1
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Barbosa LN, LIanes A, Madesh S, Fayne BN, Brangulis K, Linn-Peirano SC, Rajeev S. Enhancement of clinical signs in C3H/HeJ mice vaccinated with a highly immunogenic Leptospira methyl-accepting chemotaxis protein following challenge. PLoS Negl Trop Dis 2024; 18:e0012155. [PMID: 39312584 PMCID: PMC11449317 DOI: 10.1371/journal.pntd.0012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/03/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Leptospirosis is the most widespread zoonosis and a life-threatening disease in humans and animals. Licensed killed whole-cell vaccines are available for animals; however, they do not offer heterologous protection, do not induce long-term protection, or prevent renal colonization. In this study, we characterized an immunogenic Leptospira methyl-accepting chemotaxis protein (MCP) identified through a reverse vaccinology approach, predicted its structure, and tested the protective efficacy of a recombinant MCP fragment in the C3H/HeJ mice model. The predicted structure of the full-length MCP revealed an architecture typical for topology class I MCPs. A single dose of MCP vaccine elicited a significant IgG antibody response in immunized mice compared to controls (P < 0.0001), especially the IgG1 and IgG2a subclasses. The vaccination with MCP, despite eliciting a robust immune response, did not protect mice from disease and renal colonization. However, survival curves significantly differed between groups, and the MCP-vaccinated group developed clinical signs faster than the control group. There were differences in gross and histopathological changes between the MCP-vaccinated and control groups. The factors leading to enhanced disease process in vaccinated animals need further investigation. We speculate that anti-MCP antibodies may block the MCP signaling cascade and may limit chemotaxis, preventing Leptospira from reaching its destination, but facilitating its maintenance and replication in the blood stream. Such a phenomenon may exist in endemic areas where humans are highly exposed to Leptospira antigens, and the presence of antibodies might lead to disease enhancement. The role of this protein in Leptospira pathogenesis should be further evaluated to comprehend the lack of protection and potential exacerbation of the disease process. The absence of immune correlates of protection from Leptospira infection is still a major limitation of this field and efforts to gather this knowledge are needed.
Collapse
Affiliation(s)
- Liana Nunes Barbosa
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Alejandro LIanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Swetha Madesh
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bryanna Nicole Fayne
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | | | - Sarah C. Linn-Peirano
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sreekumari Rajeev
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
3
|
Reyes GI, Flack CE, Parkinson JS. The Structural Logic of Dynamic Signaling in the Escherichia coli Serine Chemoreceptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604838. [PMID: 39091725 PMCID: PMC11291126 DOI: 10.1101/2024.07.23.604838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The experimental challenges posed by integral membrane proteins hinder molecular understanding of transmembrane signaling mechanisms. Here, we exploited protein crosslinking assays in living cells to follow conformational and dynamic stimulus signals in Tsr, the Escherichia coli serine chemoreceptor. Tsr mediates serine chemotaxis by integrating transmembrane serine-binding inputs with adaptational modifications of a methylation helix bundle to regulate a signaling kinase at the cytoplasmic tip of the receptor molecule. We created a series of cysteine replacements at Tsr residues adjacent to hydrophobic packing faces of the bundle helices and crosslinked them with a cell-permeable, bifunctional thiol-reagent. We identified an extensively crosslinked dynamic junction midway through the methylation helix bundle that seemed uniquely poised to respond to serine signals. We explored its role in mediating signaling shifts between different packing arrangements of the bundle helices by measuring crosslinking in receptor molecules with apposed pairs of cysteine reporters in each subunit and assessing their signaling behaviors with an in vivo kinase assay. In the absence of serine, the bundle helices evinced compact kinase-ON packing arrangements; in the presence of serine, the dynamic junction destabilized adjacent bundle segments and shifted the bundle to an expanded, less stable kinase-OFF helix-packing arrangement. An AlphaFold 3 model of kinase-active Tsr showed a prominent bulge and kink at the dynamic junction that might antagonize stable structure at the receptor tip. Serine stimuli probably inhibit kinase activity by shifting the bundle to a less stably-packed conformation that relaxes structural strain at the receptor tip, thereby freezing kinase activity.
Collapse
Affiliation(s)
- Georgina I. Reyes
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Caralyn E. Flack
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
4
|
Guo L, Wang YH, Cui R, Huang Z, Hong Y, Qian JW, Ni B, Xu AM, Jiang CY, Zhulin IB, Liu SJ, Li DF. Attractant and repellent induce opposing changes in the four-helix bundle ligand-binding domain of a bacterial chemoreceptor. PLoS Biol 2023; 21:e3002429. [PMID: 38079456 PMCID: PMC10735184 DOI: 10.1371/journal.pbio.3002429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Motile bacteria navigate toward favorable conditions and away from unfavorable environments using chemotaxis. Mechanisms of sensing attractants are well understood; however, molecular aspects of how bacteria sense repellents have not been established. Here, we identified malate as a repellent recognized by the MCP2201 chemoreceptor in a bacterium Comamonas testosteroni and showed that it binds to the same site as an attractant citrate. Binding determinants for a repellent and an attractant had only minor differences, and a single amino acid substitution in the binding site inverted the response to malate from a repellent to an attractant. We found that malate and citrate affect the oligomerization state of the ligand-binding domain in opposing way. We also observed opposing effects of repellent and attractant binding on the orientation of an alpha helix connecting the sensory domain to the transmembrane helix. We propose a model to illustrate how positive and negative signals might be generated.
Collapse
Affiliation(s)
- Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Hao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Rui Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Hong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jia-Wei Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - An-Ming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Yue C, Zhang C, Zhang R, Yuan J. Tethered particle motion of the adaptation enzyme CheR in bacterial chemotaxis. iScience 2023; 26:107950. [PMID: 37817931 PMCID: PMC10561060 DOI: 10.1016/j.isci.2023.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Bacteria perform chemotactic adaptation by sequential modification of multiple modifiable sites on chemoreceptors through stochastic action of tethered adaptation enzymes (CheR and CheB). To study the molecular kinetics of this process, we measured the response to different concentrations of MeAsp for the Tar-only Escherichia coli strain. We found a strong dependence of the methylation rate on the methylation level and established a new mechanism of adaptation kinetics due to tethered particle motion of the methylation enzyme CheR. Experiments with various lengths of the C-terminal flexible chain in the Tar receptor further validated this mechanism. The tethered particle motion resulted in a CheR concentration gradient that ensures encounter-rate matching of the sequential modifiable sites. An analytical model of multisite catalytic reaction showed that this enables robustness of methylation to fluctuations in receptor activity or cell-to-cell variations in the expression of adaptation enzymes and reduces the variation in methylation level among individual receptors.
Collapse
Affiliation(s)
- Caijuan Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Merljak E, Malovrh B, Jerala R. Segmentation strategy of de novo designed four-helical bundles expands protein oligomerization modalities for cell regulation. Nat Commun 2023; 14:1995. [PMID: 37031229 PMCID: PMC10082849 DOI: 10.1038/s41467-023-37765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Protein-protein interactions govern most biological processes. New protein assemblies can be introduced through the fusion of selected proteins with di/oligomerization domains, which interact specifically with their partners but not with other cellular proteins. While four-helical bundle proteins (4HB) have typically been assembled from two segments, each comprising two helices, here we show that they can be efficiently segmented in various ways, expanding the number of combinations generated from a single 4HB. We implement a segmentation strategy of 4HB to design two-, three-, or four-chain combinations for the recruitment of multiple protein components. Different segmentations provide new insight into the role of individual helices for 4HB assembly. We evaluate 4HB segmentations for potential use in mammalian cells for the reconstitution of a protein reporter, transcriptional activation, and inducible 4HB assembly. Furthermore, the implementation of trimerization is demonstrated as a modular chimeric antigen receptor for the recognition of multiple cancer antigens.
Collapse
Affiliation(s)
- Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Benjamin Malovrh
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Riechmann C, Zhang P. Recent structural advances in bacterial chemotaxis signalling. Curr Opin Struct Biol 2023; 79:102565. [PMID: 36868078 PMCID: PMC10460253 DOI: 10.1016/j.sbi.2023.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 03/05/2023]
Abstract
Bacterial chemosensory arrays have served as a model system for in-situ structure determination, clearly cataloguing the improvement of cryo-electron tomography (cryoET) over the past decade. In recent years, this has culminated in an accurately fitted atomistic model for the full-length core signalling unit (CSU) and numerous insights into the function of the transmembrane receptors responsible for signal transduction. Here, we review the achievements of the latest structural advances in bacterial chemosensory arrays and the developments which have made such advances possible.
Collapse
Affiliation(s)
- Carlos Riechmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
8
|
Structural signatures of Escherichia coli chemoreceptor signaling states revealed by cellular crosslinking. Proc Natl Acad Sci U S A 2022; 119:e2204161119. [PMID: 35787052 PMCID: PMC9282233 DOI: 10.1073/pnas.2204161119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The chemotaxis machinery of Escherichia coli has served as a model for exploring the molecular signaling mechanisms of transmembrane chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). Yet, fundamental questions about signal transmission through MCP molecules remain unanswered. Our work with the E. coli serine chemoreceptor Tsr has developed in vivo reporters that distinguish kinase-OFF and kinase-ON structures in the cytoplasmic methylation helix (MH) cap, which receives stimulus signals from an adjoining, membrane-proximal histidine kinase, adenylyl cyclases, MCPs, and phosphatases (HAMP) domain. The cytoplasmic helices of the Tsr homodimer interact mainly through packing interactions of hydrophobic residues at a and d heptad positions. We investigated the in vivo crosslinking properties of Tsr molecules bearing cysteine replacements at functionally tolerant g heptad positions in the N-terminal and C-terminal cap helices. Upon treatment of cells with bismaleimidoethane (BMOE), a bifunctional thiol-reagent, Tsr-G273C/Q504C readily formed a doubly crosslinked product in the presence of serine but not in its absence. Moreover, a serine stimulus combined with BMOE treatment during in vivo Förster resonance energy transfer-based kinase assays locked Tsr-G273C/Q504C in kinase-OFF output. An OFF-shifting lesion in MH1 (D269P) promoted the formation of the doubly crosslinked species in the absence of serine, whereas an ON-shifting lesion (G268P) suppressed the formation of the doubly crosslinked species. Tsr-G273C/Q504C also showed output-dependent crosslinking patterns in combination with ON-shifting and OFF-shifting adaptational modifications. Our results are consistent with a helix breathing-axial rotation-bundle repacking signaling mechanism and imply that in vivo crosslinking tools could serve to probe helix-packing transitions and their output consequences in other regions of the receptor molecule.
Collapse
|
9
|
Tumewu SA, Watanabe Y, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Identification of Aerotaxis Receptor Proteins Involved in Host Plant Infection by Pseudomonas syringae pv. tabaci 6605. Microbes Environ 2022; 37:ME21076. [PMID: 35264479 PMCID: PMC8958299 DOI: 10.1264/jsme2.me21076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605.
Collapse
Affiliation(s)
- Stephany Angelia Tumewu
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- The United Graduate School of Agricultural Science, Gifu University, 1–1 Yanagido, Gifu, Gifu 501–1193, Japan
| | - Yuta Watanabe
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| |
Collapse
|
10
|
Gordon JB, Hoffman MC, Troiano JM, Li M, Hazelbauer GL, Schlau-Cohen GS. Concerted Differential Changes of Helical Dynamics and Packing upon Ligand Occupancy in a Bacterial Chemoreceptor. ACS Chem Biol 2021; 16:2472-2480. [PMID: 34647725 PMCID: PMC9990816 DOI: 10.1021/acschembio.1c00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transmembrane receptors are central components of the chemosensory systems by which motile bacteria detect and respond to chemical gradients. An attractant bound to the receptor periplasmic domain generates conformational signals that regulate a histidine kinase interacting with its cytoplasmic domain. Ligand-induced signaling through the periplasmic and transmembrane domains of the receptor involves a piston-like helical displacement, but the nature of this signaling through the >200 Å four-helix coiled coil of the cytoplasmic domain had not yet been identified. We performed single-molecule Förster resonance energy transfer measurements on Escherichia coli aspartate receptor homodimers inserted into native phospholipid bilayers enclosed in nanodiscs. The receptors were labeled with fluorophores at diagnostic positions near the middle of the cytoplasmic coiled coil. At these positions, we found that the two N-helices of the homodimer were more distant, that is, less tightly packed and more dynamic than the companion C-helix pair, consistent with previous deductions that the C-helices form a stable scaffold and the N-helices are dynamic. Upon ligand binding, the scaffold pair compacted further, while separation and dynamics of the dynamic pair increased. Thus, ligand binding had asymmetric effects on the two helical pairs, shifting mean distances in opposite directions and increasing the dynamics of one pair. We suggest that this reflects a conformational change in which differential alterations to the packing and dynamics of the two helical pairs are coupled. These coupled changes could represent a previously unappreciated mode of conformational signaling that may well occur in other coiled-coil signaling proteins.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Mikaila C Hoffman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Julianne M Troiano
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Mingshan Li
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
The Only Chemoreceptor Encoded by che Operon Affects the Chemotactic Response of Agrobacterium to Various Chemoeffectors. Microorganisms 2021; 9:microorganisms9091923. [PMID: 34576817 PMCID: PMC8466855 DOI: 10.3390/microorganisms9091923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoreceptor (also called methyl-accepting chemotaxis protein, MCP) is the leading signal protein in the chemotaxis signaling pathway. MCP senses and binds chemoeffectors, specifically, and transmits the sensed signal to downstream proteins of the chemotaxis signaling system. The genome of Agrobacterium fabrum (previously, tumefaciens) C58 predicts that a total of 20 genes can encode MCP, but only the MCP-encoding gene atu0514 is located inside the che operon. Hence, the identification of the exact function of atu0514-encoding chemoreceptor (here, named as MCP514) will be very important for us to understand more deeply the chemotaxis signal transduction mechanism of A. fabrum. The deletion of atu0514 significantly decreased the chemotactic migration of A. fabrum in a swim plate. The test of atu0514-deletion mutant (Δ514) chemotaxis toward single chemicals showed that the deficiency of MCP514 significantly weakened the chemotactic response of A. fabrum to four various chemicals, sucrose, valine, citric acid and acetosyringone (AS), but did not completely abolish the chemotactic response. MCP514 was localized at cell poles although it lacks a transmembrane (TM) region and is predicted to be a cytoplasmic chemoreceptor. The replacement of residue Phe328 showed that the helical structure in the hairpin subdomain of MCP514 is a direct determinant for the cellular localization of MCP514. Single respective replacements of key residues indicated that residues Asn336 and Val353 play a key role in maintaining the chemotactic function of MCP514.
Collapse
|
12
|
Comparative Biofilm Assays Using Enterococcus faecalis OG1RF Identify New Determinants of Biofilm Formation. mBio 2021; 12:e0101121. [PMID: 34126766 PMCID: PMC8262879 DOI: 10.1128/mbio.01011-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar discs, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants. We quantified biofilm cells and used fluorescence microscopy to visualize biofilms formed by six Tn mutants identified using TnSeq and found that disrupting these genes (OG1RF_10350, prsA, tig, OG1RF_10576, OG1RF_11288, and OG1RF_11456) leads to significant time- and medium-dependent changes in biofilm architecture. Structural predictions revealed potential roles in cell wall homeostasis for OG1RF_10350 and OG1RF_11288 and signaling for OG1RF_11456. Additionally, we identified growth medium-specific hallmarks of OG1RF biofilm morphology. This study demonstrates how E. faecalis biofilm architecture is modulated by growth medium and experimental conditions and identifies multiple new genetic determinants of biofilm formation.
Collapse
|
13
|
Abstract
Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected.
Collapse
|
14
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
16
|
Cell-ECM contact-guided intracellular polarization is mediated via lamin A/C dependent nucleus-cytoskeletal connection. Biomaterials 2020; 268:120548. [PMID: 33260092 DOI: 10.1016/j.biomaterials.2020.120548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Cell polarization plays a crucial role in dynamic cellular events, such as cell proliferation, differentiation, and directional migration in response to diverse extracellular and intracellular signals. Although it is well known that cell polarization entails highly orchestrated intracellular molecular reorganization, the underlying mechanism of repositioning by intracellular organelles in the presence of multiple stimuli is still unclear. Here, we show that front-rear cell polarization based on the relative positions of nucleus and microtubule organizing center is precisely controlled by mechanical interactions including cellular adhesion to extracellular matrix and nucleus-cytoskeletal connections. By modulating the size and distribution of fibronectin-coated adhesive spots located in the polarized cell shape mimicking micropatterns, we monitored the alterations in cell polarity. We found that the localization of individual adhesive spots is more dominant than the cell shape itself to induce intracellular polarization. Further, the degree of cell polarization was diminished significantly by disrupting nuclear lamin A/C. We further confirm that geometrical cue-guided intracellular polarization determines directional cell migration via local activation of Cdc42. These findings provide novel insights into the role of nucleus-cytoskeletal connections in single cell polarization under a combination of physical, molecular, and genetic cues, where lamin A/C acts as a critical molecular mediator in ECM sensing and signal transduction via nucleus-cytoskeletal connection.
Collapse
|
17
|
Neveu E, Khalifeh D, Salamin N, Fasshauer D. Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Curr Biol 2020; 30:2468-2480.e5. [PMID: 32442459 DOI: 10.1016/j.cub.2020.04.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A defining feature of eukaryotic cells is the presence of numerous membrane-bound organelles that subdivide the intracellular space into distinct compartments. How the eukaryotic cell acquired its internal complexity is still poorly understood. Material exchange among most organelles occurs via vesicles that bud off from a source and specifically fuse with a target compartment. Central players in the vesicle fusion process are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. These small tail-anchored (TA) membrane proteins zipper into elongated four-helix bundles that pull membranes together. SNARE proteins are highly conserved among eukaryotes but are thought to be absent in prokaryotes. Here, we identified SNARE-like factors in the genomes of uncultured organisms of Asgard archaea of the Heimdallarchaeota clade, which are thought to be the closest living relatives of eukaryotes. Biochemical experiments show that the archaeal SNARE-like proteins can interact with eukaryotic SNARE proteins. We did not detect SNAREs in α-proteobacteria, the closest relatives of mitochondria, but identified several genes encoding for SNARE proteins in γ-proteobacteria of the order Legionellales, pathogens that live inside eukaryotic cells. Very probably, their SNAREs stem from lateral gene transfer from eukaryotes. Together, this suggests that the diverse set of eukaryotic SNAREs evolved from an archaeal precursor. However, whether Heimdallarchaeota actually have a simplified endomembrane system will only be seen when we succeed studying these organisms under the microscope.
Collapse
Affiliation(s)
- Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dany Khalifeh
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Strategies for identifying dynamic regions in protein complexes: Flexibility changes accompany methylation in chemotaxis receptor signaling states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183312. [PMID: 32304758 DOI: 10.1016/j.bbamem.2020.183312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Bacterial chemoreceptors are organized in arrays composed of helical receptors arranged as trimers of dimers, coupled to a histidine kinase CheA and a coupling protein CheW. Ligand binding to the external domain inhibits the kinase activity, leading to a change in the swimming behavior. Adaptation to an ongoing stimulus involves reversible methylation and demethylation of specific glutamate residues. However, the exact mechanism of signal propagation through the helical receptor to the histidine kinase remains elusive. Dynamics of the receptor cytoplasmic domain is thought to play an important role in the signal transduction, and current models propose inverse dynamic changes in different regions of the receptor. We hypothesize that the adaptational modification (methylation) controls the dynamics by stabilizing a partially ordered domain, which in turn modulates the binding of the kinase, CheA. We investigated the difference in dynamics between the methylated and unmethylated states of the chemoreceptor using solid-state NMR. The unmethylated receptor (CF4E) shows increased flexibility relative to the methylated mimic (CF4Q). Methylation helix 1 (MH1) has been shown to be flexible in the methylated mimic receptor. Our analysis indicates that in addition to MH1, methylation helix 2 also becomes flexible in the unmethylated receptor. In addition, we have demonstrated that both states of the receptor have a rigid region and segments with intermediate timescale dynamics. The strategies used in this study for identifying dynamic regions are applicable to a broad class of proteins and protein complexes with intrinsic disorder and dynamics spanning multiple timescales.
Collapse
|
19
|
Chiral Dualism as an Instrument of Hierarchical Structure Formation in Molecular Biology. Symmetry (Basel) 2020. [DOI: 10.3390/sym12040587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The origin of chiral asymmetry in biology has attracted the attention of the research community throughout the years. In this paper we discuss the role of chirality and chirality sign alternation (L–D–L–D in proteins and D–L–D–L in DNA) in promoting self-organization in biology, starting at the level of single molecules and continuing to the level of supramolecular assemblies. In addition, we also discuss chiral assemblies in solutions of homochiral organic molecules. Sign-alternating chiral hierarchies created by proteins and nucleic acids are suggested to create the structural basis for the existence of selected mechanical degrees of freedom required for conformational dynamics in enzymes and macromolecular machines.
Collapse
|
20
|
Li M, Hazelbauer GL. Methyltransferase CheR binds to its chemoreceptor substrates independent of their signaling conformation yet modifies them differentially. Protein Sci 2020; 29:443-454. [PMID: 31654429 PMCID: PMC6954704 DOI: 10.1002/pro.3760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Abstract
Methylation of specific chemoreceptor glutamyl residues by methyltransferase CheR mediates sensory adaptation and gradient sensing in bacterial chemotaxis. Enzyme action is a function of chemoreceptor signaling conformation: kinase-off receptors are more readily methylated than kinase-on, a feature central to adaptational and gradient-sensing mechanisms. Differential enzyme action could reflect differential binding, catalysis or both. We investigated by measuring CheR binding to kinase-off and kinase-on forms of Escherichia coli aspartate receptor Tar deleted of its CheR-tethering, carboxyl terminus pentapeptide. This allowed characterization of the low-affinity binding of enzyme to the substrate receptor body, otherwise masked by high-affinity interaction with pentapeptide. We quantified the low-affinity protein-protein interactions by determining kinetic rate constants of association and dissociation using bio-layer interferometry and from those values calculating equilibrium constants. Whether Tar signaling conformations were shifted by ligand occupancy or adaptational modification, there was little or no difference between the two signaling conformations in kinetic or equilibrium parameters of enzyme-receptor binding. Thus, differential methyltransferase action does not reflect differential binding. Instead, the predominant determinants of binding must be common to different signaling conformations. Characterization of the dependence of association rate constants on Deybe length, a measure of the influence of electrostatics, implicated electrostatic interactions as a common binding determinant. Taken together, our observations indicate that differential action of methyltransferase on kinase-off and kinase-on chemoreceptors is not the result of differential binding and suggest it reflects differential catalytic propensity. Differential catalysis rather than binding could well be central to other enzymes distinguishing alternative conformations of protein substrates.
Collapse
Affiliation(s)
- Mingshan Li
- Department of BiochemistryUniversity of Missouri‐ColumbiaColumbiaMissouri
| | | |
Collapse
|
21
|
Cassidy CK, Himes BA, Sun D, Ma J, Zhao G, Parkinson JS, Stansfeld PJ, Luthey-Schulten Z, Zhang P. Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations. Commun Biol 2020; 3:24. [PMID: 31925330 PMCID: PMC6954272 DOI: 10.1038/s42003-019-0748-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023] Open
Abstract
To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism.
Collapse
Affiliation(s)
- C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Dapeng Sun
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jun Ma
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Zaida Luthey-Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
22
|
Hong Y, Huang Z, Guo L, Ni B, Jiang CY, Li XJ, Hou YJ, Yang WS, Wang DC, Zhulin IB, Liu SJ, Li DF. The ligand-binding domain of a chemoreceptor from Comamonas testosteroni has a previously unknown homotrimeric structure. Mol Microbiol 2019; 112:906-917. [PMID: 31177588 PMCID: PMC6736725 DOI: 10.1111/mmi.14326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
Transmembrane chemoreceptors are widely present in Bacteria and Archaea. They play a critical role in sensing various signals outside and transmitting to the cell interior. Here, we report the structure of the periplasmic ligand-binding domain (LBD) of the transmembrane chemoreceptor MCP2201, which governs chemotaxis to citrate and other organic compounds in Comamonas testosteroni. The apo-form LBD crystal revealed a typical four-helix bundle homodimer, similar to previously well-studied chemoreceptors such as Tar and Tsr of Escherichia coli. However, the citrate-bound LBD revealed a four-helix bundle homotrimer that had not been observed in bacterial chemoreceptor LBDs. This homotrimer was further confirmed with size-exclusion chromatography, analytical ultracentrifugation and cross-linking experiments. The physiological importance of the homotrimer for chemotaxis was demonstrated with site-directed mutations of key amino acid residues in C. testosteroni mutants.
Collapse
Affiliation(s)
- Yuan Hong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Xiao-Jing Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yan-Jie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Igor B. Zhulin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| |
Collapse
|
23
|
Yang W, Briegel A. Diversity of Bacterial Chemosensory Arrays. Trends Microbiol 2019; 28:68-80. [PMID: 31473052 DOI: 10.1016/j.tim.2019.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023]
Abstract
Chemotaxis is crucial for the survival of bacteria, and the signaling systems associated with it exhibit a high level of evolutionary conservation. The architecture of the chemosensory array and the signal transduction mechanisms have been extensively studied in Escherichia coli. More recent studies have revealed a vast diversity of the chemosensory system among bacteria. Unlike E. coli, some bacteria assemble more than one chemosensory array and respond to a broader spectrum of environmental and internal stimuli. These chemosensory arrays exhibit a great variability in terms of protein composition, cellular localization, and functional variability. Here, we present recent findings that emphasize the extent of diversity in chemosensory arrays and highlight the importance of studying chemosensory arrays in bacteria other than the common model organisms.
Collapse
Affiliation(s)
- Wen Yang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
24
|
Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183030. [PMID: 31374212 DOI: 10.1016/j.bbamem.2019.183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Bacteria sense and respond to their environment through a highly conserved assembly of transmembrane chemoreceptors (MCPs), the histidine kinase CheA, and the coupling protein CheW, hereafter termed "the chemosensory array". In recent years, great strides have been made in understanding the architecture of the chemosensory array and how this assembly engenders sensitive and cooperative responses. Nonetheless, a central outstanding question surrounds how receptors modulate the activity of the CheA kinase, the enzymatic output of the sensory system. With a focus on recent advances, we summarize the current understanding of array structure and function to comment on the molecular mechanism by which CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with many different approaches. In particular, structural methods, genetics, cellular activity assays, nanodisc technology and cryo-electron tomography have provided advances that bridge length scales and connect molecular mechanism to cellular function. Given the high degree of component integration in the chemosensory arrays, we ultimately aim to understand how such networked molecular interactions generate a whole that is truly greater than the sum of its parts. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Alise R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
25
|
Conformational shifts in a chemoreceptor helical hairpin control kinase signaling in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:15651-15660. [PMID: 31315979 PMCID: PMC6681711 DOI: 10.1073/pnas.1902521116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Motile bacteria use chemoreceptor signaling arrays to track chemical gradients with high precision. The Escherichia coli chemotaxis system offers an ideal model for probing the molecular mechanisms of transmembrane and intracellular signaling. In this study, we characterized the signaling properties of mutant E. coli receptors that had amino acid replacements in residues that form a salt-bridge connection between the cytoplasmic tips of receptor molecules. The mutant signaling defects suggested that the chemoreceptor tip operates as a two-state device with discrete active and inactive conformations and that the level of output activity modulates connections between receptor signaling units that produce highly cooperative responses to attractant stimuli. These findings shed important light on the nature and control of receptor signaling states. Motile Escherichia coli cells use chemoreceptor signaling arrays to track chemical gradients with exquisite precision. Highly conserved residues in the cytoplasmic hairpin tip of chemoreceptor molecules promote assembly of trimer-based signaling complexes and modulate the activity of their CheA kinase partners. To explore hairpin tip output states in the serine receptor Tsr, we characterized the signaling consequences of amino acid replacements at the salt-bridge residue pair E385-R388. All mutant receptors assembled trimers and signaling complexes, but most failed to support serine chemotaxis in soft agar assays. Small side-chain replacements at either residue produced OFF- or ON-shifted outputs that responded to serine stimuli in wild-type fashion, suggesting that these receptors, like the wild-type, operate as two-state signaling devices. Larger aliphatic or aromatic side chains caused slow or partial kinase control responses that proved dependent on the connections between core signaling units that promote array cooperativity. In a mutant lacking one of two key adapter-kinase contacts (interface 2), those mutant receptors exhibited more wild-type behaviors. Lastly, mutant receptors with charged amino acid replacements assembled signaling complexes that were locked in kinase-ON (E385K|R) or kinase-OFF (R388D|E) output. The hairpin tips of mutant receptors with these more aberrant signaling properties probably have nonnative structures or dynamic behaviors. Our results suggest that chemoeffector stimuli and adaptational modifications influence the cooperative connections between core signaling units. This array remodeling process may involve activity-dependent changes in the relative strengths of interface 1 and 2 interactions between the CheW and CheA.P5 components of receptor core signaling complexes.
Collapse
|
26
|
Yang W, Cassidy CK, Ames P, Diebolder CA, Schulten K, Luthey-Schulten Z, Parkinson JS, Briegel A. In Situ Conformational Changes of the Escherichia coli Serine Chemoreceptor in Different Signaling States. mBio 2019; 10:e00973-19. [PMID: 31266867 PMCID: PMC6606802 DOI: 10.1128/mbio.00973-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Tsr, the serine chemoreceptor in Escherichia coli, transduces signals from a periplasmic ligand-binding site to its cytoplasmic tip, where it controls the activity of the CheA kinase. To function, Tsr forms trimers of homodimers (TODs), which associate in vivo with the CheA kinase and CheW coupling protein. Together, these proteins assemble into extended hexagonal arrays. Here, we use cryo-electron tomography and molecular dynamics simulation to study Tsr in the context of a near-native array, characterizing its signaling-related conformational changes at both the individual dimer and the trimer level. In particular, we show that individual Tsr dimers within a trimer exhibit asymmetric flexibilities that are a function of the signaling state, highlighting the effect of their different protein interactions at the receptor tips. We further reveal that the dimer compactness of the Tsr trimer changes between signaling states, transitioning at the glycine hinge from a compact conformation in the kinase-OFF state to an expanded conformation in the kinase-ON state. Hence, our results support a crucial role for the glycine hinge: to allow the receptor flexibility necessary to achieve different signaling states while also maintaining structural constraints imposed by the membrane and extended array architecture.IMPORTANCE In Escherichia coli, membrane-bound chemoreceptors, the histidine kinase CheA, and coupling protein CheW form highly ordered chemosensory arrays. In core signaling complexes, chemoreceptor trimers of dimers undergo conformational changes, induced by ligand binding and sensory adaptation, which regulate kinase activation. Here, we characterize by cryo-electron tomography the kinase-ON and kinase-OFF conformations of the E. coli serine receptor in its native array context. We found distinctive structural differences between the members of a receptor trimer, which contact different partners in the signaling unit, and structural differences between the ON and OFF signaling complexes. Our results provide new insights into the signaling mechanism of chemoreceptor arrays and suggest an important functional role for a previously postulated flexible region and glycine hinge in the receptor molecule.
Collapse
Affiliation(s)
- Wen Yang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Physics and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Peter Ames
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry and Center for the Physics of Living Cells, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
27
|
Stalla D, Akkaladevi N, White TA, Hazelbauer GL. Spatial Restrictions in Chemotaxis Signaling Arrays: A Role for Chemoreceptor Flexible Hinges across Bacterial Diversity. Int J Mol Sci 2019; 20:ijms20122989. [PMID: 31248079 PMCID: PMC6628036 DOI: 10.3390/ijms20122989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The chemotactic sensory system enables motile bacteria to move toward favorable environments. Throughout bacterial diversity, the chemoreceptors that mediate chemotaxis are clustered into densely packed arrays of signaling complexes. In these arrays, rod-shaped receptors are in close proximity, resulting in limited options for orientations. A recent geometric analysis of these limitations in Escherichia coli, using published dimensions and angles, revealed that in this species, straight chemoreceptors would not fit into the available space, but receptors bent at one or both of the recently-documented flexible hinges would fit, albeit over a narrow window of shallow bend angles. We have now expanded our geometric analysis to consider variations in receptor length, orientation and placement, and thus to species in which those parameters are known to be, or might be, different, as well as to the possibility of dynamic variation in those parameters. The results identified significant limitations on the allowed combinations of chemoreceptor dimensions, orientations and placement. For most combinations, these limitations excluded straight chemoreceptors, but allowed receptors bent at a flexible hinge. Thus, our analysis identifies across bacterial diversity a crucial role for chemoreceptor flexible hinges, in accommodating the limitations of molecular crowding in chemotaxis core signaling complexes and their arrays.
Collapse
Affiliation(s)
- David Stalla
- Electron Microscopy Core Facility, W117 Veterinary Medicine Building, 1600 East Rollins St., University of Missouri, Columbia, MO 65211, USA.
| | - Narahari Akkaladevi
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| | - Tommi A White
- Electron Microscopy Core Facility, W117 Veterinary Medicine Building, 1600 East Rollins St., University of Missouri, Columbia, MO 65211, USA.
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald L Hazelbauer
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
28
|
Jung K, Fabiani F, Hoyer E, Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biol 2019; 8:rsob.180023. [PMID: 29695618 PMCID: PMC5936718 DOI: 10.1098/rsob.180023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Every living cell possesses numerous transmembrane signalling systems that receive chemical and physical stimuli from the environment and transduce this information into an intracellular signal that triggers some form of cellular response. As unicellular organisms, bacteria require these systems for survival in rapidly changing environments. The receptors themselves act as ‘sensory organs’, while subsequent signalling circuits can be regarded as forming a ‘neural network’ that is involved in decision making, adaptation and ultimately in ensuring survival. Bacteria serve as useful biosensors in industry and clinical diagnostics, in addition to producing drugs for therapeutic purposes. Therefore, there is a great demand for engineered bacterial strains that contain transmembrane signalling systems with high molecular specificity, sensitivity and dose dependency. In this review, we address the complexity of transmembrane signalling systems and discuss principles to rewire receptors and their signalling outputs.
Collapse
Affiliation(s)
- Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Florian Fabiani
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
29
|
Bacterial chemotaxis coupling protein: Structure, function and diversity. Microbiol Res 2019; 219:40-48. [DOI: 10.1016/j.micres.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023]
|
30
|
Abstract
The technique of all-codon mutagenesis can generate mutants that represent all possible amino acid replacements at any particular residue in a protein. It is thus a powerful tool to probe structure-function relationships in proteins of interest. In this chapter, we describe how we used all-codon mutagenesis to obtain mutants of the Escherichia coli serine receptor Tsr with amino acid replacements at residue F373, a functionally important site in this protein. We provide general protocols for mutagenesis of a target codon in a plasmid-borne gene and for the selection and screening of the resultant mutants. These techniques should be adaptable for the study of a variety of bacterial proteins.
Collapse
|
31
|
Duda T, Pertzev A, Ravichandran S, Sharma RK. Ca 2+-Sensor Neurocalcin δ and Hormone ANF Modulate ANF-RGC Activity by Diverse Pathways: Role of the Signaling Helix Domain. Front Mol Neurosci 2018; 11:430. [PMID: 30546296 PMCID: PMC6278801 DOI: 10.3389/fnmol.2018.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Sarangan Ravichandran
- Advanced Biomedical Computational Sciences Group, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Leidos Biomedical Research Inc., Fredrick, MD, United States
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| |
Collapse
|
32
|
Abstract
Microorganisms can move towards favorable growth conditions as a response to environmental stimuli. This process requires a motility structure and a system to direct the movement. For swimming motility, archaea employ a rotating filament, the archaellum. This archaea-specific structure is functionally equivalent, but structurally different, from the bacterial flagellum. To control the directionality of movement, some archaea make use of the chemotaxis system, which is used for the same purpose by bacteria. Over the past decades, chemotaxis has been studied in detail in several model bacteria. In contrast, archaeal chemotaxis is much less explored and largely restricted to analyses in halophilic archaea. In this review, we summarize the available information on archaeal taxis. We conclude that archaeal chemotaxis proteins function similarly as their bacterial counterparts. However, because the motility structures are fundamentally different, an archaea-specific docking mechanism is required, for which initial experimental data have only recently been obtained.
Collapse
|
33
|
Orekhov P, Bothe A, Steinhoff HJ, Shaitan KV, Raunser S, Fotiadis D, Schlesinger R, Klare JP, Engelhard M. Sensory Rhodopsin I and Sensory Rhodopsin II Form Trimers of Dimers in Complex with their Cognate Transducers. Photochem Photobiol 2018; 93:796-804. [PMID: 28500714 DOI: 10.1111/php.12763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
Archaeal photoreceptors consist of sensory rhodopsins in complex with their cognate transducers. After light excitation, a two-component signaling chain is activated, which is homologous to the chemotactic signaling cascades in enterobacteria. The latter system has been studied in detail. From structural and functional studies, a picture emerges which includes stable signaling complexes, which assemble to receptor arrays displaying hexagonal structural elements. At this higher order structural level, signal amplification and sensory adaptation occur. Here, we describe electron microscopy data, which show that also the archaeal phototaxis receptors sensory rhodopsin I and II in complex with their cognate transducers can form hexagonal lattices even in the presence of a detergent. This result could be confirmed by molecular dynamics calculations, which revealed similar structural elements. Calculations of the global modes of motion displayed one mode, which resembles the "U"-"V" transition of the NpSRII:NpHtrII complex, which was previously argued to represent a functionally relevant global conformational change accompanying the activation process [Ishchenko et al. (2013) J. Photochem. Photobiol. B 123, 55-58]. A model of cooperativity at the transmembrane level is discussed.
Collapse
Affiliation(s)
- Philipp Orekhov
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Arne Bothe
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | - Stefan Raunser
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Ramona Schlesinger
- Department of Physics, Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Martin Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
34
|
Bi S, Jin F, Sourjik V. Inverted signaling by bacterial chemotaxis receptors. Nat Commun 2018; 9:2927. [PMID: 30050034 PMCID: PMC6062612 DOI: 10.1038/s41467-018-05335-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/02/2018] [Indexed: 11/09/2022] Open
Abstract
Microorganisms use transmembrane sensory receptors to perceive a wide range of environmental factors. It is unclear how rapidly the sensory properties of these receptors can be modified when microorganisms adapt to novel environments. Here, we demonstrate experimentally that the response of an Escherichia coli chemotaxis receptor to its chemical ligands can be easily inverted by mutations at several sites along receptor sequence. We also perform molecular dynamics simulations to shed light on the mechanism of the transmembrane signaling by E. coli chemoreceptors. Finally, we use receptors with inverted signaling to map determinants that enable the same receptor to sense multiple environmental factors, including metal ions, aromatic compounds, osmotic pressure, and salt ions. Our findings demonstrate high plasticity of signaling and provide further insights into the mechanisms of stimulus sensing and processing by bacterial chemoreceptors. Bacteria use chemotaxis receptors to perceive environmental factors. Here, the authors show that mutations in a chemotaxis receptor can invert the sensory response, e.g. from attractant to repellent, and use these mutants to map regions that enable the receptor to sense multiple environmental factors.
Collapse
Affiliation(s)
- Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Fan Jin
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany.
| |
Collapse
|
35
|
Namba T, Shibata T. Propagation of regulatory fluctuations induces coordinated switching of flagellar motors in chemotaxis signaling pathway of single bacteria. J Theor Biol 2018; 454:367-375. [PMID: 29969599 DOI: 10.1016/j.jtbi.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023]
Abstract
The random motion of E. coli is driven by multiple flagella motors. When all motors rotate in the counter clockwise direction, the bacteria swims smoothly. A recent experimental report by Terasawa et al. [Biophys J,100,2193,(2011)] demonstrated that a coordination of the motors can occur through signaling pathways, and perturbation of a regulatory molecule disrupted the coordination. Here, we develop a mathematical model to show that a large temporal fluctuation in the regulator concentration can induce a correlated switching of the multiple motors. Such a large fluctuation is generated by a chemotaxis receptor cluster in unilateral cell pole, which then exhibits a spatial propagation through the cytoplasm from the receptor position to the motor around cell periphery. Our numerical simulation successfully reproduces synchronized switching and the lag time in the motions of two distant motors, which has been observed experimentally. We further show that the large fluctuation in the regulator concentration at the motor positions can expand the dynamic range that the motor can respond, which confers robustness to the signaling system.
Collapse
Affiliation(s)
- Toshinori Namba
- Department of Mathematical and Life Sciences, Hiroshima University, Higashihiroshima, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashihiroshima, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
36
|
Membrane Curvature and the Tol-Pal Complex Determine Polar Localization of the Chemoreceptor Tar in Escherichia coli. J Bacteriol 2018; 200:JB.00658-17. [PMID: 29463603 DOI: 10.1128/jb.00658-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/13/2018] [Indexed: 01/15/2023] Open
Abstract
Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years, different mechanisms have been put forward to explain this polar localization, including stochastic clustering, membrane curvature-driven localization, interactions with the Tol-Pal complex, and nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at the cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterized by strong membrane curvature. Chemoreceptors, like Tar, form trimers of dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favorable, as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or the cell poles. These findings favor a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex.IMPORTANCE Bacteria have exquisite mechanisms to sense and adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli and found that membrane curvature at cell division sites and the Tol-Pal protein complex localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell.
Collapse
|
37
|
Waite AJ, Frankel NW, Emonet T. Behavioral Variability and Phenotypic Diversity in Bacterial Chemotaxis. Annu Rev Biophys 2018; 47:595-616. [PMID: 29618219 DOI: 10.1146/annurev-biophys-062215-010954] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Living cells detect and process external signals using signaling pathways that are affected by random fluctuations. These variations cause the behavior of individual cells to fluctuate over time (behavioral variability) and generate phenotypic differences between genetically identical individuals (phenotypic diversity). These two noise sources reduce our ability to predict biological behavior because they diversify cellular responses to identical signals. Here, we review recent experimental and theoretical advances in understanding the mechanistic origin and functional consequences of such variation in Escherichia coli chemotaxis-a well-understood model of signal transduction and behavior. After briefly summarizing the architecture and logic of the chemotaxis system, we discuss determinants of behavior and chemotactic performance of individual cells. Then, we review how cell-to-cell differences in protein abundance map onto differences in individual chemotactic abilities and how phenotypic variability affects the performance of the population. We conclude with open questions to be addressed by future research.
Collapse
Affiliation(s)
- Adam James Waite
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Current affiliation: Calico Life Sciences, LLC, South San Francisco, California 94080
| | - Nicholas W Frankel
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Department of Physics, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
38
|
Flexible Hinges in Bacterial Chemoreceptors. J Bacteriol 2018; 200:JB.00593-17. [PMID: 29229700 DOI: 10.1128/jb.00593-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
Transmembrane bacterial chemoreceptors are extended, rod-shaped homodimers with ligand-binding sites at one end and interaction sites for signaling complex formation and histidine kinase control at the other. There are atomic-resolution structures of chemoreceptor fragments but not of intact, membrane-inserted receptors. Electron tomography of in vivo signaling complex arrays lack distinct densities for chemoreceptor rods away from the well-ordered base plate region, implying structural heterogeneity. We used negative staining, transmission electron microscopy, and image analysis to characterize the molecular shapes of intact homodimers of the Escherichia coli aspartate receptor Tar rendered functional by insertion into nanodisc-provided E. coli lipid bilayers. Single-particle analysis plus tomography of particles in a three-dimensional matrix revealed two bend loci in the chemoreceptor cytoplasmic domain, (i) a short, two-strand gap between the membrane-proximal, four-helix-bundle HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemoreceptors, and phosphatases) domain and the membrane-distal, four-helix coiled coil and (ii) aligned glycines in the extended, four-helix coiled coil, the position of a bend noted in the previous X-ray structure of a receptor fragment. Our images showed HAMP bends from 0° to ∼13° and glycine bends from 0° to ∼20°, suggesting that the loci are flexible hinges. Variable hinge bending explains indistinct densities for receptor rods outside the base plate region in subvolume averages of chemotaxis arrays. Bending at flexible hinges was not correlated with the chemoreceptor signaling state. However, our analyses showed that chemoreceptor bending avoided what would otherwise be steric clashes between neighboring receptors that would block the formation of core signaling complexes and chemoreceptor arrays.IMPORTANCE This work provides new information about the shape of transmembrane bacterial chemoreceptors, crucial components in the molecular machinery of bacterial chemotaxis. We found that intact, lipid-bilayer-inserted, and thus functional homodimers of the Escherichia coli chemoreceptor Tar exhibited bends at two flexible hinges along their ∼200-Å, rod-like, cytoplasmic domains. One hinge was at the short, two-strand gap between the membrane-proximal, four-helix-bundle HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemoreceptors, and phosphatases) domain and the membrane-distal, four-helix coiled coil. The other hinge was at aligned glycines in the extended, four-helix coiled coil, where a bend had been identified in the X-ray structure of a chemoreceptor fragment. Our analyses showed that flexible hinge bending avoided structural clashes in chemotaxis core complexes and their arrays.
Collapse
|
39
|
Studdert CA, Massazza DA. Analyzing Chemoreceptor Interactions In Vivo with the Trifunctional Cross-Linker TMEA. Methods Mol Biol 2018; 1729:159-170. [PMID: 29429091 DOI: 10.1007/978-1-4939-7577-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemoreceptors are dimeric proteins that contain a periplasmic or extracellular domain for ligand binding and an extremely well-conserved cytoplasmic domain for output response control. This latter domain consists in a long α-helical hairpin that forms a four-helix coiled-coil bundle in the dimer. Dimers associate into trimers of dimers in the crystal structure obtained for the cytoplasmic domain of the Escherichia coli serine chemoreceptor, Tsr. Further studies confirmed that this crystal structure reflects the basic unit within the in vivo organization of chemoreceptors. The trimers of dimers form large and stable chemoreceptor clusters in all the prokaryotes that have been studied. Here, we describe the use of TMEA, a trifunctional cross-linker that reacts with sulfhydryl groups, as a tool to study the geometry and dynamics of the interaction between receptors of the same or different types in living cells.
Collapse
Affiliation(s)
- Claudia A Studdert
- Instituto de Agrobiotecnología del Litoral (IAL), Conicet-Universidad Nacional del Litoral, CCT, Santa Fe, Argentina.
| | - Diego A Massazza
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Conicet-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
40
|
Minin KA, Zhmurov A, Marx KA, Purohit PK, Barsegov V. Dynamic Transition from α-Helices to β-Sheets in Polypeptide Coiled-Coil Motifs. J Am Chem Soc 2017; 139:16168-16177. [PMID: 29043794 DOI: 10.1021/jacs.7b06883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We carried out dynamic force manipulations in silico on a variety of coiled-coil protein fragments from myosin, chemotaxis receptor, vimentin, fibrin, and phenylalanine zippers that vary in size and topology of their α-helical packing. When stretched along the superhelical axis, all superhelices show elastic, plastic, and inelastic elongation regimes and undergo a dynamic transition from the α-helices to the β-sheets, which marks the onset of plastic deformation. Using the Abeyaratne-Knowles formulation of phase transitions, we developed a new theoretical methodology to model mechanical and kinetic properties of protein coiled-coils under mechanical nonequilibrium conditions and to map out their energy landscapes. The theory was successfully validated by comparing the simulated and theoretical force-strain spectra. We derived the scaling laws for the elastic force and the force for α-to-β transition, which can be used to understand natural proteins' properties as well as to rationally design novel biomaterials of required mechanical strength with desired balance between stiffness and plasticity.
Collapse
Affiliation(s)
- Kirill A Minin
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
| | - Artem Zhmurov
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Valeri Barsegov
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia.,Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States
| |
Collapse
|
41
|
Machuca MA, Johnson KS, Liu YC, Steer DL, Ottemann KM, Roujeinikova A. Helicobacter pylori chemoreceptor TlpC mediates chemotaxis to lactate. Sci Rep 2017; 7:14089. [PMID: 29075010 PMCID: PMC5658362 DOI: 10.1038/s41598-017-14372-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
It is recently appreciated that many bacterial chemoreceptors have ligand-binding domains (LBD) of the dCACHE family, a structure with two PAS-like subdomains, one membrane-proximal and the other membrane-distal. Previous studies had implicated only the membrane-distal subdomain in ligand recognition. Here, we report the 2.2 Å resolution crystal structure of dCACHE LBD of the Helicobacter pylori chemoreceptor TlpC. H. pylori tlpC mutants are outcompeted by wild type during stomach colonisation, but no ligands had been mapped to this receptor. The TlpC dCACHE LBD has two PAS-like subdomains, as predicted. The membrane-distal one possesses a long groove instead of a small, well-defined pocket. The membrane-proximal subdomain, in contrast, had a well-delineated pocket with a small molecule that we identified as lactate. We confirmed that amino acid residues making contact with the ligand in the crystal structure-N213, I218 and Y285 and Y249-were required for lactate binding. We determined that lactate is an H. pylori chemoattractant that is sensed via TlpC with a K D = 155 µM. Lactate is utilised by H. pylori, and our work suggests that this pathogen seeks out lactate using chemotaxis. Furthermore, our work suggests that dCACHE domain proteins can utilise both subdomains for ligand recognition.
Collapse
Affiliation(s)
- Mayra A Machuca
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Kevin S Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Yu C Liu
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - David L Steer
- Monash Biomedical Proteomics Facility, Monash University, Clayton, Victoria, 3800, Australia
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
42
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
43
|
Alvarado A, Kjær A, Yang W, Mann P, Briegel A, Waldor MK, Ringgaard S. Coupling chemosensory array formation and localization. eLife 2017; 6:31058. [PMID: 29058677 PMCID: PMC5706961 DOI: 10.7554/elife.31058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis proteins organize into large, highly ordered, chemotactic signaling arrays, which in Vibrio species are found at the cell pole. Proper localization of signaling arrays is mediated by ParP, which tethers arrays to a cell pole anchor, ParC. Here we show that ParP’s C-terminus integrates into the core-unit of signaling arrays through interactions with MCP-proteins and CheA. Its intercalation within core-units stimulates array formation, whereas its N-terminal interaction domain enables polar recruitment of arrays and facilitates its own polar localization. Linkage of these domains within ParP couples array formation and localization and results in controlled array positioning at the cell pole. Notably, ParP’s integration into arrays modifies its own and ParC’s subcellular localization dynamics, promoting their polar retention. ParP serves as a critical nexus that regulates the localization dynamics of its network constituents and drives the localized assembly and stability of the chemotactic machinery, resulting in proper cell pole development. Many bacteria live in a liquid environment and explore their surroundings by swimming. When in search of food, bacteria are able to swim toward the highest concentration of food molecules in the environment by a process called chemotaxis. Proteins important for chemotaxis group together in large networks called chemotaxis arrays. In the bacterium Vibrio cholerae chemotaxis arrays are placed at opposite ends (at the “cell poles”) of the bacterium by a protein called ParP. This makes sure that when the bacterium divides, each new cell receives a chemotaxis array and can immediately search for food. In cells that lack ParP, the chemotaxis arrays are no longer placed correctly at the cell poles and the bacteria search for food much less effectively. To understand how ParP is able to direct chemotaxis arrays to the cell poles in V. cholerae Alvarado et al. searched for partner proteins that could help ParP position the arrays. The search revealed that ParP interacts with other proteins in the chemotaxis arrays. This enables ParP to integrate into the arrays and stimulate new arrays to form. Alvarado et al. also discovered that ParP consists of two separate parts that have different roles. One part directs ParP to the cell pole while the other part integrates ParP into the arrays. By performing both of these roles, ParP links the positioning of the arrays at the cell pole to their formation at this site. The findings presented by Alvarado et al. open many further questions. For instance, it is not understood how ParP affects how other chemotaxis proteins within the arrays interact with each other. As well as enabling many species of bacteria to spread through their environment, chemotaxis is also important for the disease-causing properties of many human pathogens – like V. cholerae. As a result, learning how chemotaxis is regulated could potentially identify new ways to stop the spread of infectious bacteria and prevent human infections.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Kjær
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Wen Yang
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
44
|
Kashefi M, Thompson LK. Signaling-Related Mobility Changes in Bacterial Chemotaxis Receptors Revealed by Solid-State NMR. J Phys Chem B 2017; 121:8693-8705. [PMID: 28816463 PMCID: PMC5613836 DOI: 10.1021/acs.jpcb.7b06475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacteria employ remarkable
membrane-bound nanoarrays to sense their
environment and direct their swimming. Arrays consist of chemotaxis
receptor trimers of dimers that are bridged at their membrane-distal
tips by rings of two cytoplasmic proteins, a kinase CheA and a coupling
protein CheW. It is not clear how ligand binding to the periplasmic
domain of the receptor deactivates the CheA kinase bound to the cytoplasmic
tip ∼300 Å away, but the mechanism is thought to involve
changes in dynamics within the cytoplasmic domain. To test these proposals,
we applied solid-state NMR mobility-filtered experiments to functional
complexes of the receptor cytoplasmic fragment (U–13C,15N-CF), CheA, and CheW. Assembly of these proteins
into native-like, homogeneous arrays is mediated by either vesicle
binding or molecular crowding agents, and paramagnetic relaxation
enhancement is used to overcome sensitivity challenges in these large
complexes. INEPT spectra reveal that a significant fraction of the
receptor is dynamic on the nanosecond or shorter time scale, and these
dynamics change with signaling state. The mobile regions are identified
through a combination of biochemical and NMR approaches (protein truncations
and unique chemical shifts). The INEPT spectra are consistent with
an asymmetric mobility in the methylation region (N-helix mobility
≫ C-helix mobility) and reveal an increase in the mobility
of the N-helix in the kinase-off state. This finding identifies functionally
relevant dynamics in the receptor, and suggests that this N-helix
segment plays a key role in propagating the signal.
Collapse
Affiliation(s)
- Maryam Kashefi
- Department of Chemistry, ‡Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Lynmarie K Thompson
- Department of Chemistry, ‡Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
45
|
Salah Ud-Din AIM, Roujeinikova A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci 2017; 74:3293-3303. [PMID: 28409190 PMCID: PMC11107704 DOI: 10.1007/s00018-017-2514-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
Chemotaxis is the directed motility by means of which microbes sense chemical cues and relocate towards more favorable environments. Methyl-accepting chemotaxis proteins (MCPs) are the most common receptors in bacteria and archaea. They are arranged as trimers of dimers that, in turn, form hexagonal arrays in the cytoplasmic membrane or in the cytoplasm. Several different classes of MCPs have been identified according to their ligand binding region and membrane topology. MCPs have been further classified based on the length and sequence conservation of their cytoplasmic domains. Clusters of membrane-embedded MCPs often localize to the poles of the cell, whereas cytoplasmic MCPs can be targeted to the poles or distributed throughout the cell body. MCPs play an important role in cell survival, pathogenesis, and biodegradation. Bacterial adaptation to diverse environmental conditions promotes diversity among the MCPs. This review summarizes structure, classification, and structure-activity relationship of the known MCP receptors, with a brief overview of the signal transduction mechanisms in bacteria and archaea.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
46
|
Class III Histidine Kinases: a Recently Accessorized Kinase Domain in Putative Modulators of Type IV Pilus-Based Motility. J Bacteriol 2017; 199:JB.00218-17. [PMID: 28484044 DOI: 10.1128/jb.00218-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/28/2017] [Indexed: 01/02/2023] Open
Abstract
Histidine kinases are key components of regulatory systems that enable bacteria to respond to environmental changes. Two major classes of histidine kinases are recognized on the basis of their modular design: classical (HKI) and chemotaxis specific (HKII). Recently, a new type of histidine kinase that appeared to have features of both HKIs and HKIIs was identified and termed HKIII; however, the details of HKIII's relationship to other two classes of histidine kinases, their function, and evolutionary history remain unknown. Here, we carried out genomic, phylogenetic, and protein sequence analyses that allowed us to reveal the unusual evolutionary history of this protein family, formalize its distinctive features, and propose its putative function. HKIIIs are characterized by the presence of sensory domains and the lack of a dimerization domain, which is typically present in all histidine kinases. In addition to a single-domain response regulator, HKIII signal transduction systems utilize CheX phosphatase and, in many instances, an unorthodox soluble chemoreceptor that are usual components of chemotaxis signal transduction systems. However, many HKIII genes are found in genomes completely lacking chemotaxis genes, thus decoupling their function from chemotaxis. By contrast, all HKIII-containing genomes also contain pilT, a marker gene for bacterial type IV pilus-based motility, whose regulation is proposed as a putative function for HKIII. These signal transduction systems have a narrow phyletic distribution but are present in many emerging and opportunistic pathogens, thus offering an attractive potential target for future antimicrobial drug design.IMPORTANCE Bacteria adapt to their environment and their hosts by detecting signals and regulating their cellular functions accordingly. Here, we describe a largely unexplored family of signal transduction histidine kinases, called HKIII, that have a unique modular design. While they are currently identified in a relatively short list of bacterial species, this list contains many emerging pathogens. We show that HKIIIs likely control bacterial motility across solid surfaces, which is a key virulence factor in many bacteria, including those causing severe infections. Full understanding of this putative function may help in designing effective drugs against pathogens that will not affect the majority of the beneficial human microbiome.
Collapse
|
47
|
Pedetta A, Massazza DA, Herrera Seitz MK, Studdert CA. Mutational Replacements at the “Glycine Hinge” of the Escherichia coli Chemoreceptor Tsr Support a Signaling Role for the C-Helix Residue. Biochemistry 2017; 56:3850-3862. [DOI: 10.1021/acs.biochem.7b00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Pedetta
- Instituto
de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Buenos Aires, Argentina
| | - Diego Ariel Massazza
- Instituto
Nacional de Tecnología en Materiales, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Buenos Aires, Argentina
| | - María Karina Herrera Seitz
- Instituto
de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Buenos Aires, Argentina
| | - Claudia Alicia Studdert
- Instituto
de Agrobiotecnología del Litoral, CONICET-Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| |
Collapse
|
48
|
Draper W, Liphardt J. Origins of chemoreceptor curvature sorting in Escherichia coli. Nat Commun 2017; 8:14838. [PMID: 28322223 PMCID: PMC5364426 DOI: 10.1038/ncomms14838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems.
Collapse
Affiliation(s)
- Will Draper
- Biophysics Graduate Group and Department of Physics, University of California, Berkeley, California 94720, USA.,Bioengineering, Shriram Center for Bioengineering &Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Jan Liphardt
- Biophysics Graduate Group and Department of Physics, University of California, Berkeley, California 94720, USA.,Bioengineering, Shriram Center for Bioengineering &Chemical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
49
|
Briegel A, Jensen G. Progress and Potential of Electron Cryotomography as Illustrated by Its Application to Bacterial Chemoreceptor Arrays. Annu Rev Biophys 2017; 46:1-21. [PMID: 28301773 DOI: 10.1146/annurev-biophys-070816-033555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron cryotomography (ECT) can produce three-dimensional images of biological samples such as intact cells in a near-native, frozen-hydrated state to macromolecular resolution (∼4 nm). Because one of its first and most common applications has been to bacterial chemoreceptor arrays, ECT's contributions to this field illustrate well its past, present, and future. While X-ray crystallography and nuclear magnetic resonance spectroscopy have revealed the structures of nearly all the individual components of chemoreceptor arrays, ECT has revealed the mesoscale information about how the components are arranged within cells. Receptors assemble into a universally conserved 12-nm hexagonal lattice linked by CheA/CheW rings. Membrane-bound arrays are single layered; cytoplasmic arrays are double layered. Images of in vitro reconstitutions have led to a model of how arrays assemble, and images of native arrays in different states have shown that the conformational changes associated with signal transduction are subtle, constraining models of activation and system cooperativity. Phase plates, better detectors, and more stable stages promise even higher resolution and broader application in the near future.
Collapse
Affiliation(s)
- Ariane Briegel
- Department of Biology, Leiden University, 2333 Leiden, Netherlands
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; .,Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
50
|
Lai RZ, Gosink KK, Parkinson JS. Signaling Consequences of Structural Lesions that Alter the Stability of Chemoreceptor Trimers of Dimers. J Mol Biol 2017; 429:823-835. [PMID: 28215934 DOI: 10.1016/j.jmb.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/18/2022]
Abstract
Residues E402 and R404 of the Escherichia coli serine chemoreceptor, Tsr, appear to form a salt bridge that spans the interfaces between neighboring dimers in the Tsr trimer of dimers, a key structural component of receptor core signaling complexes. To assess their functional roles, we constructed full sets of single amino acid replacement mutants at E402 and R404 and characterized their signaling behaviors with a suite of in vivo assays. Our results indicate that the E402 and R404 residues of Tsr play their most critical signaling roles at their inner locations near the trimer axis where they likely participate in stabilizing the trimer-of-dimer packing and the kinase-ON state of core signaling complexes. Mutant receptors with a variety of side-chain replacements still accessed both the ON and OFF signaling states, suggesting that core signaling complexes produce kinase activity over a range of receptor conformations and dynamic motions. Similarly, the kinase-OFF state may not be a discrete conformation but rather a range of structures outside the range of those suitable for kinase activation. Consistent with this idea, some structural lesions at both E402 and R404 produced signaling behaviors that are not compatible with discrete two-state models of core complex signaling states. Those lesions might stabilize intermediate receptor conformations along the OFF-ON energy landscape. Amino acid replacements produced different constellations of signaling defects at each residue, indicating that they play distinct structure-function roles. R404, but not E402, was critical for high signal cooperativity in the receptor array.
Collapse
Affiliation(s)
- Run-Zhi Lai
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - Khoosheh K Gosink
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - John S Parkinson
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|