:e176856. [PMID: 38165041 PMCID: PMC10760947 DOI: 10.1172/jci176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
|
7
|
Bai YZ, Kopecky BJ, Lavine KJ, Kreisel D. Ferroptosis in the post-transplantation inflammatory response. Cell Immunol 2023; 393-394:104774. [PMID: 37839157 DOI: 10.1016/j.cellimm.2023.104774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Transplantation is a life-saving therapy for patients with end-stage organ disease. Successful outcomes after transplantation require mitigation of the post-transplant inflammatory response, limiting alloreactivity, and prevention of organ rejection. Traditional immunosuppressive regimens aim to dampen the adaptive immune response; however, recent studies have shown the feasibility and efficacy of targeting the innate immune response. Necroinflammation initiated by donor organ cell death is implicated as a critical mediator of primary graft dysfunction, acute rejection, and chronic rejection. Ferroptosis is a form of regulated cell death that triggers post-transplantation inflammation and drives the activation of both innate and adaptive immune cells. There is a growing acceptance of the clinical relevance of ferroptosis to solid organ transplantation. Modulating ferroptosis may be a potentially promising strategy to reduce complications after organ transplantation.
Collapse
Affiliation(s)
- Yun Zhu Bai
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
8
|
Ding X, Du Y, Sun B, Liu L, Le S, Wu C, Chen J, Chen X, Chen S, Xia J. MicroRNA let-7a mediates posttranscriptional inhibition of Nr4A1 and exacerbates cardiac allograft rejection. Cell Signal 2023:110783. [PMID: 37356602 DOI: 10.1016/j.cellsig.2023.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Acute allograft rejection remains a major obstacle after heart transplantation, and CD4+ T cells play a crucial role in allograft rejection. Upregulation of Nr4A1 could regulate CD4+ T-cell function and alleviate allograft rejection. However, the regulatory mechanism of Nr4A1 in allograft rejection remains elusive. METHODS BCLb/c mouse hearts were transplanted into WT C57BL/6 mice, and dynamic detection of the changes in Nr4A1 expression revealed that Nr4A1 was regulated posttranscriptionally after heart transplantation. Potential upstream miRNAs of Nr4A1 were screened, and the transfection of cells with these miRNA mimics/inhibitors and dual-luciferase reporter experiments were performed to clarify the regulatory mechanism of miRNAs on Nr4A1 expression. The miRNA agomiR/antagomiR was applied in vivo to validate the role of the corresponding miRNA in heart transplantation. Finally, Nr4A1 knockout mice and an adoptive T-cell cotransfer model were used to confirm the specific effects of miRNA. RESULTS The expression of Nr4A1 protein (rather than mRNA) exhibited a trend of initially increasing and then decreasing rapidly, and this phenomenon could not be reversed by lysosomal or proteasomal inhibitors. The miRNA let-7a directly binds to the Nr4A1 3'UTR and posttranscriptionally regulates Nr4A1 expression. The let-7a antagomiR prolonged allograft survival and regulated CD4+ T-cell function by upregulating Nr4A1 protein expression in CD4+ T cells. CONCLUSIONS This study confirmed that let-7a is a potential target for interfering with Nr4A1 expression in CD4+ T cells and preventing the pathological progression of cardiac allograft rejection.
Collapse
Affiliation(s)
- Xiangchao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Sun
- Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Liang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuangyan Wu
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province and Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Muckenhuber M, Mucha J, Mengrelis K, How C, Reindl-Schwaighofer R, Heinzel A, Kainz V, Worel N, Berlakovich G, Edinger M, Oberbauer R, Wekerle T. Optimum timing of antithymocyte globulin in relation to adoptive regulatory T cell therapy. Am J Transplant 2023; 23:84-92. [PMID: 36695625 DOI: 10.1016/j.ajt.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
Reducing the recipient's T cell repertoire is considered to increase the efficacy of regulatory T cell (Treg) therapy. This necessitates timing the administration of antithymocyte globulin (ATG) early enough before adoptive cell therapy (ACT) so that residual serum ATG does not deplete the transferred Tregs. The optimum time point in this regard has not been defined. Herein, we report the effects of residual serum ATG on the viability of an in vitro expanded Treg cell product used in a clinical trial of ACT in kidney transplant recipients (NCT03867617). Patients received ATG monotherapy (either 6 or 3 mg/kg body weight) without concomitant immunosuppression 2 to 3 weeks before transplantation and Treg transfer. An anti-ATG immunoglobulin G (IgG) immune response was elicited in all patients within 14 days. In turn, the elimination of total and Treg-specific ATG was accelerated substantially over control patients receiving the same dose of ATG with concomitant immunosuppression. However, ATG serum concentrations of <1 μg/mL, which had previously been reported as subtherapeutic threshold, triggered apoptosis of Tregs in vitro. Therefore, ATG levels need to decline to lower levels than those previously thought for efficacious Treg transfer. In 5 of 6 patients, such low levels of serum ATG considered safe for Treg transfer were reached within 2 weeks after ATG administration.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasmin Mucha
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Christopher How
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- Leibniz Institute of Immunotherapy, Regensburg, Germany; Department of Internal Medicine 3 (Hematology and Oncology), University Hospital Regensburg, Regensburg, Germany
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Li S, Xu H, Kirk AD. Modulation of Xenogeneic T-cell Proliferation by B7 and mTOR Blockade of T Cells and Porcine Endothelial Cells. Transplantation 2022; 106:950-962. [PMID: 34387242 PMCID: PMC8850983 DOI: 10.1097/tp.0000000000003920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Activation of porcine endothelial cells (PECs) is the mechanistic centerpiece of xenograft rejection. This study sought to characterize the immuno-phenotype of human T cells in response to PECs and to explore the immuno-modulation of B7 and mammalian target of rapamycin blockade of T cells and/or PECs during xeno-responses. METHODS Rapid memory T-cell (TM) responses to PECs were assessed by an intracellular cytokine staining. T-cell proliferation to PEC with or without belatacept or rapamycin was evaluated by a mixed lymphocyte-endothelial cell reaction (MLER). Additionally, rapamycin-pretreated PECs were used in MLER. Cell phenotypes were analyzed by flow cytometry. RESULTS Tumor necrosis factor-α/interferon-γ producers were detected in CD8+ cells stimulated by human endothelium but not PECs. MLER showed proliferation of CD4+ and CD8+ cells with predominantly memory subsets. Purified memory and naive cells proliferated following PEC stimulation with an increased frequency of TM in PEC-stimulated naive cells. Proliferating cells upregulated programmed cell death-1 (PD-1) and CD2 expression. Belatacept partially inhibited T-cell proliferation with reduced CD2 expression and frequency of the CD8+CD2highCD28- subset. Rapamycin dramatically inhibited PEC-induced T-cell proliferation, and rapamycin-preconditioned PECs failed to induce T-cell proliferation. PD-1 blockade did not restore T-cell proliferation to rapamycin-preconditioned PECs. CONCLUSIONS Humans lack rapid TM-mediated responses to PECs but induce T-cell proliferative responses characterized largely as TM with increasing CD2 and PD-1 expression. B7-CD28 and mammalian target of rapamycin blockade of T cells exhibit dramatic inhibitory effects in altering xeno-proliferating cells. Rapamycin alters PEC xeno-immunogenicity leading to inhibition of xeno-specific T-cell proliferation independent of PD-1-PD ligand interaction.
Collapse
Affiliation(s)
- Shu Li
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - He Xu
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
11
|
Ding X, Le S, Wang K, Su Y, Chen S, Wu C, Chen J, Chen S, Zhang A, Xia J. Cytosporone B (Csn-B), an NR4A1 agonist, attenuates acute cardiac allograft rejection by inducing differential apoptosis of CD4+T cells. Int Immunopharmacol 2022; 104:108521. [PMID: 35026656 DOI: 10.1016/j.intimp.2022.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
CD4+T cell-mediated acute rejection remains a major factor that affects the early survival of transplanted organs post-transplantation. Here, we reveal that nuclear receptor subfamily 4 Group A member 1 (Nr4A1) was upregulated during cardiac allograft rejection and that the increased Nr4A1 was primarily localized in intragraft-infiltrating CD4+T cells. Nr4A1 acts as a transcription factor with an important role in CD4+T cell apoptosis, differentiation and T cell dysfunction, which indicates that Nr4A1 may play a critical role in transplant rejection. Cytosporone B (Csn-B) is a naturally occurring agonist of Nr4A1, and the role of Csn-B in the physiological process of cardiac rejection is poorly defined. This study constructed an acute rejection model of abdominal heterotopic cardiac transplantation in mice and investigated whether Csn-B could attenuate acute transplant rejection by modulating the CD4+T lymphocyte response. The results showed that Csn-B prolonged murine cardiac allograft survival and reduced inflammation in allografts. Subsequently, it was confirmed that Csn-B functions by inducing non-Treg apoptosis and promoting Treg cell differentiation. Finally, we also confirmed that Csn-B attenuates acute rejection by directly targeting Nr4A1 in CD4+T cells. Our data suggest that Csn-B is a promising novel therapeutic approach for acute cardiac allograft rejection.
Collapse
Affiliation(s)
- Xiangchao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunshu Su
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province and Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuangyan Wu
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anchen Zhang
- Department of Cardiovascular Medicine, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Dang N, Waer M, Sprangers B, Lin Y. Establishment of operational tolerance to sustain antitumor immunotherapy. J Heart Lung Transplant 2022; 41:568-577. [DOI: 10.1016/j.healun.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
|
13
|
Safinia N, Vaikunthanathan T, Lechler RI, Sanchez‐Fueyo A, Lombardi G. Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance? Eur J Immunol 2021; 51:2373-2386. [PMID: 34375446 PMCID: PMC10015994 DOI: 10.1002/eji.202048875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver disease. Breakthroughs in surgical practice and immunosuppression have seen considerable advancements in survival after transplantation. However, the intricate management of immunosuppressive regimens, balancing desired immunological quiescence while minimizing toxicity has proven challenging. Diminishing improvements in long-term morbidity and mortality have been inextricably linked with the protracted use of these medications. As such, there is now enormous interest to devise protocols that will allow us to minimize or completely withdraw immunosuppressants after transplantation. Immunosuppression withdrawal trials have proved the reality of tolerance following liver transplantation, however, without intervention will only occur after several years at the risk of potential cumulative immunosuppression-related morbidity. Focus has now been directed at accelerating this phenomenon through tolerance-inducing strategies. In this regard, efforts have seen the use of regulatory cell immunotherapy. Here we focus particularly on regulatory T cells, discussing preclinical data that propagated several clinical trials of adoptive cell therapy in liver transplantation. Furthermore, we describe efforts to further optimize the specificity and survival of regulatory cell therapy guided by concurrent immunomonitoring studies and the development of novel technologies including chimeric antigen receptors and co-administration of low-dose IL-2.
Collapse
Affiliation(s)
- Niloufar Safinia
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Robert Ian Lechler
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Giovanna Lombardi
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| |
Collapse
|
14
|
Xu H, Lee HJ, Schmitz R, Shaw BI, Li S, Kirk AD. Age-related effects on thymic output and homeostatic T cell expansion following depletional induction in renal transplant recipients. Am J Transplant 2021; 21:3163-3174. [PMID: 33942491 PMCID: PMC8429231 DOI: 10.1111/ajt.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 01/25/2023]
Abstract
Thymic output and homeostatic mature cell proliferation both influence T cell repopulation following depletional induction, though the relative contribution of each and their association with recipient age have not been well studied. We investigated the repopulating T cell kinetics in kidney transplant recipients who underwent alemtuzumab induction followed by belatacept/rapamycin-based immunosuppression over 36-month posttransplantation. We focused specifically on the correlation between repopulating T cell subsets and the age of patients. Substantial homeostatic Ki67-expressing T cell proliferation was seen posttransplantation. A repertoire enriched for naïve T (TNaïve ) cells emerged posttransplantation. Analysis by generalized estimating equation linear models revealed a strong negative linear association between reconstituting TNaïve cells and advancing age. A relationship between age and persistence of effector memory cells was shown. We assessed thymic output and found an increase in the frequency of recent thymic emigrants (RTEs, CD4+ CD31+ ) at 12-month posttransplantation. Patients under 30 years of age showed significantly higher levels of CD4+ CD31+ cells than patients over 55 years of age pre- and posttransplantation. IL-7 and autologous mature dendritic cells (mDCs) induced CD57- cell proliferation. In contrast, mDCs, but not IL-7, induced CD57+ cell proliferation. This study establishes the relationship between age and thymic output during T cell homeostatic repopulation after alemtuzumab induction. Trial Registration: ClinicalTrials.gov - NCT00565773.
Collapse
Affiliation(s)
- He Xu
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA,To whom correspondence should be addressed: He Xu, MD, Allan D. Kirk, MD, PhD, Department of Surgery, Duke University School of Medicine, Edwin Jones Building Room 368, Durham, NC 27710, Phone: (919)684-4371, ,
| | - Hui-Jie Lee
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Robin Schmitz
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Brian I Shaw
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shu Li
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D Kirk
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA,To whom correspondence should be addressed: He Xu, MD, Allan D. Kirk, MD, PhD, Department of Surgery, Duke University School of Medicine, Edwin Jones Building Room 368, Durham, NC 27710, Phone: (919)684-4371, ,
| |
Collapse
|
15
|
Vidovic D, Simms GA, Pasternak S, Walsh M, Peltekian K, Stein J, Helyer LK, Giacomantonio CA. Case Report: Combined Intra-Lesional IL-2 and Topical Imiquimod Safely and Effectively Clears Multi-Focal, High Grade Cutaneous Squamous Cell Cancer in a Combined Liver and Kidney Transplant Patient. Front Immunol 2021; 12:678028. [PMID: 34122442 PMCID: PMC8190543 DOI: 10.3389/fimmu.2021.678028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/07/2021] [Indexed: 01/04/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common non-melanoma skin cancer worldwide, with ever increasing incidence and mortality. While most patients can be treated successfully with surgical excision, cryotherapy, or radiation therapy, there exist a subset of patients with aggressive cSCC who lack adequate therapies. Among these patients are solid organ transplant recipients who due to their immunosuppression, develop cSCC at a dramatically increased rate compared to the normal population. The enhanced ability of the tumor to effectively undergo immune escape in these patients leads to more aggressive tumors with a propensity to recur and metastasize. Herein, we present a case of aggressive, multi-focal cSCC in a double organ transplant recipient to frame our discussion and current understanding of the immunobiology of cSCC. We consider factors that contribute to the significantly increased incidence of cSCC in the context of immunosuppression in this patient population. Finally, we briefly review current literature describing experience with localized therapies for cSCC and present a strong argument and rationale for consideration of an IL-2 based intra-lesional treatment strategy for cSCC, particularly in this immunosuppressed patient population.
Collapse
Affiliation(s)
- Dejan Vidovic
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Gordon A. Simms
- Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Sylvia Pasternak
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Mark Walsh
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Kevork Peltekian
- Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - John Stein
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Lucy K. Helyer
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Carman A. Giacomantonio
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| |
Collapse
|
16
|
Ma Y, Yan G, Guo J, Li F, Zheng H, Wang C, Chen Y, Ye Y, Dai H, Qi Z, Zhuang G. Berberine Prolongs Mouse Heart Allograft Survival by Activating T Cell Apoptosis via the Mitochondrial Pathway. Front Immunol 2021; 12:616074. [PMID: 33732240 PMCID: PMC7959711 DOI: 10.3389/fimmu.2021.616074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Berberine, which is a traditional Chinese medicine can inhibit tumorigenesis by inducing tumor cell apoptosis. However, the immunoregulatory of effects berberine on T cells remains poorly understood. Here, we first examined whether berberine can prolong allograft survival by regulating the recruitment and function of T cells. Using a major histocompatibility complex complete mismatch mouse heterotopic cardiac transplantation model, we found that the administration of moderate doses (5 mg/kg) of berberine significantly prolonged heart allograft survival to 19 days and elicited no obvious berberine-related toxicity. Compared to that with normal saline treatment, berberine treatment decreased alloreactive T cells in recipient splenocytes and lymph node cells. It also inhibited the activation, proliferation, and function of alloreactive T cells. Most importantly, berberine treatment protected myocardial cells by decreasing CD4+ and CD8+ T cell infiltration and by inhibiting T cell function in allografts. In vivo and in vitro assays revealed that berberine treatment eliminated alloreactive T lymphocytes via the mitochondrial apoptosis pathway, which was validated by transcriptome sequencing. Taken together, we demonstrated that berberine prolongs allograft survival by inducing apoptosis of alloreactive T cells. Thus, our study provides more evidence supporting the potential use of berberine in translational medicine.
Collapse
Affiliation(s)
- Yunhan Ma
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, China
| | - Fujun Li
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yingyu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Shaw BI, Espinosa JR, Stempora L, Miller A, Adams B, Kirk AD. Functional Characteristics and Phenotypic Plasticity of CD57 +PD1 - CD4 T Cells and Their Relationship with Transplant Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2021; 206:1668-1676. [PMID: 33597150 DOI: 10.4049/jimmunol.2000736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/20/2021] [Indexed: 12/28/2022]
Abstract
Costimulation blockade (CoB)-based immunosuppression offers the promise of improved transplantation outcomes with reduced drug toxicity. However, it is hampered by early acute rejections, mediated at least in part by differentiated, CoB-resistant T cells, such as CD57+PD1- CD4 T cells. In this study, we characterize these cells pretransplant, determine their fate posttransplant, and examine their proliferative capacity in vitro in humans. Our studies show that CD57+PD1- CD4 T cells are correlated with increasing age and CMV infection pretransplant, and persist for up to 1 y posttransplant. These cells are replication incompetent alone but proliferated in the presence of unsorted PBMCs in a contact-independent manner. When stimulated, cells sorted by CD57/PD1 status upregulate markers of activation with proliferation. Up to 85% of CD57+PD1- cells change expression of CD57/PD1 with stimulation, typically, upregulating PD1 and downregulating CD57. PD1 upregulation is accentuated in the presence of rapamycin but prevented by tacrolimus. These data support a general theory of CoB-resistant cells as Ag-experienced, costimulation-independent cells and suggest a mechanism for the synergy of belatacept and rapamycin, with increased expression of the activation marker PD1 potentiating exhaustion of CoB-resistant cells.
Collapse
Affiliation(s)
- Brian I Shaw
- Department of Surgery, Duke University, Durham, NC 27710
| | | | - Linda Stempora
- Department of Surgery, Duke University, Durham, NC 27710
| | - Allison Miller
- Department of Surgery, Duke University, Durham, NC 27710
| | - Bartley Adams
- Department of Surgery, Duke University, Durham, NC 27710
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC 27710
| |
Collapse
|
18
|
Abstract
Since it was shown in the early 1950s that it is possible to induce transplantation tolerance in neonates, immune tolerance strategies have been actively pursued. It was found that T cells play a critical role in graft rejection, but can also be major players in mediating transplantation tolerance. Consequently, many experimental systems focused on T cells, often with a complete exclusion of B cells from in vivo animal models. It is now becoming clear that in addition to T cells, B cells can mediate graft rejection and transplantation tolerance. In this issue of the JCI, Khiew et al. investigated the contribution of alloreactive B cells to transplantation tolerance using a mouse cardiac transplantation model. The authors revealed a distinct tolerant B cell phenotype possessing the ability to suppress naive B cells. These data lead to a better understanding of B cell contributions to transplantation tolerance, and may inform the development of future immune tolerance protocols.
Collapse
|
19
|
Schmitz R, Fitch ZW, Xu H, Ghali A, Mehta AK, Guasch A, Kirk AD. Kidney transplantation using alemtuzumab, belatacept, and sirolimus: Five-year follow-up. Am J Transplant 2020; 20:3609-3619. [PMID: 32515087 DOI: 10.1111/ajt.16121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/25/2023]
Abstract
Kidney transplant outcomes are limited by toxicities associated with calcineurin inhibitors and steroids. This trial was conducted to determine whether a costimulation blockade (CoB)-based regimen could achieve acceptable long-term outcomes and graft survival could be maintained solely with CoB. Forty patients underwent alemtuzumab induction followed by belatacept and sirolimus maintenance therapy. Patients were offered weaning to belatacept monotherapy after 1 year and followed for 5 years. Five-year patient and graft survival rates were 100% and 95%, respectively. Graft function remained stable with a mean estimated glomerular filtration rates of 67 ± 21 and 71 ± 19 at 36 and 60 months, respectively. There was no clinical rejection in the first year; subclinical rejection was detected by protocol biopsy in 4 patients. Twelve patients were successfully weaned to belatacept monotherapy. Cytomegalovirus and Epstein-Barr virus reactivations were well controlled, but 9 patients experienced transient BK viremia during the first year. Alemtuzumab produced profound lymphopenia followed by gradual T cell and more rapid B cell reconstitution to a repertoire deviated toward naïve cells with increased regulatory T cells. This regimen effectively prevents allograft rejection without using steroids or calcineurin inhibitors, enriches for naïve cells susceptible to control with CoB, and permits control of rejection with belatacept monotherapy in selected patients.
Collapse
Affiliation(s)
- Robin Schmitz
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary W Fitch
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - He Xu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Ada Ghali
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aneesh K Mehta
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Antonio Guasch
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan D Kirk
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
21
|
Yang T, Li J, Li R, Yang C, Zhang W, Qiu Y, Yang C, Rong R. Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction. Curr Gene Ther 2020; 19:81-92. [PMID: 31237207 DOI: 10.2174/1566523219666190618093707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
MDSCs play an important role in the induction of immune tolerance. Cytokines and chemokines (GM-CSF, IL-6) contributed to the expansion, accumulation of MDSCs, and MDSCs function through iNOS, arginase and PD-L1. MDSCs are recruited and regulated through JAK/STAT, mTOR and Raf/MEK/ERK signaling pathways. MDSCs' immunosuppressive functions were realized through Tregs-mediated pathways and their direct suppression of immune cells. All of the above contribute to the MDSC-related immune tolerance in transplantation. MDSCs have huge potential in prolonging graft survival and reducing rejection through different ways and many other factors worthy to be further investigated are also introduced.
Collapse
Affiliation(s)
- Tianying Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruimin Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunchen Yang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weitao Zhang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
An K, Qin Q, Yu S, Xue M, Wang Z, Lin Q, Ma Y, Yan G, Mo S, Chen Y, Zhang L, Zhong J, Qi Z, Xia J. Combination of N, N'-dicyclohexyl-N-arachidonic acylurea and tacrolimus prolongs cardiac allograft survival in mice. Immunol Cell Biol 2020; 98:382-396. [PMID: 32162358 DOI: 10.1111/imcb.12327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022]
Abstract
Current immunosuppressive agents for organ transplantation are not ideal because of their strong toxicity and adverse effects. Hence, there is an urgent need to develop novel immunosuppressive agents. The compound N, N'-dicyclohexyl-N-arachidonic acylurea (DCAAA) is a novel highly unsaturated fatty acid from the traditional Chinese medicinal plant Radix Isatidis. In this study, we systematically investigated the toxicity, immunosuppressive effect and mechanisms underlying the activity of DCAAA. The toxicity tests showed that DCAAA treatment did not lead to red blood cell hemolysis and did not affect the liver and kidney functions in mice. The lymphocyte transformation test showed that DCAAA treatment inhibited lymphocyte proliferation in a dose-dependent manner. An in vivo cardiac allotransplantation experiment showed that DCAAA treatment could suppress the immune rejection and significantly prolong the survival of cardiac allografts in recipient mice by reducing the proportion of CD4+ T cells in the spleen and grafts, concentration of interferon-γ in the supernatant and serum and infiltration of inflammatory cells into the grafts. Moreover, a combination treatment with DCAAA and tacrolimus had a synergistic effect in preventing acute rejection of heart transplants. In vitro molecular biology experiments showed that DCAAA treatment inhibited activation of the T-cell receptor-mediated phosphoinostide 3-kinase-protein kinase B pathway, thereby arresting cell cycle transition from the G1 to the S phase, and inhibiting lymphocyte proliferation. Overall, our study reveals a novel, low-toxicity immunosuppressive agent that has the potential to reduce the toxic side effects of existing immunosuppressive agents when used in combination with them.
Collapse
Affiliation(s)
- Ke An
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qing Qin
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengnan Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Mengjiao Xue
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhenzhen Wang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qingru Lin
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yunhan Ma
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoliang Yan
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sirui Mo
- Youjiang Medical University For Nationalities, Baise, Guangxi, China
| | - Yingyu Chen
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liyi Zhang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiaying Zhong
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Kato K, Takeuchi A, Akashi K, Eto M. Cyclophosphamide-Induced Tolerance in Allogeneic Transplantation: From Basic Studies to Clinical Application. Front Immunol 2020; 10:3138. [PMID: 32082305 PMCID: PMC7005582 DOI: 10.3389/fimmu.2019.03138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/24/2019] [Indexed: 01/02/2023] Open
Abstract
Immune tolerance against alloantigens plays an important role in the success of clinical organ and allogeneic hematopoietic stem cell transplantation. The mechanisms of immune tolerance to alloantigens have gradually been elucidated over time. Although there have been numerous reports to date on the induction of tolerance to alloantigens, the establishment of mixed chimerism is well-known to be crucial in the induction and maintenance of immune tolerance for either of the methods. Since the early 1980s, the murine system of cyclophosphamide (Cy)-induced tolerance has also been examined extensively. The present review focuses on studies conducted on Cy-induced immune tolerance. Clinical data of patients with allogeneic transplantation suggest that the posttransplant Cy method to induce immune tolerance has been successfully translated from basic studies into clinical practice.
Collapse
Affiliation(s)
- Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
24
|
Abstract
The role of inflammation in cardiovascular disease (CVD) is now widely accepted. Immune cells, including T cells, are influenced by inflammatory signals and contribute to the onset and progression of CVD. T cell activation is modulated by T cell co-stimulation and co-inhibition pathways. Immune checkpoint inhibitors (ICIs) targeting T cell inhibition pathways have revolutionized cancer treatment and improved survival in patients with cancer. However, ICIs might induce cardiovascular toxicity via T cell re-invigoration. With the rising use of ICIs for cancer treatment, a timely overview of the role of T cell co-stimulation and inhibition molecules in CVD is desirable. In this Review, the importance of these molecules in the pathogenesis of CVD is highlighted in preclinical studies on models of CVD such as vein graft disease, myocarditis, graft arterial disease, post-ischaemic neovascularization and atherosclerosis. This Review also discusses the therapeutic potential of targeting T cell co-stimulation and inhibition pathways to treat CVD, as well as the possible cardiovascular benefits and adverse events after treatment. Finally, the Review emphasizes that patients with cancer who are treated with ICIs should be monitored for CVD given the reported association between the use of ICIs and the risk of cardiovascular toxicity.
Collapse
|
25
|
Sneddon JB, Tang Q, Stock P, Bluestone JA, Roy S, Desai T, Hebrok M. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell 2019; 22:810-823. [PMID: 29859172 DOI: 10.1016/j.stem.2018.05.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies.
Collapse
Affiliation(s)
- Julie B Sneddon
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Stock
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuvo Roy
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal Desai
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Singh A, Ramachandran S, Graham ML, Daneshmandi S, Heller D, Suarez-Pinzon WL, Balamurugan AN, Ansite JD, Wilhelm JJ, Yang A, Zhang Y, Palani NP, Abrahante JE, Burlak C, Miller SD, Luo X, Hering BJ. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat Commun 2019; 10:3495. [PMID: 31375697 PMCID: PMC6677762 DOI: 10.1038/s41467-019-11338-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Immune tolerance to allografts has been pursued for decades as an important goal in transplantation. Administration of apoptotic donor splenocytes effectively induces antigen-specific tolerance to allografts in murine studies. Here we show that two peritransplant infusions of apoptotic donor leukocytes under short-term immunotherapy with antagonistic anti-CD40 antibody 2C10R4, rapamycin, soluble tumor necrosis factor receptor and anti-interleukin 6 receptor antibody induce long-term (≥1 year) tolerance to islet allografts in 5 of 5 nonsensitized, MHC class I-disparate, and one MHC class II DRB allele-matched rhesus macaques. Tolerance in our preclinical model is associated with a regulatory network, involving antigen-specific Tr1 cells exhibiting a distinct transcriptome and indirect specificity for matched MHC class II and mismatched class I peptides. Apoptotic donor leukocyte infusions warrant continued investigation as a cellular, nonchimeric and translatable method for inducing antigen-specific tolerance in transplantation. Injection of donor apoptotic cells induces graft tolerance in mice. Here the authors combine this approach with short immunosuppressive therapy to achieve long-term tolerance to allogeneic islets and restoration of normoglycemia in diabetic nonhuman primates, and delineate cellular and molecular correlates of tolerance induction.
Collapse
Affiliation(s)
- Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sabarinathan Ramachandran
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melanie L Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Saeed Daneshmandi
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David Heller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wilma Lucia Suarez-Pinzon
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Appakalai N Balamurugan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Jeffrey D Ansite
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amy Yang
- Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nagendra P Palani
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN, 55455, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunology Center, Northwestern University, Chicago, IL, 60611, USA.
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Duke Transplant Center, Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Fitch Z, Schmitz R, Kwun J, Hering B, Madsen J, Knechtle SJ. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant Rev (Orlando) 2019; 33:115-129. [PMID: 31027947 PMCID: PMC6599548 DOI: 10.1016/j.trre.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Research in transplant immunology using non-human primate (NHP) species to evaluate immunologic strategies to prevent rejection and prolong allograft survival has yielded results that have translated successfully into human organ transplant patient management. Other therapies have not proceeded to human translation due to failure in NHP testing, arguably sparing humans the futility and risk of such testing. The NHP transplant models are ethically necessary for drug development in this field and provide the closest analogue to human transplant patients available. The refinement of this resource with respect to colony MHC typing, reagent and assay development, and availability to the research community has greatly enhanced knowledge about transplant immunology and drug development.
Collapse
Affiliation(s)
- Zachary Fitch
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA; Center for Transplantation Sciences, Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, White 510c, 55 Fruit Street, Boston, MA, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Bernhard Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joren Madsen
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Liu Z, Liao F, Scozzi D, Furuya Y, Pugh KN, Hachem R, Chen DL, Cano M, Green JM, Krupnick AS, Kreisel D, Perl AKT, Huang HJ, Brody SL, Gelman AE. An obligatory role for club cells in preventing obliterative bronchiolitis in lung transplants. JCI Insight 2019; 5:124732. [PMID: 30990794 DOI: 10.1172/jci.insight.124732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Obliterative bronchiolitis (OB) is a poorly understood airway disease characterized by the generation of fibrotic bronchiolar occlusions. In the lung transplant setting, OB is a pathological manifestation of bronchiolitis obliterans syndrome (BOS), which is a major impediment to long-term recipient survival. Club cells play a key role in bronchiolar epithelial repair, but whether they promote lung transplant tolerance through preventing OB remains unclear. We determined if OB occurs in mouse orthotopic lung transplants following conditional transgene-targeted club cell depletion. In syngeneic lung transplants club cell depletion leads to transient epithelial injury followed by rapid club cell-mediated repair. In contrast, allogeneic lung transplants develop severe OB lesions and poorly regenerate club cells despite immunosuppression treatment. Lung allograft club cell ablation also triggers the recognition of alloantigens, and pulmonary restricted self-antigens reported associated with BOS development. However, CD8+ T cell depletion restores club cell reparative responses and prevents OB. In addition, ex-vivo analysis reveals a specific role for alloantigen-primed effector CD8+ T cells in preventing club cell proliferation and maintenance. Taken together, we demonstrate a vital role for club cells in maintaining lung transplant tolerance and propose a new model to identify the underlying mechanisms of OB.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Kaitlyn N Pugh
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Jonathan M Green
- Department of Medicine.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander S Krupnick
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anne Karina T Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Howard J Huang
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston, Texas, USA
| | | | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Zeng Q, Qiu F, Chen Y, Liu C, Liu H, Liang CL, Zhang Q, Dai Z. Shikonin Prolongs Allograft Survival via Induction of CD4 +FoxP3 + Regulatory T Cells. Front Immunol 2019; 10:652. [PMID: 30988670 PMCID: PMC6451963 DOI: 10.3389/fimmu.2019.00652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/11/2019] [Indexed: 01/16/2023] Open
Abstract
A transplanted organ is usually rejected without any major immunosuppressive treatment because of vigorous alloimmune responsiveness. However, continuous global immunosuppression may cause severe side effects, including nephrotoxicity, tumors, and infections. Therefore, it is necessary to seek novel immunosuppressive agents, especially natural ingredients that may provide sufficient efficacy in immunosuppression with minimal side effects. Shikonin is a bioactive naphthoquinone pigment, an ingredient originally extracted from the root of Lithospermum erythrorhizon. Previous studies have shown that shikonin regulates immunity and exerts anti-inflammatory effects. In particular, it can ameliorate arthritis in animal models. However, it is unclear whether shikonin inhibits alloimmunity or allograft rejection. In this study and for the first time, we demonstrated that shikonin significantly prolonged the survival of skin allografts in wild-type mice. Shikonin increased the frequencies of CD4+Foxp3+ regulatory T cells (Tregs) post-transplantation and induced CD4+Foxp3+ Tregs in vitro as well. Importantly, depleting the Tregs abrogated the extension of skin allograft survival induced by shikonin. It also decreased the frequencies of CD8+CD44highCD62Llow effector T cells and CD11c+CD80+/CD11c+CD86+ mature DCs after transplantation. Moreover, we found that shikonin inhibited the proliferation of T cells in vitro and suppressed their mTOR signaling. It also reduced the gene expression of pro-inflammatory cytokines, including IFNγ, IL-6, TNFα, and IL-17A, while increasing the gene expression of anti-inflammatory mediators IL-10, TGF-β1, and indoleamine-2, 3-dioxygenase (IDO) in skin allografts. Further, shikonin downregulated IDO protein expression in skin allografts and DCs in vitro. Taken together, shikonin inhibits allograft rejection via upregulating CD4+Foxp3+ Tregs. Thus, shikonin is a novel immunosuppressant that could be potentially used in clinical transplantation.
Collapse
Affiliation(s)
- Qiaohuang Zeng
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Feifei Qiu
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Cuihua Liu
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chun-Ling Liang
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qunfang Zhang
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
30
|
Abstract
In this chapter, we describe the history of transplantation, the multiple cell types, and mechanisms that are involved in rejection and tolerance of a transplanted organ, as well as summarize the common and promising new therapeutics used in transplant patients.
Collapse
Affiliation(s)
- Jessica Stolp
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Masaaki Zaitsu
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Chen Y, Zhang Q, Liu H, Lu C, Liang CL, Qiu F, Han L, Dai Z. Esculetin Ameliorates Psoriasis-Like Skin Disease in Mice by Inducing CD4 +Foxp3 + Regulatory T Cells. Front Immunol 2018; 9:2092. [PMID: 30258447 PMCID: PMC6143660 DOI: 10.3389/fimmu.2018.02092] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is an autoimmune and inflammatory skin disease affecting around 2-3% of the world's population. Patients with psoriasis need extensive treatments with global immunosuppressive agents that may cause severe side effects. Esculetin, a type of coumarins, is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla, which has been used to treat inflammatory and autoimmune diseases in China. However, the antipsoriatic effects of esculetin have not been reported. In this study, we aimed to investigate the effects of esculetin on psoriatic skin inflammation in a mouse model and explored the potential molecular mechanisms underlying its action. We found that esculetin ameliorated the skin lesion and reduced PASI scores as well as weight loss in imiquimod-induced psoriasis-like mice, accompanied with weakened proliferation and differentiation of keratinocytes and T cell infiltration in esculetin-treated psoriatic mice. In addition, esculetin reduced the frequency of CD8+CD44highCD62Llow effector T cells in psoriatic mice. In contrast, it increased the frequency of CD4+Foxp3+ Tregs in both lymph nodes and spleens of the psoriatic mice while promoting the differentiation of CD4+CD25- T cells into CD4+Foxp3+ Tregs in vitro. Interestingly, depleting CD4+Foxp3+ Tregs largely reversed esculetin-mediated reduction in PASI scores, indicating that esculetin attenuates murine psoriasis mainly by inducing CD4+Foxp3+ Tregs. Furthermore, the mRNA levels of proinflammatory cytokines in the psoriatic mouse skin, including IL-6, IL-17A, IL-22, IL-23, TNF-α, and IFN-γ, were dramatically decreased by the treatment with esculetin. Finally, we found that esculetin inhibited the phosphorylation of IKKα and P65 in the psoriatic skin, suggesting that it inhibits the activation of NF-κB signaling. Thus, we have demonstrated that esculetin attenuates psoriasis-like skin lesion in mice and may be a potential therapeutic candidate for the treatment of psoriasis in clinic.
Collapse
Affiliation(s)
- Yuchao Chen
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qunfang Zhang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Feifei Qiu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ling Han
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
32
|
Miller ML, McIntosh CM, Williams JB, Wang Y, Hollinger MK, Isaad NJ, Moon JJ, Gajewski TF, Chong AS, Alegre ML. Distinct Graft-Specific TCR Avidity Profiles during Acute Rejection and Tolerance. Cell Rep 2018; 24:2112-2126. [PMID: 30134172 PMCID: PMC6142813 DOI: 10.1016/j.celrep.2018.07.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Mechanisms implicated in robust transplantation tolerance at the cellular level can be broadly categorized into those that inhibit alloreactive T cells intrinsically (clonal deletion and dysfunction) or extrinsically through regulation. Here, we investigated whether additional population-level mechanisms control T cells by examining whether therapeutically induced peripheral transplantation tolerance could influence T cell populations' avidity for alloantigens. Whereas T cells with high avidity preferentially accumulated during acute rejection of allografts, the alloreactive T cells in tolerant recipients retained a low-avidity profile, comparable to naive mice despite evidence of activation. These contrasting avidity profiles upon productive versus tolerogenic stimulation were durable and persisted upon alloantigen re-encounter in the absence of any immunosuppression. Thus, peripheral transplantation tolerance involves control of alloreactive T cells at the population level, in addition to the individual cell level. Controlling expansion or eliminating high-affinity, donor-specific T cells long term may be desirable to achieve robust transplantation tolerance in the clinic.
Collapse
Affiliation(s)
- Michelle L Miller
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Christine M McIntosh
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Jason B Williams
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Ying Wang
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Maile K Hollinger
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Noel J Isaad
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Charlestown, MA 02129, USA
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, The University of Chicago, Chicago, IL 60637, USA
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Abstract
Dendritic cells (DCs) are a heterogeneous population playing a pivotal role in immune responses and tolerance. DCs promote immune tolerance by participating in the negative selection of autoreactive T cells in the thymus. Furthermore, to eliminate autoreactive T cells that have escaped thymic deletion, DCs also induce immune tolerance in the periphery through various mechanisms. Breakdown of these functions leads to autoimmune diseases. Moreover, DCs play a critical role in maintenance of homeostasis in body organs, especially the skin and intestine. In this review, we focus on recent developments in our understanding of the mechanisms of tolerance induction by DCs in the body.
Collapse
Affiliation(s)
- Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takuya Matsumoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
34
|
Zhao Y, Shen XF, Cao K, Ding J, Kang X, Guan WX, Ding YT, Liu BR, Du JF. Dexamethasone-Induced Myeloid-Derived Suppressor Cells Prolong Allo Cardiac Graft Survival through iNOS- and Glucocorticoid Receptor-Dependent Mechanism. Front Immunol 2018; 9:282. [PMID: 29497426 PMCID: PMC5818399 DOI: 10.3389/fimmu.2018.00282] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
How to induce immune tolerance without long-term need for immunosuppressive drugs has always been a central problem in solid organ transplantation. Modulating immunoregulatory cells represents a potential target to resolve this problem. Myeloid-derived suppressor cells (MDSCs) are novel key immunoregulatory cells in the context of tumor development or transplantation, and can be generated in vitro. However, none of current systems for in vitro differentiation of MDSCs have successfully achieved long-term immune tolerance. Herein, we combined dexamethasone (Dex), which is a classic immune regulatory drug in the clinic, with common MDSCs inducing cytokine granulocyte macrophage colony stimulating factor (GM-CSF) to generate MDSCs in vitro. Addition of Dex into GM-CSF system specifically increased the number of CD11b+ Gr-1int/low MDSCs with an enhanced immunosuppressive function in vitro. Adoptive transfer of these MDSCs significantly prolonged heart allograft survival and also favored the expansion of regulatory T cells in vivo. Mechanistic studies showed that inducible nitric oxide sythase (iNOS) signaling was required for MDSCs in the control of T-cell response and glucocorticoid receptor (GR) signaling played a critical role in the recruitment of transferred MDSCs into allograft through upregulating CXCR2 expression on MDSCs. Blockade of GR signaling with its specific inhibitor or genetic deletion of iNOS reversed the protective effect of Dex-induced MDSCs on allograft rejection. Together, our results indicated that co-application of Dex and GM-CSF may be a new and important strategy for the induction of potent MDSCs to achieve immune tolerance in organ transplantation.
Collapse
Affiliation(s)
- Yang Zhao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiao-Fei Shen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ke Cao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Xian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi-Tao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bao-Rui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jun-Feng Du
- Department of General Surgery, PLA Army General Hospital, Beijing, China
| |
Collapse
|
35
|
Mathew JM, Ansari MJ, Gallon L, Leventhal JR. Cellular and functional biomarkers of clinical transplant tolerance. Hum Immunol 2018; 79:322-333. [PMID: 29374560 DOI: 10.1016/j.humimm.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
Development of tolerance protocols requires assays or biomarkers that distinguish tolerant recipients from non-tolerant ones to be established. In addition, a thorough understanding of the plausible mechanisms associated with clinical transplant tolerance is necessary to take the field forward. Unlike the majority of molecular signature analyses utilized by others, the emphasis of this article is on the cellular and functional biomarkers of induced transplant tolerance. Immunity to an organ transplant is very complex, comprised of two broad categories - innate and acquired or adaptive immune responses. Innate immunity can be avoided by eliminating or preventing ischemic injuries to the donor organ and tolerance at the level of adaptive immunity can be induced by infusions of a number of cellular products. Since adaptive immune response consists of inflammatory hypersensitivity, cellular (cytotoxic and helper) and humoral aspects, all these need to be measured, and the recipients who demonstrate donor-specific unresponsiveness in all can be considered tolerant or candidates for immunosuppression minimization and/or withdrawal. The mechanisms by which these agents bring about transplant tolerance include regulation, anergy, exhaustion, senescence and deletion of the recipient immune cells. Another proven mechanism of tolerance is full or mixed donor chimerism. However, it should be cautioned that non-deletional tolerance can be reversed.
Collapse
Affiliation(s)
- James M Mathew
- Department of Surgery - Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA; Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA.
| | - Mohammed Javeed Ansari
- Department of Surgery - Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA; Department of Medicine-Nephrology, Northwestern University, Chicago, IL, USA
| | - Lorenzo Gallon
- Department of Surgery - Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA; Department of Medicine-Nephrology, Northwestern University, Chicago, IL, USA
| | - Joseph R Leventhal
- Department of Surgery - Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
36
|
Agua-Doce A, Caridade M, Oliveira VG, Bergman L, Lafaille MC, Lafaille JJ, Demengeot J, Graca L. Route of Antigen Presentation Can Determine the Selection of Foxp3-Dependent or Foxp3-Independent Dominant Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 200:101-109. [PMID: 29167234 DOI: 10.4049/jimmunol.1601886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
Abstract
It has been shown that dominant tolerance, namely in transplantation, requires Foxp3+ regulatory T cells. Although most tolerance-inducing regimens rely on regulatory T cells, we found that induction of tolerance to proteins in aluminum hydroxide can be achieved in Foxp3-deficient mice using nondepleting anti-CD4 Abs. This type of tolerance is Ag specific, and tolerant mice retain immune competence to respond to unrelated Ags. We demonstrated with chicken OVA-specific TCR-transgenic mice that the same tolerizing protocol (CD4 blockade) and the same target Ag (OVA) achieves Foxp3-dependent transplantation tolerance to OVA-expressing skin grafts, but Foxp3-independent tolerance when the Ag is provided as OVA-aluminum hydroxide. In the latter case, we found that tolerance induction triggered recessive mechanisms leading to elimination of effector cells and, simultaneously, a dominant mechanism associated with the emergence of an anergic and regulatory CTLA-4+IL-2lowFoxp3- T cell population, where the tolerance state is IL-10 dependent. Such Foxp3-independent mechanisms can improve the efficacy of tolerance-inducing protocols.
Collapse
Affiliation(s)
- Ana Agua-Doce
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Marta Caridade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Vanessa G Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Lisa Bergman
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Maria C Lafaille
- Department of Pathology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Juan J Lafaille
- Department of Pathology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | | | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; .,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| |
Collapse
|
37
|
Zuber J, Sykes M. Mechanisms of Mixed Chimerism-Based Transplant Tolerance. Trends Immunol 2017; 38:829-843. [PMID: 28826941 PMCID: PMC5669809 DOI: 10.1016/j.it.2017.07.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Immune responses to allografts represent a major barrier in organ transplantation. Immune tolerance to avoid chronic immunosuppression is a critical goal in the field, recently achieved in the clinic by combining bone marrow transplantation (BMT) with kidney transplantation following non-myeloablative conditioning. At high levels of chimerism such protocols can permit central deletional tolerance, but with a significant risk of graft-versus-host (GVH) disease (GVHD). By contrast, transient chimerism-based tolerance is devoid of GVHD risk and appears to initially depend on regulatory T cells (Tregs) followed by gradual, presumably peripheral, clonal deletion of donor-reactive T cells. Here we review recent mechanistic insights into tolerance and the development of more robust and safer protocols for tolerance induction that will be guided by innovative immune monitoring tools.
Collapse
Affiliation(s)
- Julien Zuber
- Service de Transplantation Rénale, Hôpital Necker, Université Paris Descartes, Paris, France; INSERM UMRS_1163, IHU Imagine, Paris, France.
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Center, New York, NY 10032, USA.
| |
Collapse
|
38
|
Cippà PE, Fehr T. Pharmacological modulation of cell death in organ transplantation. Transpl Int 2017; 30:851-859. [PMID: 28480540 DOI: 10.1111/tri.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
New options to pharmacologically modulate fundamental mechanisms of regulated cell death are rapidly evolving and found first clinical applications in cancer therapy. Here, we present an overview on how the recent advances in the understanding of the biology and pharmacology of cell death might influence research and clinical practice in solid organ transplantation. Of particular interest are the novel opportunities related to organ preservation and immunomodulation, which might contribute to promote organ repair and to develop more selective ways to modulate allogeneic immune responses to prevent rejection and induce immunological tolerance.
Collapse
Affiliation(s)
- Pietro E Cippà
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Fehr
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
| |
Collapse
|
39
|
Kim JY, Kina T, Iwanaga Y, Noguchi H, Matsumura K, Hyon SH. Tea Polyphenol Inhibits Allostimulation in Mixed Lymphocyte Culture. Cell Transplant 2017. [DOI: 10.3727/000000007783464515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Green tea polyphenols are known to protect allogenic donor tissues from acute rejection by their recipients. This immunosuppressive effect may be generated by a unique chemical property of the major component, epigallocatechin-o-gallate (EGCG), which can block specific cell surface molecules of the donor tissues. To test this hypothesis, we examined the effects of EGCG on the murine mixed lymphocyte reactions. EGCG treatment of stimulator cells significantly attenuated the proliferation of responder T cells. The proliferation did not recover upon the secondary stimulations by fresh untreated cells or exogenous IL-2. Flow cytometric analyses showed that EGCG treatment decreased the staining intensities of various cell surface molecules including MHC II, which plays a major role in antigen presentation, and B7.1, B7.2, and their ligand, CD28, which are required for costimulatory signals in T-cell activation. These results suggest that an anergic state of alloreactive T cells may be induced by either weakening of antigen signaling or blockage of costimulatory signals with EGCG. Other possible mechanisms behind the immunosuppressive effect and a potential use of EGCG treatment of donor tissues in transplantation medicine are discussed.
Collapse
Affiliation(s)
- Jong-Yoon Kim
- Department of Simulation Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Tatsuo Kina
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Yasuhiro Iwanaga
- Department of Transplantation Immunology, Kyoto University Hospital, Kyoto 606–8507, Japan
| | - Hirofumi Noguchi
- Department of Transplantation Immunology, Kyoto University Hospital, Kyoto 606–8507, Japan
| | - Kazuaki Matsumura
- Department of Simulation Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Suong-Hyu Hyon
- Department of Simulation Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| |
Collapse
|
40
|
Safinia N, Vaikunthanathan T, Fraser H, Thirkell S, Lowe K, Blackmore L, Whitehouse G, Martinez-Llordella M, Jassem W, Sanchez-Fueyo A, Lechler RI, Lombardi G. Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget 2016; 7:7563-77. [PMID: 26788992 PMCID: PMC4884938 DOI: 10.18632/oncotarget.6927] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/01/2016] [Indexed: 12/14/2022] Open
Abstract
Strategies to prevent organ transplant rejection whilst minimizing long-term immunosuppression are currently under intense investigation with regulatory T cells (Tregs) nearing clinical application. The clinical trial, ThRIL, recently commenced at King's College London, proposes to use Treg cell therapy to induce tolerance in liver transplant recipients, the success of which has the potential to revolutionize the management of these patients and enable a future of drug-free transplants. This is the first report of the manufacture of clinical grade Tregs from prospective liver transplant recipients via a CliniMACS-based GMP isolation technique and expanded using anti-CD3/CD28 beads, IL-2 and rapamycin. We report the enrichment of a pure, stable population of Tregs (>95% CD4(+)CD25(+)FOXP3(+)), reaching adequate numbers for their clinical application. Our protocol proved successful in, influencing the expansion of superior functional Tregs, as compared to freshly isolated cells, whilst also preventing their conversion to Th17 cells under pro-inflammatory conditions. We conclude with the manufacture of the final Treg product in the clinical research facility (CRF), a prerequisite for the clinical application of these cells. The data presented in this manuscript together with the much-anticipated clinical results from ThRIL, will undoubtedly inform the improved management of the liver transplant recipient.
Collapse
Affiliation(s)
- Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| | - Trishan Vaikunthanathan
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| | - Henrieta Fraser
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| | - Sarah Thirkell
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| | - Katie Lowe
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| | - Laura Blackmore
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | | | - Wayel Jassem
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | - Robert I Lechler
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
41
|
Miller ML, Daniels MD, Wang T, Wang Y, Xu J, Yin D, Chong AS, Alegre ML. Tracking of TCR-Transgenic T Cells Reveals That Multiple Mechanisms Maintain Cardiac Transplant Tolerance in Mice. Am J Transplant 2016; 16:2854-2864. [PMID: 27091509 PMCID: PMC6241514 DOI: 10.1111/ajt.13814] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 01/25/2023]
Abstract
Solid organ transplantation tolerance can be achieved following select transient immunosuppressive regimens that result in long-lasting restraint of alloimmunity without affecting responses to other antigens. Transplantation tolerance has been observed in animal models following costimulation or coreceptor blockade therapies, and in a subset of patients through induction protocols that include donor bone marrow transplantation, or following withdrawal of immunosuppression. Previous data from our lab and others have shown that proinflammatory interventions that successfully prevent the induction of transplantation tolerance in mice often fail to break tolerance once it has been stably established. This suggests that established tolerance acquires resilience to proinflammatory insults, and prompted us to investigate the mechanisms that maintain a stable state of robust tolerance. Our results demonstrate that only a triple intervention of depleting CD25+ regulatory T cells (Tregs), blocking programmed death ligand-1 (PD-L1) signals, and transferring low numbers of alloreactive T cells was sufficient to break established tolerance. We infer from these observations that Tregs and PD-1/PD-L1 signals cooperate to preserve a low alloreactive T cell frequency to maintain tolerance. Thus, therapeutic protocols designed to induce multiple parallel mechanisms of peripheral tolerance may be necessary to achieve robust transplantation tolerance capable of maintaining one allograft for life in the clinic.
Collapse
Affiliation(s)
- Michelle L. Miller
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL
| | - Melvin D. Daniels
- Department of Surgery, Section of Transplantation, The University of Chicago, Chicago, IL
| | - Tongmin Wang
- Department of Surgery, Section of Transplantation, The University of Chicago, Chicago, IL
| | - Ying Wang
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL
| | - Jing Xu
- Department of Surgery, Section of Transplantation, The University of Chicago, Chicago, IL
| | - Dengping Yin
- Department of Surgery, Section of Transplantation, The University of Chicago, Chicago, IL
| | - Anita S. Chong
- Department of Surgery, Section of Transplantation, The University of Chicago, Chicago, IL
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL,To whom correspondence should be addressed: - Maria-Luisa Alegre, M.D., Ph.D., The University of Chicago, Department of Medicine, 924 E. 57 St., JFK-R312, Chicago, IL 60637; tel: 773-834-4317; fax: 773-702-4394;
| |
Collapse
|
42
|
Fischbacher D, Merle M, Liepert A, Grabrucker C, Kroell T, Kremser A, Dreyßig J, Freudenreich M, Schuster F, Borkhardt A, Kraemer D, Koehne CH, Kolb HJ, Schmid C, Schmetzer HM. Cytokine Release Patterns in Mixed Lymphocyte Culture (MLC) of T-Cells with Dendritic Cells (DC) Generated from AML Blasts Contribute to Predict anti-Leukaemic T-Cell Reactions and Patients’ Response to Immunotherapy. ACTA ACUST UNITED AC 2016; 22:49-65. [DOI: 10.1080/15419061.2016.1223634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dorothea Fischbacher
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Marion Merle
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Anja Liepert
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Christine Grabrucker
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Tanja Kroell
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Andreas Kremser
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Julia Dreyßig
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Markus Freudenreich
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Friedhelm Schuster
- Department for pediatric Haematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department for pediatric Haematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | | | - Hans-Jochem Kolb
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
- Helmholtz Center, Munich, Clinical cooperative group Human Cell Transplantation (CCG-HCT), Munich, Germany
| | | | - Helga Maria Schmetzer
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
- Helmholtz Center, Munich, Clinical cooperative group Human Cell Transplantation (CCG-HCT), Munich, Germany
| |
Collapse
|
43
|
A Critical Role for TGF-β/Fc and Nonlytic IL-2/Fc Fusion Proteins in Promoting Chimerism and Donor-Specific Tolerance. Transplantation 2016; 101:294-301. [PMID: 27306533 DOI: 10.1097/tp.0000000000001283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Immunoglobulin-cytokine fusion molecules have been shown to be the new generation of immunomodulating agents in transplantation tolerance induction. In the present study, we tested whether immunoregulatory cytokine fusion proteins of IL-10/Fc, TGF-β/Fc, or IL-2/Fc would enhance allogeneic bone marrow cell (BMC) engraftment and promote tolerance induction. METHODS B6 (H2) mice were conditioned with anti-CD154 (MR1) and rapamycin (Rapa) plus 100 cGy total body irradiation (MR1/Rapa/100 cGy) and transplanted with allogeneic B10.D2 (H2) BMC. Recipients were treated with lytic IL-2/Fc, nonlytic IL-2/Fc, TGF-β/Fc, or IL-10/Fc fusion proteins to promote chimerism to induce tolerance. RESULTS Donor chimerism was achieved in 20% of recipients conditioned with MR1/Rapa/100 cGy. The addition of TGF-β/Fc (5- or 10-day treatment) or nonlytic IL-2/Fc (10-day treatment) fusion proteins to the conditioning resulted in engraftment in nearly 100% of recipients. In contrast, lytic IL-2/Fc or IL-10/Fc had no effect. The combination of nonlytic IL-2/Fc and TGF-β/Fc had a synergistic effect to promote engraftment and resulted in significantly higher donor chimerism compared with recipients conditioned with TGF-β/MR1/Rapa/100 cGy. Engraftment was durable in the majority of chimeras and increased over time. The chimeras accepted donor skin grafts and promptly rejected third-party skin grafts. Moreover, specific T cell receptor-Vβ5.½ and TCR-Vβ11 clonal deletion was detected in host T cells in chimeras, suggesting central tolerance to donor alloantigens. CONCLUSIONS Allogeneic BMC engraftment is enhanced with TGF-β/Fc fusion protein treatment. TGF-β/Fc and nonlytic IL-2/Fc exert a synergistic effect in promotion of alloengraftment and donor-specific transplant tolerance, significantly decreasing the minimum total body irradiation dose required.
Collapse
|
44
|
Pilat N, Mahr B, Unger L, Hock K, Schwarz C, Farkas AM, Baranyi U, Wrba F, Wekerle T. Incomplete clonal deletion as prerequisite for tissue-specific minor antigen tolerization. JCI Insight 2016; 1:e85911. [PMID: 27699263 PMCID: PMC5033814 DOI: 10.1172/jci.insight.85911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 11/17/2022] Open
Abstract
Central clonal deletion has been considered the critical factor responsible for the robust state of tolerance achieved by chimerism-based experimental protocols, but split-tolerance models and the clinical experience are calling this assumption into question. Although clone-size reduction through deletion has been shown to be universally required for achieving allotolerance, it remains undetermined whether it is sufficient by itself. Therapeutic Treg treatment induces chimerism and tolerance in a stringent murine BM transplantation model devoid of myelosuppressive recipient treatment. In contrast to irradiation chimeras, chronic rejection (CR) of skin and heart allografts in Treg chimeras was permanently prevented, even in the absence of complete clonal deletion of donor MHC-reactive T cells. We show that minor histocompatibility antigen mismatches account for CR in irradiation chimeras without global T cell depletion. Furthermore, we show that Treg therapy-induced tolerance prevents CR in a linked suppression-like fashion, which is maintained by active regulatory mechanisms involving recruitment of thymus-derived Tregs to the graft. These data suggest that highly efficient intrathymic and peripheral deletion of donor-reactive T cells for specificities expressed on hematopoietic cells preclude the expansion of donor-specific Tregs and, hence, do not allow for spreading of tolerance to minor specificities that are not expressed by donor BM.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, and
| | - Benedikt Mahr
- Section of Transplantation Immunology, Department of Surgery, and
| | - Lukas Unger
- Section of Transplantation Immunology, Department of Surgery, and
| | - Karin Hock
- Section of Transplantation Immunology, Department of Surgery, and
| | | | | | - Ulrike Baranyi
- Section of Transplantation Immunology, Department of Surgery, and
| | - Fritz Wrba
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, and
| |
Collapse
|
45
|
Ochando J, Kwan WH, Ginhoux F, Hutchinson JA, Hashimoto D, Collin M. The Mononuclear Phagocyte System in Organ Transplantation. Am J Transplant 2016; 16:1053-69. [PMID: 26602545 DOI: 10.1111/ajt.13627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/25/2023]
Abstract
The mononuclear phagocyte system (MPS) comprises monocytes, macrophages and dendritic cells (DCs). Over the past few decades, classification of the cells of the MPS has generated considerable controversy. Recent studies into the origin, developmental requirements and function of MPS cells are beginning to solve this problem in an objective manner. Using high-resolution genetic analyses and fate-mapping studies, three main mononuclear phagocyte lineages have been defined, namely, macrophage populations established during embryogenesis, monocyte-derived cells that develop during adult life and DCs. These subsets and their diverse subsets have specialized functions that are largely conserved between species, justifying the introduction of a new, universal scheme of nomenclature and providing the framework for therapeutic manipulation of immune responses in the clinic. In this review, we have commented on the implications of this novel MPS classification in solid organ transplantation.
Collapse
Affiliation(s)
- J Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - W-H Kwan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - F Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Singapore, Singapore
| | - J A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - D Hashimoto
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
46
|
Siemionow M, Rampazzo A, Gharb BB, Cwykiel J, Klimczak A, Madajka M, Nasir S, Bozkurt M. The reversed paradigm of chimerism induction: Donor conditioning with recipient-derived bone marrow cells as a novel approach for tolerance induction in vascularized composite allotransplantation. Microsurgery 2016; 36:676-683. [DOI: 10.1002/micr.30041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics; University of Illinois at Chicago, College of Medicine; Chicago IL
| | | | | | - Joanna Cwykiel
- Department of Orthopaedics; University of Illinois at Chicago, College of Medicine; Chicago IL
- Department of Plastic Surgery; Cleveland Clinic; Cleveland OH
| | | | - Maria Madajka
- Department of Plastic Surgery; Cleveland Clinic; Cleveland OH
| | - Serdar Nasir
- Department of Plastic Surgery; Cleveland Clinic; Cleveland OH
| | - Mehmet Bozkurt
- Department of Plastic Surgery; Cleveland Clinic; Cleveland OH
| |
Collapse
|
47
|
Abstract
The undesired destruction of healthy cells, either endogenous or transplanted, by the immune system results in the loss of tissue function or limits strategies to restore tissue function. Current therapies typically involve nonspecific immunosuppression that may prevent the appropriate response to an antigen, thereby decreasing humoral immunity and increasing the risks of patient susceptibility to opportunistic infections, viral reactivation, and neoplasia. The induction of antigen-specific immunological tolerance to block undesired immune responses to self- or allogeneic antigens, while maintaining the integrity of the remaining immune system, has the potential to transform the current treatment of autoimmune disease and serve as a key enabling technology for therapies based on cell transplantation.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Division of Nephrology and Hypertension.,Comprehensive Cancer Center, and
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; ,
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
48
|
Xu H, Samy KP, Guasch A, Mead SI, Ghali A, Mehta A, Stempora L, Kirk AD. Postdepletion Lymphocyte Reconstitution During Belatacept and Rapamycin Treatment in Kidney Transplant Recipients. Am J Transplant 2016; 16:550-64. [PMID: 26436448 PMCID: PMC4822163 DOI: 10.1111/ajt.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/25/2023]
Abstract
Belatacept is used to prevent allograft rejection but fails to do so in a sizable minority of patients due to inadequate control of costimulation-resistant T cells. In this study, we report control of costimulation-resistant rejection when belatacept was combined with perioperative alemtuzumab-mediated lymphocyte depletion and rapamycin. To assess the means by which the alemtuzumab, belatacept and rapamycin (ABR) regimen controls belatacept-resistant rejection, we studied 20 ABR-treated patients and characterized peripheral lymphocyte phenotype and functional responses to donor, third-party and viral antigens using flow cytometry, intracellular cytokine staining and carboxyfluorescein succinimidyl ester-based lymphocyte proliferation. Compared with conventional immunosuppression in 10 patients, lymphocyte depletion evoked substantial homeostatic lymphocyte activation balanced by regulatory T and B cell phenotypes. The reconstituted T cell repertoire was enriched for CD28(+) naïve cells, notably diminished in belatacept-resistant CD28(-) memory subsets and depleted of polyfunctional donor-specific T cells but able to respond to third-party and latent herpes viruses. B cell responses were similarly favorable, without alloantibody development and a reduction in memory subsets-changes not seen in conventionally treated patients. The ABR regimen uniquely altered the immune profile, producing a repertoire enriched for CD28(+) T cells, hyporesponsive to donor alloantigen and competent in its protective immune capabilities. The resulting repertoire was permissive for control of rejection with belatacept monotherapy.
Collapse
Affiliation(s)
- He Xu
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Kannan P. Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | | | - Sue I. Mead
- Emory Transplant Center, Emory University, Atlanta, GA
| | - Ada Ghali
- Emory Transplant Center, Emory University, Atlanta, GA
| | - Aneesh Mehta
- Emory Transplant Center, Emory University, Atlanta, GA
| | - Linda Stempora
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC,Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
49
|
Ochando J, Kwan WH, Ginhoux F, Hutchinson JA, Hashimoto D, Collin M. The Mononuclear Phagocyte System in Organ Transplantation. Am J Transplant 2016. [DOI: 10.1111/ajt.13627 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J. Ochando
- Department of Oncological Sciences; Icahn School of Medicine at Mount Sinai; New York NY
| | - W.-H. Kwan
- Department of Microbiology; Icahn School of Medicine at Mount Sinai; New York NY
| | - F. Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove; Singapore Singapore
| | - J. A. Hutchinson
- Department of Surgery; University Hospital Regensburg; Regensburg Germany
| | - D. Hashimoto
- Department of Hematology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - M. Collin
- Institute of Cellular Medicine; Newcastle University; Newcastle UK
| |
Collapse
|
50
|
Abstract
From the early days of transplantation onwards, increased cancer development in transplant recipients, who require immunosuppression to avoid graft rejection, has been recognized. Registry data indicate that approximately 10-30% of deaths are attributed to post-transplant malignancy, with an upward trend in this incidence as more patients have been exposed to chronic lifelong immunosuppression. In this Review, the overall incidence and most frequent types of cancer encountered are summarized, along with information about which transplant recipients are at the greatest risk of malignancy. Reasons for why differences exist in susceptibility to cancer in this patient population are examined, and approaches that might improve our understanding of the options available for reducing the incidence of this adverse effect of immunosuppression are described. Whether anti-rejection drugs have been successful in diminishing overall immunosuppressive burden, and consequently show any promise for decreasing post-transplant malignancies is also discussed. The topic shifts to one class of conventional anti-rejection drugs, the mammalian target of rapamycin (mTOR) inhibitors, which paradoxically have both immunosuppressive and anti-neoplastic properties. The complex activities of mTOR are reviewed in order to provide context for how these seemingly opposing effects are possible, and the latest clinical data on use of mTOR inhibitors in the clinic are discussed. The current and future perspectives on how best to normalize these unacceptably high rates of post-transplantation malignancies are highlighted.
Collapse
|