1
|
Thompson AW, Black AC, Huang Y, Shi Q, Furness AI, Braasch I, Hoffmann FG, Ortí G. Transcriptomic data support phylogenetic congruence and reveal genomic changes associated with the repeated evolution of annualism in aplocheiloid killifishes (Cyprinodontiformes). Mol Phylogenet Evol 2024; 201:108209. [PMID: 39366593 DOI: 10.1016/j.ympev.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Repeated evolution of novel life histories that are correlated with ecological variables offers opportunities to study convergence in genetic, developmental, and metabolic features. Nearly half of the 800 species of Aplocheiloid killifishes, a clade of teleost fishes with a circumtropical distribution, are "annual" or seasonal species that survive in ephemeral bodies of water that desiccate and are unfeasible for growth, reproduction, or survival for weeks to months every year. But the repeated evolution of adaptations that are key features of the annual life history among these fishes remains poorly known without a robust phylogenetic framework. We present a large-scale phylogenomic reconstruction of aplocheiloid killifishes evolution using newly sequenced transcriptomes obtained from a diversity of killifish lineages representing putative independent origins of annualism. Ancestral state estimation shows that developmental dormancy (diapause), a key trait of the killifish annual life cycle, may have originated up to seven times independently among African and South American lineages. To further explore the genetic basis of this unique trait, we measure changes in evolutionary rates among orthologous genes across the killifish tree of life by quantifying codon evolution using dN/dS ratios. We show that some genes have higher dN/dS ratios in lineages leading to species with annual life history. Many of them constitute key developmental genes or nuclear-encoded metabolic genes that control oxidative phosphorylation. Lastly, we compare these genes with higher ω to genes previously associated to developmental dormancy and metabolic shifts in killifishes and other vertebrates, and thereby identify molecular evolutionary signatures of repeated transitions to extreme environments.
Collapse
Affiliation(s)
- Andrew W Thompson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
| | | | - Yu Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
| | - Andrew I Furness
- Maryland Fish and Wildlife Conservation Office U.S. Fish and Wildlife Service Annapolis, MD, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
de Jong MJ, van Oosterhout C, Hoelzel AR, Janke A. Moderating the neutralist-selectionist debate: exactly which propositions are we debating, and which arguments are valid? Biol Rev Camb Philos Soc 2024; 99:23-55. [PMID: 37621151 DOI: 10.1111/brv.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the 'neutral mutation-random drift' hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist-selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?
Collapse
Affiliation(s)
- Menno J de Jong
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
| | - Cock van Oosterhout
- Centre for Ecology, Evolution and Conservation, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - A Rus Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt am Main, 60325, Germany
| |
Collapse
|
3
|
Ortiz D, Pekár S, Dianat M. Phylogenomics and loci dropout patterns of deeply diverged Zodarion ant-eating spiders suggest a high potential of RAD-seq for genus-level spider phylogenetics. Cladistics 2021; 38:320-334. [PMID: 34699083 DOI: 10.1111/cla.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/28/2022] Open
Abstract
RAD sequencing yields large amounts of genome-wide data at a relatively low cost and without requiring previous taxon-specific information, making it ideal for evolutionary studies of highly diversified and neglected organisms. However, concerns about information decay with phylogenetic distance have discouraged its use for assessing supraspecific relationships. Here, using Double Digest Restriction Associated DNA (ddRAD) data, we perform the first deep-level approach to the phylogeny of Zodarion, a highly diversified spider genus. We explore the impact of loci and taxon filtering across concatenated and multispecies coalescent reconstruction methods and investigate the patterns of information dropout in reference to both the time of divergence and the mitochondrial divergence between taxa. We found that relaxed loci-filtering and nested taxon-filtering strategies maximized the amount of molecular information and improved phylogenetic inference. As expected, there was a clear pattern of allele dropout towards deeper time and mitochondrial divergences, but the phylogenetic signal remained strong throughout the phylogeny. Therefore, we inferred topologies that were almost fully resolved, highly supported, and noticeably congruent between setups and inference methods, which highlights overall inconsistency in the taxonomy of Zodarion. Because Zodarion appears to be among the oldest and most mitochondrially diversified spider genera, our results suggest that ddRAD data show high potential for inferring intra-generic relationships across spiders and probably also in other taxonomic groups.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Malahat Dianat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
4
|
Hellwig T, Abbo S, Sherman A, Ophir R. Prospects for the natural distribution of crop wild-relatives with limited adaptability: The case of the wild pea Pisum fulvum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110957. [PMID: 34315583 DOI: 10.1016/j.plantsci.2021.110957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Plant breeders and conservationist depend on knowledge about the genetic variation of their species of interest. Pisum fulvum, a wild relative of domesticated pea, has attracted attention as a genetic resource for crop improvement, yet little information about its diversity in the wild has been published hitherto. We sampled 15 populations of P. fulvum from Israeli natural habitats and conducted genotyping by sequencing to analyse their genetic diversity and adaptive state. We also attempted to evaluate the species past demography and the prospects of its future reaction to environmental changes. The results suggest that genetic diversity of P. fulvum is low to medium and is distributed between well diverged populations. Surprisingly, with 56 % in the total population the selfing rate was found to be significantly lower than expected from a species that is commonly assumed to be a predominant selfer. We found a strong genetic bottleneck during the last glacial period and only limited patterns of isolation by distance and environment, which explained 13 %-18 % of the genetic variation. Despite the weak signatures of genome-wide IBE, 1,354 markers were significantly correlated with environmental factors, 1,233 of which were located within known genes with a nonsynonymous to synonymous ratio of 0.382. Species distribution modelling depicted an ongoing fragmentation and decreased habitable area over the next 80 years under two different socio-economic pathways. Our results suggest that complex interactions of substantial drift and selection shaped the genome of P. fulvum. Climate changeis likely to cause further erosion of genetic diversity in P. fulvum. Systematic ex-situ conservation may be advisable to safeguard genetic variability for future utilization of this species.
Collapse
Affiliation(s)
- Timo Hellwig
- R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot, 761001, Israel; Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Shahal Abbo
- R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot, 761001, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Ron Ophir
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
5
|
Chak STC, Baeza JA, Barden P. Eusociality Shapes Convergent Patterns of Molecular Evolution across Mitochondrial Genomes of Snapping Shrimps. Mol Biol Evol 2021; 38:1372-1383. [PMID: 33211078 PMCID: PMC8480187 DOI: 10.1093/molbev/msaa297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eusociality is a highly conspicuous and ecologically impactful behavioral syndrome that has evolved independently across multiple animal lineages. So far, comparative genomic analyses of advanced sociality have been mostly limited to insects. Here, we study the only clade of animals known to exhibit eusociality in the marine realm-lineages of socially diverse snapping shrimps in the genus Synalpheus. To investigate the molecular impact of sociality, we assembled the mitochondrial genomes of eight Synalpheus species that represent three independent origins of eusociality and analyzed patterns of molecular evolution in protein-coding genes. Synonymous substitution rates are lower and potential signals of relaxed purifying selection are higher in eusocial relative to noneusocial taxa. Our results suggest that mitochondrial genome evolution was shaped by eusociality-linked traits-extended generation times and reduced effective population sizes that are hallmarks of advanced animal societies. This is the first direct evidence of eusociality impacting genome evolution in marine taxa. Our results also strongly support the idea that eusociality can shape genome evolution through profound changes in life history and demography.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY
| | - Juan Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| |
Collapse
|
6
|
Thomas GWC, Wang RJ, Nguyen J, Alan Harris R, Raveendran M, Rogers J, Hahn MW. Origins and Long-Term Patterns of Copy-Number Variation in Rhesus Macaques. Mol Biol Evol 2021; 38:1460-1471. [PMID: 33226085 PMCID: PMC8042740 DOI: 10.1093/molbev/msaa303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations play a key role in the development of disease in an individual and the evolution of traits within species. Recent work in humans and other primates has clarified the origins and patterns of single-nucleotide variants, showing that most arise in the father's germline during spermatogenesis. It remains unknown whether larger mutations, such as deletions and duplications of hundreds or thousands of nucleotides, follow similar patterns. Such mutations lead to copy-number variation (CNV) within and between species, and can have profound effects by deleting or duplicating genes. Here, we analyze patterns of CNV mutations in 32 rhesus macaque individuals from 14 parent-offspring trios. We find the rate of CNV mutations per generation is low (less than one per genome) and we observe no correlation between parental age and the number of CNVs that are passed on to offspring. We also examine segregating CNVs within the rhesus macaque sample and compare them to a similar data set from humans, finding that both species have far more segregating deletions than duplications. We contrast this with long-term patterns of gene copy-number evolution between 17 mammals, where the proportion of deletions that become fixed along the macaque lineage is much smaller than the proportion of segregating deletions. These results suggest purifying selection acting on deletions, such that the majority of them are removed from the population over time. Rhesus macaques are an important biomedical model organism, so these results will aid in our understanding of this species and the disease models it supports.
Collapse
Affiliation(s)
- Gregg W C Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Richard J Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jelena Nguyen
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
7
|
Hellwig T, Abbo S, Sherman A, Coyne CJ, Saranga Y, Lev-Yadun S, Main D, Zheng P, Ophir R. Limited divergent adaptation despite a substantial environmental cline in wild pea. Mol Ecol 2020; 29:4322-4336. [PMID: 32964548 DOI: 10.1111/mec.15633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
Isolation by environment (IBE) is a widespread phenomenon in nature. It is commonly expected that the degree of difference among environments is proportional to the level of divergence between populations in their respective environments. It is therefore assumed that a species' genetic diversity displays a pattern of IBE in the presence of a strong environmental cline if gene flow does not mitigate isolation. We tested this common assumption by analysing the genetic diversity and demographic history of Pisum fulvum, which inhabits contrasting habitats in the southern Levant and is expected to display only minor migration rates between populations, making it an ideal test case. Ecogeographical and subpopulation structure were analysed and compared. The correlation of genetic with environmental distances was calculated to test the effect of isolation by distance and IBE and detect the main drivers of these effects. Historical effective population size was estimated using stairway plot. Limited overlap of ecogeographical and genetic clustering was observed, and correlation between genetic and environmental distances was statistically significant but small. We detected a sharp decline of effective population size during the last glacial period. The low degree of IBE may be the result of genetic drift due to a past bottleneck. Our findings contradict the expectation that strong environmental clines cause IBE in the absence of extensive gene flow.
Collapse
Affiliation(s)
- Timo Hellwig
- Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| | - Shahal Abbo
- Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| | | | - Yehoshua Saranga
- Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Ron Ophir
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
8
|
The whale shark genome reveals how genomic and physiological properties scale with body size. Proc Natl Acad Sci U S A 2020; 117:20662-20671. [PMID: 32753383 DOI: 10.1073/pnas.1922576117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The endangered whale shark (Rhincodon typus) is the largest fish on Earth and a long-lived member of the ancient Elasmobranchii clade. To characterize the relationship between genome features and biological traits, we sequenced and assembled the genome of the whale shark and compared its genomic and physiological features to those of 83 animals and yeast. We examined the scaling relationships between body size, temperature, metabolic rates, and genomic features and found both general correlations across the animal kingdom and features specific to the whale shark genome. Among animals, increased lifespan is positively correlated to body size and metabolic rate. Several genomic traits also significantly correlated with body size, including intron and gene length. Our large-scale comparative genomic analysis uncovered general features of metazoan genome architecture: Guanine and cytosine (GC) content and codon adaptation index are negatively correlated, and neural connectivity genes are longer than average genes in most genomes. Focusing on the whale shark genome, we identified multiple features that significantly correlate with lifespan. Among these were very long gene length, due to introns being highly enriched in repetitive elements such as CR1-like long interspersed nuclear elements, and considerably longer neural genes of several types, including connectivity, activity, and neurodegeneration genes. The whale shark genome also has the second slowest evolutionary rate observed in vertebrates to date. Our comparative genomics approach uncovered multiple genetic features associated with body size, metabolic rate, and lifespan and showed that the whale shark is a promising model for studies of neural architecture and lifespan.
Collapse
|
9
|
Pinčák R, Kanjamapornkul K, Bartoš E. A theoretical investigation on the predictability of genetic patterns. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Lu B, Wang X, Fu J, Shi J, Wu Y, Qi Y. Genetic Adaptations of an Island Pit-Viper to a Unique Sedentary Life with Extreme Seasonal Food Availability. G3 (BETHESDA, MD.) 2020; 10:1639-1646. [PMID: 32184370 PMCID: PMC7202027 DOI: 10.1534/g3.120.401101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 12/05/2022]
Abstract
The Shedao pit-viper (Gloydius shedaoensis) exhibits an extreme sedentary lifestyle. The island species exclusively feeds on migratory birds during migratory seasons and experiences prolonged hibernation and aestivation period each year (up to eight months). The sedentary strategy reduces energy expenditure, but may trigger a series of adverse effects and the snakes have likely evolved genetic modifications to alleviate these effects. To investigate the genetic adaptations, we sequenced and compared the transcriptomes of the Shedao pit-viper and its closest mainland relative, the black eyebrow pit-viper (G. intermedius). The Shedao pit-viper revealed a low rate of molecular evolution compared to its mainland relative, which is possibly associated with metabolic suppression. Signals of positive selection were detected in two genes related to antithrombin (SERPINC1) and muscle atrophy (AARS). Those genes exert significant functions in thrombosis, inhibiting oxidation and prolonged fasting. Convergent and parallel substitutions of amino acid with two other sedentary vertebrates, which often suggest adaptation, were found in a fatty acid beta-oxidation related gene (ACATA1) and a circadian link gene (KLF10), which regulate lipogenesis, gluconeogenesis, and glycolysis. Furthermore, a circadian clock gene (CRY2) exhibited two amino acid substitutions specific to the Shedao pit-viper and one variant was predicted to affect protein function. Modifications of these genes and their related functions may have contributed to the survival of this island snake species with a sedentary lifestyle and extreme seasonal food availability. Our study demonstrated several important clues for future research on physiological and other phenotypic adaptation.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoping Wang
- Nature Conservation of Snake Island and Laotieshan Mountain, Dalian 116041, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jingsong Shi
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Science, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayong Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of life sciences and food engineering, Yibin University, Yibin 644007, China
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
11
|
Elbassiouny AA, Lovejoy NR, Chang BSW. Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190179. [PMID: 31787042 PMCID: PMC6939368 DOI: 10.1098/rstb.2019.0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/26/2022] Open
Abstract
The ability to generate and detect electric fields has evolved in several groups of fishes as a means of communication, navigation and, occasionally, predation. The energetic burden required can account for up to 20% of electric fishes' daily energy expenditure. Despite this, molecular adaptations that enable electric fishes to meet the metabolic demands of bioelectrogenesis remain unknown. Here, we investigate the molecular evolution of the mitochondrial oxidative phosphorylation (OXPHOS) complexes in the two most diverse clades of weakly electric fishes-South American Gymnotiformes and African Mormyroidea, using codon-based likelihood approaches. Our analyses reveal that although mitochondrial OXPHOS genes are generally subject to strong purifying selection, this constraint is significantly reduced in electric compared to non-electric fishes, particularly for complexes IV and V. Moreover, analyses of concatenated mitochondrial genes show strong evidence for positive selection in complex I genes on the two branches associated with the independent evolutionary origins of electrogenesis. These results suggest that adaptive evolution of proton translocation in the OXPHOS cellular machinery may be associated with the evolution of bioelectrogenesis. Overall, we find striking evidence for remarkably similar effects of electrogenesis on the molecular evolution of mitochondrial OXPHOS genes in two independently derived clades of electrogenic fishes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Ahmed A. Elbassiouny
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Nathan R. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Radespiel U, Lutermann H, Schmelting B, Zimmermann E. An empirical estimate of the generation time of mouse lemurs. Am J Primatol 2019; 81:e23062. [PMID: 31631370 DOI: 10.1002/ajp.23062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/05/2022]
Abstract
The generation time of organisms drives the rate of change in populations and across evolutionary times. In long-lived species, generation time should also account for overlapping generations, and the average age of parents has been proposed as a best approximation under these conditions. This study uses this definition to estimate the generation time of a widely studied small primate, Microcebus murinus, based on parentage data generated for a free-living population over a 6-year period in northwestern Madagascar. The average age of parents was calculated separately for mothers and fathers of three different offspring cohorts that differed in the degree of demographic uncertainty. In addition, adult survival rates were calculated for males and females based on long-term capture data from the same population to estimate the possible upper limits of generation time. Adult survival was low with only 44% of adult females and 38% of adult males being recaptured at the beginning of their second breeding season. The average age of mothers was 1.56-1.91 years, pointing toward a 2-year female generation time due to the high proportion of 1-year old mothers in all three cohorts. Female generation time estimates were fairly stable across the three offspring cohorts. In contrast, the average age of fathers differed by more than 1 year from the first to the third offspring cohort (1.71-2.83 years) pointing toward a 3-year generation time, but also suggesting a higher degree of demographic uncertainty in the early years of the study. For future modeling purposes, we, therefore, propose to use the average, 2.5 years, of male and female values as new estimate for the generation time of mouse lemurs.
Collapse
Affiliation(s)
- Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Heike Lutermann
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | | | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Fowler WM, Deng X, Lamont BB, He T. Resprouters, assisted by somatic mutations, are as genetically diverse as nonsprouters in the world's fire-prone ecosystems. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Barrera-Redondo J, Ramírez-Barahona S, Eguiarte LE. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity. Evolution 2018; 72:1050-1062. [PMID: 29604055 DOI: 10.1111/evo.13475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/11/2018] [Indexed: 12/31/2022]
Abstract
Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level.
Collapse
Affiliation(s)
- Josué Barrera-Redondo
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad de México 04510, México
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad de México 04510, México
| | - Luis E Eguiarte
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad de México 04510, México
| |
Collapse
|
15
|
Shields GF, Straus NA. DNA-DNA HYBRIDIZATION STUDIES OF BIRDS. Evolution 2017; 29:159-166. [PMID: 28563280 DOI: 10.1111/j.1558-5646.1975.tb00823.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/1974] [Indexed: 12/01/2022]
Affiliation(s)
- G F Shields
- Department of Botany, University of Toronto, Toronto 181, Ontario, Canada
| | - N A Straus
- Department of Botany, University of Toronto, Toronto 181, Ontario, Canada
| |
Collapse
|
16
|
Brownell E. DNA/DNA HYBRIDIZATION STUDIES OF MUROID RODENTS: SYMMETRY AND RATES OF MOLECULAR EVOLUTION. Evolution 2017; 37:1034-1051. [PMID: 28563545 DOI: 10.1111/j.1558-5646.1983.tb05631.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1981] [Revised: 10/04/1982] [Indexed: 10/19/2022]
Affiliation(s)
- Elise Brownell
- Department of Biology, Yale University, New Haven, Connecticut, 06511
| |
Collapse
|
17
|
Martinez PA, Jacobina UP, Fernandes RV, Brito C, Penone C, Amado TF, Fonseca CR, Bidau CJ. A comparative study on karyotypic diversification rate in mammals. Heredity (Edinb) 2016; 118:366-373. [PMID: 27804966 DOI: 10.1038/hdy.2016.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023] Open
Abstract
Chromosomal rearrangements have a relevant role in organismic evolution. However, little is known about the mechanisms that lead different phylogenetic clades to have different chromosomal rearrangement rates. Here, we investigate the causes behind the wide karyotypic diversity exhibited by mammals. In particular, we analyzed the role of metabolic, reproductive, biogeographic and genomic characteristics on the rates of macro- and microstructural karyotypic diversification (rKD) using comparative phylogenetic methods. We found evidence that reproductive characteristics such as larger litter size per year and longevity, by allowing a higher number of meioses in absolute time, favor a higher probability of chromosomal change. Furthermore, families with large geographic distributions but containing species with restricted geographic ranges showed a greater probability of fixation of macrostructural chromosomal changes in different geographic areas. Finally, rKD does not evolve by Brownian motion because the mutation rate depends on the concerted evolution of repetitive sequences. The decisive factors of rKD evolution will be natural selection, genetic drift and meiotic drive that will eventually allow or not the fixation of the rearrangements. Our results indicate that mammalian karyotypic diversity is influenced by historical and adaptive mechanisms where reproductive and genomic factors modulate the rate of chromosomal change.
Collapse
Affiliation(s)
- P A Martinez
- PIBi Lab-Laboratorio de Pesquisas Integrativas em Biodiversidade, Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe, São Cristovão, Brazil
| | | | - R V Fernandes
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - C Brito
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - C Penone
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - T F Amado
- BioMa-Biodiversity and Macroecology Lab, Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Mostoles, Spain
| | - C R Fonseca
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - C J Bidau
- Paraná y Los Claveles, Garupá, Argentina
| |
Collapse
|
18
|
Abstract
Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive.
Collapse
Affiliation(s)
- Priya Moorjani
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Ziyue Gao
- Howard Hughes Medical Institute & Dept. of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| |
Collapse
|
19
|
Braverman JM, Hamilton MB, Johnson BA. Patterns of Substitution Rate Variation at Many Nuclear Loci in Two Species Trios in the Brassicaceae Partitioned with ANOVA. J Mol Evol 2016; 83:97-109. [PMID: 27592229 DOI: 10.1007/s00239-016-9752-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
There are marked variations among loci and among lineages in rates of nucleotide substitution. The generation time hypothesis (GTH) is a neutral explanation for substitution rate heterogeneity that has genomewide application, predicting that species with shorter generation times accumulate DNA sequence substitutions faster than species with longer generation times do since faster genome replication provides more opportunities for mutations to occur and reach fixation by genetic drift. Relatively few studies have rigorously evaluated the GTH in plants, and there are numerous alternative hypotheses for plant substitution rate variation. One major challenge has been finding pairs of closely related plant species with contrasting generation times and appropriate outgroup taxa that all also have DNA sequence data for numerous loci. To test for causes of rate variation, we obtained sequence data for 256 genes for Arabidopsis thaliana, normally reproducing every year, and the biennial Arabidopsis lyrata with three closely related outgroup taxa (Brassica rapa, Capsella grandiflora, and Neslia paniculata) as well as the biennial Brassica oleracea and the annual B. rapa lineage with the outgroup N. paniculata. A sign test indicated that more loci than expected by chance have faster rates of substitution on the branch leading to the annual than to the perennial for one three-species trio but not another. Tajima's 1D and 2D tests, and a likelihood ratio test that incorporated saturation correction, rejected rate homogeneity for up to 26 genes (up to 14 genes when correcting for multiple tests), consistently showing faster rates for the annual lineage in the Arabidopsis species trio. ANOVA showed significant rate heterogeneity between the Arabidopsis and Brassica species trios (about 6 % of rate variation) and among loci (about 26-32 % of rate variation). The lineage-by-locus interaction which would be caused by locus- and lineage-specific natural selection explained about 13 % of substitution rate variation in one ANOVA model using substitution rates from genes partitioned into odd and even codons but was not a significant effect without partitioned genes. Annual/perennial lineage and species trio by annual/perennial lineage each explained about 1 % of substitution rate variation.
Collapse
Affiliation(s)
- John M Braverman
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA.
| | | | - Brent A Johnson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
20
|
Grusz AL, Rothfels CJ, Schuettpelz E. Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns. BMC Genomics 2016; 17:692. [PMID: 27577050 PMCID: PMC5006594 DOI: 10.1186/s12864-016-3034-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/22/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Transcriptomics in non-model plant systems has recently reached a point where the examination of nuclear genome-wide patterns in understudied groups is an achievable reality. This progress is especially notable in evolutionary studies of ferns, for which molecular resources to date have been derived primarily from the plastid genome. Here, we utilize transcriptome data in the first genome-wide comparative study of molecular evolutionary rate in ferns. We focus on the ecologically diverse family Pteridaceae, which comprises about 10 % of fern diversity and includes the enigmatic vittarioid ferns-an epiphytic, tropical lineage known for dramatically reduced morphologies and radically elongated phylogenetic branch lengths. Using expressed sequence data for 2091 loci, we perform pairwise comparisons of molecular evolutionary rate among 12 species spanning the three largest clades in the family and ask whether previously documented heterogeneity in plastid substitution rates is reflected in their nuclear genomes. We then inquire whether variation in evolutionary rate is being shaped by genes belonging to specific functional categories and test for differential patterns of selection. RESULTS We find significant, genome-wide differences in evolutionary rate for vittarioid ferns relative to all other lineages within the Pteridaceae, but we recover few significant correlations between faster/slower vittarioid loci and known functional gene categories. We demonstrate that the faster rates characteristic of the vittarioid ferns are likely not driven by positive selection, nor are they unique to any particular type of nucleotide substitution. CONCLUSIONS Our results reinforce recently reviewed mechanisms hypothesized to shape molecular evolutionary rates in vittarioid ferns and provide novel insight into substitution rate variation both within and among fern nuclear genomes.
Collapse
Affiliation(s)
- Amanda L. Grusz
- Department of Botany, Smithsonian Institution, MRC 166 PO Box 37012, Washington, DC, 20013-7012 USA
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, MN 55812 USA
| | - Carl J. Rothfels
- Department of Integrative Biology, University of California Berkeley, 1001 Valley Life Sciences Building, Berkeley, CA 94720-2466 USA
| | - Eric Schuettpelz
- Department of Botany, Smithsonian Institution, MRC 166 PO Box 37012, Washington, DC, 20013-7012 USA
| |
Collapse
|
21
|
Luo D, Huang S. The genetic equidistance phenomenon at the proteomic level. Genomics 2016; 108:25-30. [DOI: 10.1016/j.ygeno.2016.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
|
22
|
Mendes FK, Hahn MW. Gene Tree Discordance Causes Apparent Substitution Rate Variation. Syst Biol 2016; 65:711-21. [DOI: 10.1093/sysbio/syw018] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/23/2016] [Indexed: 01/01/2023] Open
|
23
|
Huang S. New thoughts on an old riddle: What determines genetic diversity within and between species? Genomics 2016; 108:3-10. [PMID: 26835965 DOI: 10.1016/j.ygeno.2016.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/22/2022]
Abstract
The question of what determines genetic diversity has long remained unsolved by the modern evolutionary theory (MET). However, it has not deterred researchers from producing interpretations of genetic diversity by using MET. We examine the two observations of genetic diversity made in the 1960s that contributed to the development of MET. The interpretations of these observations by MET are widely known to be inadequate. We review the recent progress of an alternative framework, the maximum genetic diversity (MGD) hypothesis, that uses axioms and natural selection to explain the vast majority of genetic diversity as being at equilibrium that is largely determined by organismal complexity. The MGD hypothesis absorbs the proven virtues of MET and considers its assumptions relevant only to a much more limited scope. This new synthesis has accounted for the overlooked phenomenon of progression towards higher complexity, and more importantly, been instrumental in directing productive research.
Collapse
Affiliation(s)
- Shi Huang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
24
|
Abstract
This chapter summarizes researches on genome and evolution features of Yersinia pestis, the young pathogen that evolved from Y. pseudotuberculosis at least 5000 years ago. Y. pestis is a highly clonal bacterial species with closed pan-genome. Comparative genomic analysis revealed that genome of Y. pestis experienced highly frequent rearrangement and genome decay events during the evolution. The genealogy of Y. pestis includes five major branches, and four of them seemed raised from a "big bang" node that is associated with the Black Death. Although whole genome-wide variation of Y. pestis reflected a neutral evolutionary process, the branch length in the genealogical tree revealed over dispersion, which was supposedly caused by varied historical molecular clock that is associated with demographical effect by alternate cycles of enzootic disease and epizootic disease in sylvatic plague foci. In recent years, palaeomicrobiology researches on victims of the Black Death, and Justinian's plague verified that two historical pandemics were indeed caused by Y. pestis, but the etiological lineages might be extinct today.
Collapse
|
25
|
Affiliation(s)
- R. A. McIntosh
- University of Sydney; Plant Breeding Institute; Castle Hill, N.S.W. Australia
| | - Jane E. Cusick
- University of Sydney; Plant Breeding Institute; Castle Hill, N.S.W. Australia
| |
Collapse
|
26
|
Weller C, Wu M. A generation-time effect on the rate of molecular evolution in bacteria. Evolution 2015; 69:643-52. [PMID: 25564727 DOI: 10.1111/evo.12597] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/17/2014] [Indexed: 12/31/2022]
Abstract
Molecular evolutionary rate varies significantly among species and a strict global molecular clock has been rejected across the tree of life. Generation time is one primary life-history trait that influences the molecular evolutionary rate. Theory predicts that organisms with shorter generation times evolve faster because of the accumulation of more DNA replication errors per unit time. Although the generation-time effect has been demonstrated consistently in plants and animals, the evidence of its existence in bacteria is lacking. The bacterial phylum Firmicutes offers an excellent system for testing generation-time effect because some of its members can enter a dormant, nonreproductive endospore state in response to harsh environmental conditions. It follows that spore-forming bacteria would--with their longer generation times--evolve more slowly than their nonspore-forming relatives. It is therefore surprising that a previous study found no generation-time effect in Firmicutes. Using a phylogenetic comparative approach and leveraging on a large number of Firmicutes genomes, we found sporulation significantly reduces the genome-wide spontaneous DNA mutation rate and protein evolutionary rate. Contrary to the previous study, our results provide strong evidence that the evolutionary rates of bacteria, like those of plants and animals, are influenced by generation time.
Collapse
Affiliation(s)
- Cory Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | | |
Collapse
|
27
|
Thomson CE, Gilbert JDJ, Brooke MDL. Cytochrome b divergence between avian sister species is linked to generation length and body mass. PLoS One 2014; 9:e85006. [PMID: 24505250 PMCID: PMC3914784 DOI: 10.1371/journal.pone.0085006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
It is increasingly realised that the molecular clock does not tick at a constant rate. Rather, mitochondrial mutation rates are influenced by factors such as generation length and body mass. This has implications for the use of genetic data in species delimitation. It could be that speciation, as recognised by avian taxonomists, is associated with a certain minimum genetic distance between sister taxa, in which case we would predict no difference in the cytochrome b divergence of sister taxa according to the species' body size or generation time. Alternatively, if what taxonomists recognise as speciation has tended to be associated with the passage of a minimum amount of time since divergence, then there might be less genetic divergence between sister taxa with slower mutation rates, namely those that are heavier and/or with longer generation times. After excluding non-flying species, we analysed a database of over 600 avian sister species pairs, and found that species pairs with longer generation lengths (which tend to be the larger species) showed less cytochrome b divergence. This finding cautions against using any simple unitary criterion of genetic divergence to delimit species.
Collapse
Affiliation(s)
- Caroline E. Thomson
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - James D. J. Gilbert
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | - M. de L Brooke
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Damerau M, Matschiner M, Salzburger W, Hanel R. Population divergences despite long pelagic larval stages: lessons from crocodile icefishes (Channichthyidae). Mol Ecol 2013; 23:284-99. [DOI: 10.1111/mec.12612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- M. Damerau
- Thünen-Institute of Fisheries Ecology; Palmaille 9 22767 Hamburg Germany
| | - M. Matschiner
- Department of Mathematics and Statistics; Allan Wilson Centre of Molecular Ecology and Evolution; University of Canterbury; Private Bag 4800 Christchurch New Zealand
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - W. Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - R. Hanel
- Thünen-Institute of Fisheries Ecology; Palmaille 9 22767 Hamburg Germany
| |
Collapse
|
29
|
Abstract
Substitution rates vary between species, and many explanations regarding the causes of this variation have been proposed. Here we consider how new genomic data on the per-generation mutation rate impinge on proposed hypotheses for substitution rate variation in primates. We propose that the generation-time effect as it is usually understood cannot explain the observed rate variation, but instead that selection for decreased somatic mutation rates can. By considering the disparate causes underlying mutation rate changes in recent human history, we also show that the per-generation mutation rate is increasing even as the per-cell-division rate is decreasing.
Collapse
|
30
|
O’Connor TD, Mundy NI. Evolutionary Modeling of Genotype-Phenotype Associations, and Application to Primate Coding and Non-coding mtDNA Rate Variation. Evol Bioinform Online 2013; 9:301-16. [PMID: 23926418 PMCID: PMC3733722 DOI: 10.4137/ebo.s11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Variation in substitution rates across a phylogeny can be indicative of shifts in the evolutionary dynamics of a protein or non-protein coding regions. One way to understand these signals is to seek the phenotypic correlates of rate variation. Here, we extended a previously published likelihood method designed to detect evolutionary associations between genotypic evolutionary rate and phenotype over a phylogeny. In simulation with two discrete categories of phenotype, the method has a low false-positive rate and detects greater than 80% of true-positives with a tree length of three or greater and a three-fold or greater change in substitution rate given the phenotype. In addition, we successfully extend the test from two to four phenotype categories and evaluated its performance. We then applied the method to two major hypotheses for rate variation in the mitochondrial genome of primates-longevity and generation time as well as body mass which is correlated with many aspects of life history-using three categories of phenotype through discretization of continuous values. Similar to previous results for mammals, we find that the majority of mitochondrial protein-coding genes show associations consistent with the longevity and body mass predictions and that the predominant signal of association comes from the third codon position. We also found a significant association between maximum lifespan and the evolutionary rate of the control region of the mtDNA. In contrast, 24 protein-coding genes from the nuclear genome do not show a consistent pattern of association, which is inconsistent with the generation time hypothesis. These results show the extended method can robustly identify genotype-phenotype associations up to at least four phenotypic categories, and demonstrate the successful application of the method to study factors affecting neutral evolutionary rate in protein-coding and non-coding loci.
Collapse
Affiliation(s)
- Timothy D. O’Connor
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Nicholas I. Mundy
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
31
|
Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution. J Biosci 2013; 37:897-909. [PMID: 23107925 DOI: 10.1007/s12038-012-9254-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sequence evolution behaves in a relatively consistent manner, leading to one of the fundamental paradigms in biology, the existence of a 'molecular clock'. The molecular clock can be distilled to the concept of accumulation of substitutions, through time yielding a stable rate from which we can estimate lineage divergence. Over the last 50 years, evolutionary biologists have obtained an in-depth understanding of this clock's nuances. It has been fine-tuned by taking into account the vast heterogeneity in rates across lineages and genes, leading to 'relaxed' molecular clock methods for timetree reconstruction. Sequence rate varies with life history traits including body size, generation time and metabolic rate, and we review recent studies on this topic. However, few studies have explicitly examined correlates between molecular evolution and morphological evolution. The patterns observed across diverse lineages suggest that rates of molecular and morphological evolution are largely decoupled. We discuss how identifying the molecular mechanisms behind rapid functional radiations are central to understanding evolution. The vast functional divergence within mammalian lineages that have relatively 'slow' sequence evolution refutes the hypotheses that pulses in diversification yielding major phenotypic change are the result of steady accumulation of substitutions. Patterns rather suggest phenotypic divergence is likely caused by regulatory alterations mediated through mechanisms such as insertions/deletions in functional regions. These can rapidly arise and sweep to fixation faster than predicted from a lineage's sequence neutral substitution rate, enabling species to leapfrog between phenotypic 'islands'. We suggest research directions that could illuminate mechanisms behind the functional diversity we see today.
Collapse
|
32
|
Hu T, Long M, Yuan D, Zhu Z, Huang Y, Huang S. The genetic equidistance result: misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later. SCIENCE CHINA-LIFE SCIENCES 2013; 56:254-61. [PMID: 23526392 DOI: 10.1007/s11427-013-4452-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
In 1963, Margoliash discovered the unexpected genetic equidistance result after comparing cytochrome c sequences from different species. This finding, together with the hemoglobin analyses of Zuckerkandl and Pauling in 1962, directly inspired the ad hoc molecular clock hypothesis. Unfortunately, however, many biologists have since mistakenly viewed the molecular clock as a genuine reality, which in turn inspired Kimura, King, and Jukes to propose the neutral theory of molecular evolution. Many years of studies have found numerous contradictions to the theory, and few today believe in a universal constant clock. What is being neglected, however, is that the failure of the molecular clock hypothesis has left the original equidistance result an unsolved mystery. In recent years, we fortuitously rediscovered the equidistance result, which remains unknown to nearly all researchers. Incorporating the proven virtues of existing evolutionary theories and introducing the novel concept of maximum genetic diversity, we proposed a more complete hypothesis of evolutionary genetics and reinterpreted the equidistance result and other major evolutionary phenomena. The hypothesis may rewrite molecular phylogeny and population genetics and solve major biomedical problems that challenge the existing framework of evolutionary biology.
Collapse
Affiliation(s)
- Taobo Hu
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences; University of Sydney; Sydney; NSW; 2006; Australia
| | - Nathan Lo
- School of Biological Sciences; University of Sydney; Sydney; NSW; 2006; Australia
| |
Collapse
|
34
|
Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A 2012; 110:577-82. [PMID: 23271803 DOI: 10.1073/pnas.1205750110] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks.
Collapse
|
35
|
Abstract
The Muroidea, a group of rodents that includes mice, rats, gerbils, hamsters and others, encompasses a tremendous diversity of fairly recent geological origin. The taxonomy, systematics, phylogeny and paleontology of the muroid rodents have progressed enormously during the last two decades, and many hypotheses on their evolutionary biology have been formalized. Nevertheless, there still remain important unanswered questions - regarding, for example, local conflicts between molecular and paleontological data, or the origin of the fast rate of DNA change in rats and mice - that need more investigation.
Collapse
|
36
|
Liu SQ, Mayden RL, Zhang JB, Yu D, Tang QY, Deng X, Liu HZ. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene 2012; 508:60-72. [PMID: 22868207 DOI: 10.1016/j.gene.2012.07.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/15/2012] [Accepted: 07/23/2012] [Indexed: 02/08/2023]
Abstract
The superfamily Cobitoidea of the order Cypriniformes is a diverse group of fishes, inhabiting freshwater ecosystems across Eurasia and North Africa. The phylogenetic relationships of this well-corroborated natural group and diverse clade are critical to not only informing scientific communities of the phylogeny of the order Cypriniformes, the world's largest freshwater fish order, but are key to every area of comparative biology examining the evolution of traits, functional structures, and breeding behaviors to their biogeographic histories, speciation, anagenetic divergence, and divergence time estimates. In the present study, two mitochondrial gene sequences (COI, ND4+5) and four single-copy nuclear gene segments (RH1, RAG1, EGR2B, IRBP) were used to infer the phylogenetic relationships of the Cobitoidea as reconstructed from maximum likelihood (ML) and partitioned Bayesian Analysis (BA). Analyses of the combined mitochondrial/nuclear gene datasets revealed five strongly supported monophyletic Cobitoidea families and their sister-group relationships: Botiidae+(Vaillantellidae+(Cobitidae+(Nemacheilidae+Balitoridae))). These recovered relationships are in agreement with previous systematic studies on the order Cypriniformes and/or those focusing on the superfamily Cobitoidea. Using these relationships, our analyses revealed pattern lineage- or ecological-group-specific evolution of these genes for the Cobitoidea. These observations and results corroborate the hypothesis that these group-specific-ancestral ecological characters have contributed in the diversification and/or adaptations within these groups. Positive selections were detected in RH1 of nemacheilids and in RAG1 of nemacheilids and genus Vaillantella, which indicated that evolution of RH1 (related to eye's optic sense) and RAG1 (related to immunity) genes appeared to be important for the diversification of these groups. The balitorid lineage (those species inhabiting fast-flowing riverine habitats) had, as compared with other cobitoid lineages, significantly different dN/dS, dN and dS values for ND4 and IRBP genes. These significant differences are usually indicative of weaker selection pressure, and lineage-specific evolution on genes along the balitorid lineage. Furthermore, within Cobitoidea, excluding balitorids, species living in subtropics had significantly higher dN/dS values in RAG1 and IRBP genes than those living in temperate and tropical zones. Among tropical cobitoids, genes COI, ND5, EGR2B, IRBP and RH1, had a significantly higher mean dS value than those species in subtropical and temperate groups. These findings suggest that the evolution of these genes could also be ecological-group-specific and may have played an important role in the adaptive evolution and diversification of these groups. Thus, we hypothesize that the genes included in the present study were actively involved in lineage- and/or ecological-group-specific evolutionary processes of the highly diverse Cobitoidea. These two evolutionary patterns, both subject to further testing, are hypothesized as integral in the diversification with this major clade of the world's most diverse group of freshwater fishes.
Collapse
Affiliation(s)
- Si-Qing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc Natl Acad Sci U S A 2012; 109:6006-11. [PMID: 22474376 DOI: 10.1073/pnas.1119506109] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A long-standing problem in primate evolution is the discord between paleontological and molecular clock estimates for the time of crown primate origins: the earliest crown primate fossils are ~56 million y (Ma) old, whereas molecular estimates for the haplorhine-strepsirrhine split are often deep in the Late Cretaceous. One explanation for this phenomenon is that crown primates existed in the Cretaceous but that their fossil remains have not yet been found. Here we provide strong evidence that this discordance is better-explained by a convergent molecular rate slowdown in early primate evolution. We show that molecular rates in primates are strongly and inversely related to three life-history correlates: body size (BS), absolute endocranial volume (EV), and relative endocranial volume (REV). Critically, these traits can be reconstructed from fossils, allowing molecular rates to be predicted for extinct primates. To this end, we modeled the evolutionary history of BS, EV, and REV using data from both extinct and extant primates. We show that the primate last common ancestor had a very small BS, EV, and REV. There has been a subsequent convergent increase in BS, EV, and REV, indicating that there has also been a convergent molecular rate slowdown over primate evolution. We generated a unique timescale for primates by predicting molecular rates from the reconstructed phenotypic values for a large phylogeny of living and extinct primates. This analysis suggests that crown primates originated close to the K-Pg boundary and possibly in the Paleocene, largely reconciling the molecular and fossil timescales of primate evolution.
Collapse
|
38
|
No evidence of elevated germline mutation accumulation under oxidative stress in Caenorhabditis elegans. Genetics 2011; 189:1439-47. [PMID: 21979932 DOI: 10.1534/genetics.111.133660] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Variation in rates of molecular evolution has been attributed to numerous, interrelated causes, including metabolic rate, body size, and generation time. Speculation concerning the influence of metabolic rate on rates of evolution often invokes the putative mutagenic effects of oxidative stress. To isolate the effects of oxidative stress on the germline from the effects of metabolic rate, generation time, and other factors, we allowed mutations to accumulate under relaxed selection for 125 generations in two strains of the nematode Caenorhabditis elegans, the canonical wild-type strain (N2) and a mutant strain with elevated steady-state oxidative stress (mev-1). Contrary to our expectation, the mutational decline in fitness did not differ between N2 and mev-1. This result suggests that the mutagenic effects of oxidative stress in C. elegans are minor relative to the effects of other types of mutations, such as errors during DNA replication. However, mev-1 MA lines did go extinct more frequently than wild-type lines; some possible explanations for the difference in extinction rate are discussed.
Collapse
|
39
|
Crandall ED, Sbrocco EJ, DeBoer TS, Barber PH, Carpenter KE. Expansion Dating: Calibrating Molecular Clocks in Marine Species from Expansions onto the Sunda Shelf Following the Last Glacial Maximum. Mol Biol Evol 2011; 29:707-19. [DOI: 10.1093/molbev/msr227] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Wilson Sayres MA, Venditti C, Pagel M, Makova KD. Do variations in substitution rates and male mutation bias correlate with life-history traits? A study of 32 mammalian genomes. Evolution 2011; 65:2800-15. [PMID: 21967423 DOI: 10.1111/j.1558-5646.2011.01337.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genome-wide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life-history traits on substitution rates.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
41
|
Mayrose I, Otto SP. A Likelihood Method for Detecting Trait-Dependent Shifts in the Rate of Molecular Evolution. Mol Biol Evol 2010; 28:759-70. [DOI: 10.1093/molbev/msq263] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
42
|
Nei M, Suzuki Y, Nozawa M. The neutral theory of molecular evolution in the genomic era. Annu Rev Genomics Hum Genet 2010; 11:265-89. [PMID: 20565254 DOI: 10.1146/annurev-genom-082908-150129] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neutral theory of molecular evolution has been widely accepted and is the guiding principle for studying evolutionary genomics and the molecular basis of phenotypic evolution. Recent data on genomic evolution are generally consistent with the neutral theory. However, many recently published papers claim the detection of positive Darwinian selection via the use of new statistical methods. Examination of these methods has shown that their theoretical bases are not well established and often result in high rates of false-positive and false-negative results. When the deficiencies of these statistical methods are rectified, the results become largely consistent with the neutral theory. At present, genome-wide analyses of natural selection consist of collections of single-locus analyses. However, because phenotypic evolution is controlled by the interaction of many genes, the study of natural selection ought to take such interactions into account. Experimental studies of evolution will also be crucial.
Collapse
Affiliation(s)
- Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
43
|
Korall P, Schuettpelz E, Pryer KM. ABRUPT DECELERATION OF MOLECULAR EVOLUTION LINKED TO THE ORIGIN OF ARBORESCENCE IN FERNS. Evolution 2010; 64:2786-92. [DOI: 10.1111/j.1558-5646.2010.01000.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Lanfear R, Welch JJ, Bromham L. Watching the clock: Studying variation in rates of molecular evolution between species. Trends Ecol Evol 2010; 25:495-503. [DOI: 10.1016/j.tree.2010.06.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
|
45
|
Kolodner R, Tewari KK. Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci U S A 2010; 76:41-5. [PMID: 16592612 PMCID: PMC382872 DOI: 10.1073/pnas.76.1.41] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circular chloroplast DNAs from spinach, lettuce, and corn plants have been examined by electron microscopy and shown to contain a large sequence repeated one time in reverse polarity. The inverted sequence in spinach and lettuce chloroplast DNA has been found to be 24,400 base pairs long. The inverted sequence in the corn chloroplast DNA is 22,500 base pairs long. Denaturation mapping studies have shown that the structure of the inverted sequence is highly conserved in these three plants. Pea chloroplast DNA does not contain an inverted repeat. All of the circular dimers of pea chloroplast DNA are found to be in a head-to-tail confirmation. Circular dimers of spinach and lettuce were also found to have head-to-tail conformation. However, approximately 70-80% of the circular dimers in preparations of lettuce and spinach chloroplast DNA were found to be in a head-to-head conformation. We propose that the head-to-head circular dimers are formed by a recombination event between two circular monomers in the inverted sequence.
Collapse
Affiliation(s)
- R Kolodner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717
| | | |
Collapse
|
46
|
Thomas JA, Welch JJ, Lanfear R, Bromham L. A Generation Time Effect on the Rate of Molecular Evolution in Invertebrates. Mol Biol Evol 2010; 27:1173-80. [DOI: 10.1093/molbev/msq009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Sloan DB, Oxelman B, Rautenberg A, Taylor DR. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evol Biol 2009; 9:260. [PMID: 19878576 PMCID: PMC2777880 DOI: 10.1186/1471-2148-9-260] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 10/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent phylogenetic studies have revealed that the mitochondrial genome of the angiosperm Silene noctiflora (Caryophyllaceae) has experienced a massive mutation-driven acceleration in substitution rate, placing it among the fastest evolving eukaryotic genomes ever identified. To date, it appears that other species within Silene have maintained more typical substitution rates, suggesting that the acceleration in S. noctiflora is a recent and isolated evolutionary event. This assessment, however, is based on a very limited sampling of taxa within this diverse genus. RESULTS We analyzed the substitution rates in 4 mitochondrial genes (atp1, atp9, cox3 and nad9) across a broad sample of 74 species within Silene and related genera in the tribe Sileneae. We found that S. noctiflora shares its history of elevated mitochondrial substitution rate with the closely related species S. turkestanica. Another section of the genus (Conoimorpha) has experienced an acceleration of comparable magnitude. The phylogenetic data remain ambiguous as to whether the accelerations in these two clades represent independent evolutionary events or a single ancestral change. Rate variation among genes was equally dramatic. Most of the genus exhibited elevated rates for atp9 such that the average tree-wide substitution rate for this gene approached the values for the fastest evolving branches in the other three genes. In addition, some species exhibited major accelerations in atp1 and/or cox3 with no correlated change in other genes. Rates of non-synonymous substitution did not increase proportionally with synonymous rates but instead remained low and relatively invariant. CONCLUSION The patterns of phylogenetic divergence within Sileneae suggest enormous variability in plant mitochondrial mutation rates and reveal a complex interaction of gene and species effects. The variation in rates across genomic and phylogenetic scales raises questions about the mechanisms responsible for the evolution of mutation rates in plant mitochondrial genomes.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bengt Oxelman
- Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anja Rautenberg
- Department of Systematic Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
48
|
Tsantes C, Steiper ME. Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc Natl Acad Sci U S A 2009; 106:18165-70. [PMID: 19841267 PMCID: PMC2775338 DOI: 10.1073/pnas.0906686106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Indexed: 11/18/2022] Open
Abstract
Although the molecular clock hypothesis posits that the rate of molecular change is constant over time, there is evidence that rates vary among lineages. Some of the strongest evidence for variable molecular rates comes from the primates; e.g., the "hominoid slowdown." These rate differences are hypothesized to correlate with certain species attributes, such as generation time and body size. Here, we examine rates of molecular change in the strepsirrhine suborder of primates and test whether body size or age at first reproduction (a proxy for generation time) explains patterns of rate variation better than a null model where the molecular clock is independent of these factors. To examine these models, we analyzed DNA sequences from four pairs of recently diverged strepsirrhine sister taxa to estimate molecular rates by using sign tests, likelihood ratio tests, and regression analyses. Our analysis does not support a model where body weight or age at first reproduction strongly influences rates of molecular evolution across mitochondrial and nuclear sites. Instead, our analysis supports a model where age at first reproduction influences neutral evolution in the nuclear genome. This study supports the generation time hypothesis for rate variation in the nuclear molecular clock. Molecular clock variation due to generation time may help to resolve the discordance between molecular and paleontological estimates for divergence date estimates in primate evolution.
Collapse
Affiliation(s)
- C. Tsantes
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065; and
| | - M. E. Steiper
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065; and
- Programs in Anthropology and Biology, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016
| |
Collapse
|
49
|
Smith SA, Beaulieu JM. Life history influences rates of climatic niche evolution in flowering plants. Proc Biol Sci 2009; 276:4345-52. [PMID: 19776076 DOI: 10.1098/rspb.2009.1176] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Across angiosperms, variable rates of molecular substitution are linked with life-history attributes associated with woody and herbaceous growth forms. As the number of generations per unit time is correlated with molecular substitution rates, it is expected that rates of phenotypic evolution would also be influenced by differences in generation times. Here, we make the first broad-scale comparison of growth-form-dependent rates of niche evolution. We examined the climatic niches of species on large time-calibrated phylogenies of five angiosperm clades and found that woody lineages have accumulated fewer changes per million years in climatic niche space than related herbaceous lineages. Also, climate space explored by woody lineages is consistently smaller than sister lineages composed mainly of herbaceous taxa. This pattern is probably linked to differences in the rate of climatic niche evolution. These results have implications for niche conservatism; in particular, the role of niche conservatism in the distribution of plant biodiversity. The consistent differences in the rate of climatic niche evolution also emphasize the need to incorporate models of phenotypic evolution that allow for rate heterogeneity when examining large datasets.
Collapse
Affiliation(s)
- Stephen A Smith
- National Evolutionary Synthesis Center, 2024 W. Main Street A200, Durham, NC 27705, USA.
| | | |
Collapse
|
50
|
Soria-Hernanz DF, Fiz-Palacios O, Braverman JM, Hamilton MB. Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms. BMC Evol Biol 2008; 8:344. [PMID: 19113991 PMCID: PMC2637270 DOI: 10.1186/1471-2148-8-344] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 12/29/2008] [Indexed: 11/16/2022] Open
Abstract
Background Differences in plant annual/perennial habit are hypothesized to cause a generation time effect on divergence rates. Previous studies that compared rates of divergence for internal transcribed spacer (ITS1 and ITS2) sequences of nuclear ribosomal DNA (nrDNA) in angiosperms have reached contradictory conclusions about whether differences in generation times (or other life history features) are associated with divergence rate heterogeneity. We compared annual/perennial ITS divergence rates using published sequence data, employing sampling criteria to control for possible artifacts that might obscure any actual rate variation caused by annual/perennial differences. Results Relative rate tests employing ITS sequences from 16 phylogenetically-independent annual/perennial species pairs rejected rate homogeneity in only a few comparisons, with annuals more frequently exhibiting faster substitution rates. Treating branch length differences categorically (annual faster or perennial faster regardless of magnitude) with a sign test often indicated an excess of annuals with faster substitution rates. Annuals showed an approximately 1.6-fold rate acceleration in nucleotide substitution models for ITS. Relative rates of three nuclear loci and two chloroplast regions for the annual Arabidopsis thaliana compared with two closely related Arabidopsis perennials indicated that divergence was faster for the annual. In contrast, A. thaliana ITS divergence rates were sometimes faster and sometimes slower than the perennial. In simulations, divergence rate differences of at least 3.5-fold were required to reject rate constancy in > 80 % of replicates using a nucleotide substitution model observed for the combination of ITS1 and ITS2. Simulations also showed that categorical treatment of branch length differences detected rate heterogeneity > 80% of the time with a 1.5-fold or greater rate difference. Conclusion Although rate homogeneity was not rejected in many comparisons, in cases of significant rate heterogeneity annuals frequently exhibited faster substitution rates. Our results suggest that annual taxa may exhibit a less than 2-fold rate acceleration at ITS. Since the rate difference is small and ITS lacks statistical power to reject rate homogeneity, further studies with greater power will be required to adequately test the hypothesis that annual and perennial plants have heterogeneous substitution rates. Arabidopsis sequence data suggest that relative rate tests based on multiple loci may be able to distinguish a weak acceleration in annual plants. The failure to detect rate heterogeneity with ITS in past studies may be largely a product of low statistical power.
Collapse
|