Parks LC, Rigney D, Daneo-Moore L, Higgins ML. Membrane-DNA attachment sites in Streptococcus faecalis cells grown at different rates.
J Bacteriol 1982;
152:191-200. [PMID:
6811550 PMCID:
PMC221391 DOI:
10.1128/jb.152.1.191-200.1982]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The M-band technique was used to assess the number of attachment points of DNA to the cell membrane of Streptococcus faecalis grown at three different rates. Cells were X irradiated in liquid nitrogen and then analyzed simultaneously for the introduction of double-strand breaks into the chromosome and the degree of removal of DNA from the cell membrane (M band). Consideration of the data from these experiments and of the topology of the bacterial chromosome resulted in a reevaluation of former quantitative models. Our results are consistent with a semiquantitative model in which the bacterial chromosome is organized around a core structure. We interpret our data to mean that the core is attached to the membrane and that the complexity of the core changes more drastically with growth rate than does the number of membrane-DNA attachment points. An alternative model in which RNA hybridizes with DNA containing single- and double-strand breaks is also discussed. In any event, the complexity of these interactions precludes a reliable estimate of the number of membrane-DNA attachment sites.
Collapse