1
|
Lozano D, López JM, Jiménez S, Morona R, Ruíz V, Martínez A, Moreno N. Expression of SATB1 and SATB2 in the brain of bony fishes: what fish reveal about evolution. Brain Struct Funct 2023; 228:921-945. [PMID: 37002478 PMCID: PMC10147777 DOI: 10.1007/s00429-023-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
AbstractSatb1 and Satb2 belong to a family of homeodomain proteins with highly conserved functional and regulatory mechanisms and posttranslational modifications in evolution. However, although their distribution in the mouse brain has been analyzed, few data exist in other non-mammalian vertebrates. In the present study, we have analyzed in detail the sequence of SATB1 and SATB2 proteins and the immunolocalization of both, in combination with additional neuronal markers of highly conserved populations, in the brain of adult specimens of different bony fish models at key evolutionary points of vertebrate diversification, in particular including representative species of sarcopterygian and actinopterygian fishes. We observed a striking absence of both proteins in the pallial region of actinopterygians, only detected in lungfish, the only sarcopterygian fish. In the subpallium, including the amygdaloid complex, or comparable structures, we identified that the detected expressions of SATB1 and SATB2 have similar topologies in the studied models. In the caudal telencephalon, all models showed significant expression of SATB1 and SATB2 in the preoptic area, including the acroterminal domain of this region, where the cells were also dopaminergic. In the alar hypothalamus, all models showed SATB2 but not SATB1 in the subparaventricular area, whereas in the basal hypothalamus the cladistian species and the lungfish presented a SATB1 immunoreactive population in the tuberal hypothalamus, also labeled with SATB2 in the latter and colocalizing with the gen Orthopedia. In the diencephalon, all models, except the teleost fish, showed SATB1 in the prethalamus, thalamus and pretectum, whereas only lungfish showed also SATB2 in prethalamus and thalamus. At the midbrain level of actinopterygian fish, the optic tectum, the torus semicircularis and the tegmentum harbored populations of SATB1 cells, whereas lungfish housed SATB2 only in the torus and tegmentum. Similarly, the SATB1 expression in the rhombencephalic central gray and reticular formation was a common feature. The presence of SATB1 in the solitary tract nucleus is a peculiar feature only observed in non-teleost actinopterygian fishes. At these levels, none of the detected populations were catecholaminergic or serotonergic. In conclusion, the protein sequence analysis revealed a high degree of conservation of both proteins, especially in the functional domains, whereas the neuroanatomical pattern of SATB1 and SATB2 revealed significant differences between sarcopterygians and actinopterygians, and these divergences may be related to the different functional involvement of both in the acquisition of various neural phenotypes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Víctor Ruíz
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ana Martínez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Dynamics of nuclear matrix attachment regions during 5 th instar posterior silk gland development in Bombyx mori. BMC Genomics 2022; 23:247. [PMID: 35361117 PMCID: PMC8973518 DOI: 10.1186/s12864-022-08446-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Chromatin architecture is critical for gene expression during development. Matrix attachment regions (MARs) control and regulate chromatin dynamics. The position of MARs in the genome determines the expression of genes in the organism. In this study, we set out to elucidate how MARs temporally regulate the expression of the fibroin heavy chain (FIBH) gene during development. We addressed this by identifying MARs and studying their distribution and differentiation, in the posterior silk glands of Bombyx mori during 5th instar development. Results Of the MARs identified on three different days, 7.15% MARs were common to all 3 days, whereas, 1.41, 19.27 and 52.47% MARs were unique to day 1, day 5, and day 7, respectively highlighting the dynamic nature of the matrix associated DNA. The average chromatin loop length based on the chromosome wise distribution of MARs and the distances between these MAR regions decreased from day 1 (253.91 kb) to day 5 (73.54 kb) to day 7 (39.19 kb). Further significant changes in the MARs in the vicinity of the FIBH gene were found during different days of 5th instar development which implied their role in the regulation and expression of the FIBH gene. Conclusions The presence of MARs in the flanking regions of genes found to exhibit differential expression during 5th instar development indicates their possible role in the regulation of their expression. This reiterates the importance of MARs in the genomic functioning as regulators of the molecular mechanisms in the nucleus. This is the first study that takes into account the tissue specific genome-wide MAR association and the potential role of these MARs in developmentally regulated gene expression. The current study lays a foundation to understand the genome wide regulation of chromatin during development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08446-3.
Collapse
|
3
|
Duer M, Cobb AM, Shanahan CM. DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification. Arterioscler Thromb Vasc Biol 2020; 40:e193-e202. [PMID: 32404005 DOI: 10.1161/atvbaha.120.313792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.
Collapse
Affiliation(s)
- Melinda Duer
- From the Department of Chemistry, University of Cambridge, United Kingdom (M.D.)
| | - Andrew M Cobb
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| |
Collapse
|
4
|
Razin SV, Gavrilov AA. Structural–Functional Domains of the Eukaryotic Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:302-312. [DOI: 10.1134/s0006297918040028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/27/2017] [Indexed: 08/30/2023]
|
5
|
Hagedorn C, Gogol-Döring A, Schreiber S, Epplen JT, Lipps HJ. Genome-wide profiling of S/MAR-based replicon contact sites. Nucleic Acids Res 2017; 45:7841-7854. [PMID: 28609784 PMCID: PMC5570033 DOI: 10.1093/nar/gkx522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/05/2017] [Indexed: 11/14/2022] Open
Abstract
Autonomously replicating vectors represent a simple and versatile model system for genetic modifications, but their localization in the nucleus and effect on endogenous gene expression is largely unknown. Using circular chromosome conformation capture we mapped genomic contact sites of S/MAR-based replicons in HeLa cells. The influence of cis-active sequences on genomic localization was assessed using replicons containing either an insulator sequence or an intron. While the original and the insulator-containing replicons displayed distinct contact sites, the intron-containing replicon showed a rather broad genomic contact pattern. Our results indicate a preference for certain chromatin structures and a rather non-dynamic behaviour during mitosis. Independent of inserted cis-active elements established vector molecules reside preferentially within actively transcribed regions, especially within promoter sequences and transcription start sites. However, transcriptome analyses revealed that established S/MAR-based replicons do not alter gene expression profiles of host genome. Knowledge of preferred contact sites of exogenous DNA, e.g. viral or non-viral episomes, contribute to our understanding of episome behaviour in the nucleus and can be used for vector improvement and guiding of DNA sequences to specific subnuclear sites.
Collapse
Affiliation(s)
- Claudia Hagedorn
- University of Witten/Herdecke, ZBAF, Institute of Cell Biology, Stockumer Strasse 10, 58453 Witten, Germany
| | - Andreas Gogol-Döring
- Technische Hochschule Mittelhessen (University of Applied Sciences), Department of Bioinformatics, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Sabrina Schreiber
- Department of Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jörg T Epplen
- University of Witten/Herdecke, ZBAF, Institute of Cell Biology, Stockumer Strasse 10, 58453 Witten, Germany.,Department of Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hans J Lipps
- University of Witten/Herdecke, ZBAF, Institute of Cell Biology, Stockumer Strasse 10, 58453 Witten, Germany
| |
Collapse
|
6
|
3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma 2016; 126:59-69. [DOI: 10.1007/s00412-016-0604-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
7
|
Razin SV, Borunova VV, Iarovaia OV, Vassetzky YS. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus. BIOCHEMISTRY (MOSCOW) 2015; 79:608-18. [PMID: 25108324 DOI: 10.1134/s0006297914070037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
8
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
9
|
Abstract
A mathematical model is devised to study the diffusion of mRNA in the nucleus from the site of synthesis to a nuclear pore where it is exported to the cytoplasm. This study examines the role that nuclear structure can play in determining the kinetics of export by considering models in which elements of the nuclear skeleton and confinement by chromatin direct the mRNA movement. As a rule, a dense chromatin layer favours rapid export by reducing the effective volume for diffusion. However, it may also result in a heavy tail in the export time distribution because of the low mobility of molecules that accidentally find their way deep into the dense layer. An anisotropic solid-state transport system can also assist export. There exist both an optimal ratio of the anisotropy and an optimal depth of the solid-state transport layer that favour rapid export.
Collapse
Affiliation(s)
- M R Roussel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada.
| | | |
Collapse
|
10
|
Chun Y, Park B, Koh W, Lee S, Cheon Y, Kim R, Che L, Lee S. New centromeric component CENP-W is an RNA-associated nuclear matrix protein that interacts with nucleophosmin/B23 protein. J Biol Chem 2011; 286:42758-42769. [PMID: 22002061 DOI: 10.1074/jbc.m111.228411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CENP-W was originally identified as a putative oncogene, cancer-upregulated gene 2 (CUG2) that was commonly up-regulated in many cancer tissues. Recently, CENP-W has also been identified as a new centromeric component that interacts with CENP-T. As a complex with CENP-T, CENP-W plays crucial roles in assembly of the functional kinetochore complex. In this study, the subnuclear localization of CENP-W was extensively analyzed using various approaches. We found that ectopically expressed CENP-W primarily accumulated in the nucleolus and remained substantially associated with the nucleolus in stable cells. The following fractionation study also showed that CENP-W is associated with RNA as well as DNA. Moreover, a considerable amount of CENP-W was found in the nuclear mesh-like structure, nuclear matrix, possibly indicating that CENP-W participates in diverse subnuclear activities. Finally, biochemical affinity binding analysis revealed that CENP-W specifically interacts with the nucleolar phosphoprotein, nucleophosmin (B23). Depletion of cellular B23 by siRNA treatment induced a dramatic decrease of CENP-W stability and severe mislocalization during prophase. Our data proposed that B23 may function in the assembly of the kinetochore complex by interacting with CENP-W during interphase.
Collapse
Affiliation(s)
- Younghwa Chun
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea
| | - Byoungwoo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea
| | - Wansoo Koh
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea
| | - Sunhee Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea
| | - Yeongmi Cheon
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea
| | - Raehyung Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea
| | - Lihua Che
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, 305-764, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Abstract
Chromatin is by its very nature a repressive environment which restricts the recruitment of transcription factors and acts as a barrier to polymerases. Therefore the complex process of gene activation must operate at two levels. In the first instance, localized chromatin decondensation and nucleosome displacement is required to make DNA accessible. Second, sequence-specific transcription factors need to recruit chromatin modifiers and remodellers to create a chromatin environment that permits the passage of polymerases. In this review I will discuss the chromatin structural changes that occur at active gene loci and at regulatory elements that exist as DNase I hypersensitive sites.
Collapse
Affiliation(s)
- Peter N Cockerill
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, UK.
| |
Collapse
|
12
|
Keaton MA, Taylor CM, Layer RM, Dutta A. Nuclear scaffold attachment sites within ENCODE regions associate with actively transcribed genes. PLoS One 2011; 6:e17912. [PMID: 21423757 PMCID: PMC3056778 DOI: 10.1371/journal.pone.0017912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 02/14/2011] [Indexed: 01/30/2023] Open
Abstract
The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure.
Collapse
Affiliation(s)
- Mignon A. Keaton
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Christopher M. Taylor
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Ryan M. Layer
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ahn HJ, Park Y, Kim S, Park HC, Seo SK, Yeo SY, Geum D. The expression profile and function of Satb2 in zebrafish embryonic development. Mol Cells 2010; 30:377-82. [PMID: 20814748 DOI: 10.1007/s10059-010-0128-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/17/2010] [Accepted: 07/19/2010] [Indexed: 12/16/2022] Open
Abstract
The present study shows the expression profile and function of the homeobox gene, satb2 during zebrafish embryonic development. Satb2 was ubiquitously expressed from the 1 cell stage to the 10-somite stage in zebrafish embryos. Satb2 showed stage-specific expression profiles such as in the pronephric duct at 24 hpf, the branchial arches at 36 hpf, and the ganglion cell layer of the retina and fins at 48 hpf. Additionally, satb2 knockdown embryos were arrested at 50-60% epiboly, and transplantation experiments with satb2 knockdown cells showed migration defects. Interestingly, satb2 knockdown cells also exhibited down-regulation of dynamin II and VAMP4, which are involved in exocytosis and endocytosis, respectively. Furthermore, satb2 knockdown cells have a disorganized actin distribution and an underdeveloped external yolk syncytial layer, both of which are involved in epiboly. These results suggest that satb2 has a functional role in epiboly. This role may potentially be the regulation of endo-exocytic vesicle transport-dependent cell migration and/or the regulation of the development of the yolk syncytial layer.
Collapse
Affiliation(s)
- Hyun-Jong Ahn
- Department of Microbiology, Kyung Hee University Medical School, Seoul, 130-701, Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Frum RA, Khondker ZS, Kaufman DG. Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells. Cell Cycle 2010; 8:3133-48. [PMID: 19738421 DOI: 10.4161/cc.8.19.9682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line.
Collapse
Affiliation(s)
- Rebecca A Frum
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
15
|
Orba Y, Suzuki T, Makino Y, Kubota K, Tanaka S, Kimura T, Sawa H. Large T antigen promotes JC virus replication in G2-arrested cells by inducing ATM- and ATR-mediated G2 checkpoint signaling. J Biol Chem 2009; 285:1544-54. [PMID: 19903823 DOI: 10.1074/jbc.m109.064311] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Large T antigen (TAg) of the human polyomavirus JC virus (JCV) possesses DNA binding and helicase activities, which, together with various cellular proteins, are required for replication of the viral genome. We now show that JCV-infected cells expressing TAg accumulate in the G(2) phase of the cell cycle as a result of the activation of ATM- and ATR-mediated G(2) checkpoint pathways. Transient transfection of cells with a TAg expression vector also induced G(2) checkpoint signaling and G(2) arrest. Analysis of TAg mutants with different subnuclear localizations suggested that the association of TAg with cellular DNA contributes to the induction of G(2) arrest. Abrogation of G(2) arrest by inhibition of ATM and ATR, Chk1, and Wee1 suppressed JCV genome replication. In addition, abrogation of the G(2)-M transition by Cdc2 depletion disabled Wee1 depletion-induced suppression of JCV genome replication, suggesting that JCV replication is facilitated by G(2) arrest resulting from G(2) checkpoint signaling. Moreover, inhibition of ATM and ATR by caffeine suppressed JCV production. The observation that oligodendrocytes productively infected with JCV in vivo also undergo G(2) arrest suggests that G(2) checkpoint inhibitors such as caffeine are potential therapeutic agents for JCV infection.
Collapse
Affiliation(s)
- Yasuko Orba
- Department of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
DNA–carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7, 8-dihydrodiol 9, 10-epoxides studied by biochemical and biophysical techniques. Q Rev Biophys 2009. [DOI: 10.1017/s0033583500002973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to various chemicals, either due to occupation or lifestyle, is considered to be a major contributing factor to tumour formation in man (Higginson, 1969; Doll and Peto, 1981). An important and prevalent class of potent carcinogenic compounds present in he environment is polycyclic aromatic hydrocarbons (PAHs), which are found in various petroleum and combustion products derived from heat and power generation and motor vehicle exhausts (Baum, 1978). Furthermore, since PAHs are generally formed by pyrolysis of organic matters such as tobacco smoking and certain procedures of food preparation, the PAH exposure to humans is extensive.
Collapse
|
17
|
DNA–carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7, 8-dihydrodiol 9, 10-epoxides studied by biochemical and biophysical techniques. Q Rev Biophys 2009. [DOI: 10.1017/s0033583500003358] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Exposure to various chemicals, either due to occupation or lifestyle, is considered to be a major contributing factor to tumour formation in man (Higginson, 1969; Doll & Peto, 1981). An important and prevalent class of potent carcinogenic compounds present in the environment is polycyclic aromatic hydrocarbons (PAHs), which are found in various petroleum and combustion products derived from heat and power generation and motor vehicle exhausts (Baum, 1978). Furthermore, since PAHs are generally formed by pyrolysis of organic matters such as tobacco smoking and certain procedures of food preparation, the PAH exposure to humans is extensive
Collapse
|
18
|
DNA–carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7, 8-dihydrodiol 9, 10-epoxides studied by biochemical and biophysical techniques. Q Rev Biophys 2009. [DOI: 10.1017/s0033583500003802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Exposure to various chemicals, either due to occupation or lifestyle, is considered to be a major contributing factor to tumour formation in man (Higginson, 1969; Doll & Peto, 1981). An important and prevalent class of potent carcinogenic compounds present in the environment is polycyclic aromatic hydrocarbons (PAHs), which are found in various petroleum and combustion products derived from heat and power generation and motor vehicle exhausts (Baum, 1978). Furthermore, since PAHs are generally formed by pyrolysis of organic matters such as tobacco smoking and certain procedures of food preparation, the PAH exposure to humans is extensive.
Collapse
|
19
|
DNA–carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7, 8-dihydrodiol 9, 10-epoxides studied by biochemical and biophysical techniques. Q Rev Biophys 2009. [DOI: 10.1017/s0033583500003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to various chemicals, either due to occupation or lifestyle, is considered to be a major contributing factor to tumour formation in man (Higginson, 1969; Doll and Peto, 1981). An important and prevalent class of potent carcinogeniccompounds present in the environment is polycyclic aromatic hydrocarbons(PAHs), which are found in various petroleum and combustion products derived from heat and power generation and motor vehicle exhausts (Baum, 1978). Furthermore, since PAHs are generally formed by pyrolysis of organic matters such as tobacco smoking and certain procedures of food preparation, the PAH exposure to humans is extensive.
Collapse
|
20
|
Iarovaia OV, Borounova VV, Philonenko ES, Kantidze OL, Vassetzky YS, Razin SV. In embryonic chicken erythrocytes actively transcribed alpha globin genes are not associated with the nuclear matrix. J Cell Biochem 2009; 106:170-8. [PMID: 19003974 DOI: 10.1002/jcb.21987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The spatial organization of a 250 Kb region of chicken chromosome 14, which includes the alpha globin gene cluster, was studied using in situ hybridization of a corresponding BAC probe with nuclear halos. It was found that in non-erythroid cells (DT40) and cultured erythroid cells of definite lineage (HD3) the genomic region under study was partially (DT40 cells) or fully (HD3 cells) associated with the nuclear matrix. In contrast, in embryonic red blood cells (10-day RBC) the same area was located in the crown of DNA loops surrounding the nuclear matrix, although both globin genes and surrounding house-keeping genes were actively transcribed in these cells. This spatial organization was associated with the virtual absence of RNA polymerase II in nuclear matrices prepared from 10-day RBC. In contrast, in HD3 cells a significant portion of RNA polymerase II was present in nuclear matrices. Taken together, these observations suggest that in embryonic erythroid cells transcription does not occur in association with the nuclear matrix.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences 34/5 Vavilov Street, 119344 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Braem C, Recolin B, Rancourt RC, Angiolini C, Barthès P, Branchu P, Court F, Cathala G, Ferguson-Smith AC, Forné T. Genomic Matrix Attachment Region and Chromosome Conformation Capture Quantitative Real Time PCR Assays Identify Novel Putative Regulatory Elements at the Imprinted Dlk1/Gtl2 Locus. J Biol Chem 2008; 283:18612-20. [DOI: 10.1074/jbc.m801883200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Masliah G, René B, Zargarian L, Fermandjian S, Mauffret O. Identification of intrinsic dynamics in a DNA sequence preferentially cleaved by topoisomerase II enzyme. J Mol Biol 2008; 381:692-706. [PMID: 18585388 DOI: 10.1016/j.jmb.2008.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/03/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
Abstract
Topoisomerase II enzymes are essential enzymes that modulate DNA topology and play a role in chromatin compaction. While these enzymes appear to recognize and cleave the DNA in a nonrandom fashion, factors that underlie enzyme specificity remain an enigma. To gain new insights on these topics, we undertake, using NMR and molecular dynamics methods, studies of the structural and dynamic features of a 21 bp DNA segment preferentially cleaved by topoisomerases II. The large size of the oligonucleotide did not hamper the determination of structures of sufficient quality, and numerous interesting correlations between helicoidal parameters already depicted in crystals and molecular dynamics simulations are recovered here. The main feature of the sequence is the occurrence of a large opening of the base pairs in a four-residue AT-rich region located immediately at the 5' end of one of the cleaved sites. This opening seems to be largely dependent on sequence context, since a similar opening is not found in the other AT base pairs of the sequence. Furthermore, two adenine nucleotides of the same portion of the oligonucleotide present slow internal motions at the NMR timescale, revealing particular base dynamics. In conclusion, this AT-rich region presents the most salient character in the sequence and could be involved in the preferential cleavage by topoisomerase II. The examination of preferred sites in the literature pointed out the frequent occurrence of AT-rich sequences, namely matrix attachment region and scaffold attachment region sequences, at the sites cleaved by topoisomerase II. We could infer that the particular flexibility of these sequences plays an important role in enabling the formation of a competent cleavage complex. The sequences could then be selected based on their facility to undertake conformational change during the complex formation, rather than purely based on binding affinity.
Collapse
Affiliation(s)
- Grégoire Masliah
- LBPA, Centre National de la Recherche Scientifique (UMR8113), Ecole Normale Supérieure de Cachan, F-94235 Cachan, France
| | | | | | | | | |
Collapse
|
23
|
Hair A, Vassetzky Y. Determination of the chromatin domain structure in arrayed repeat regions: organization of the somatic 5S RNA domain during embryogenesis in Xenopus laevis. J Cell Biochem 2008; 102:1140-8. [PMID: 17577215 DOI: 10.1002/jcb.21413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The size of the DNA loop containing the Xenopus laevis somatic 5S RNA gene cluster has been estimated using a simple, precise and sensitive method that we have developed for use on any tandemly arrayed DNA repeat region, and was found to increase during development We have found that after the mid-blastula transition, when transcription is activated in the embryo, a subset of somatic 5S RNA genes becomes specifically associated with the nuclear matrix. This association correlates with the transcriptional activity of the 5S genes.
Collapse
Affiliation(s)
- Alan Hair
- CNRS UMR 8126, Institut Gustave Roussy, Univ. Paris Sud XI, 94805 Villejuif Cedex, France
| | | |
Collapse
|
24
|
Andrabi SMH. Mammalian sperm chromatin structure and assessment of DNA fragmentation. J Assist Reprod Genet 2007; 24:561-9. [PMID: 18008155 DOI: 10.1007/s10815-007-9177-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022] Open
Abstract
This review article illustrates the biology of mammalian sperm chromatin structure. The possible causes of DNA (deoxyribonucleic acid) fragmentation are discussed. Also available molecular techniques for assessment of mammalian sperm DNA damage are described.
Collapse
Affiliation(s)
- S M H Andrabi
- Animal Reproduction Laboratory, Animal Sciences Institute, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
25
|
Eivazova ER, Markov SA, Pirozhkova I, Lipinski M, Vassetzky YS. Recruitment of RNA polymerase II in the Ifng gene promoter correlates with the nuclear matrix association in activated T helper cells. J Mol Biol 2007; 371:317-22. [PMID: 17583733 DOI: 10.1016/j.jmb.2007.04.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/25/2022]
Abstract
Recruitment of the RNA polymerase II transcription complex to the promoter of the Ifng gene has been studied by chromatin immunoprecipitation (ChIP) in activated functionally different CD4+ T helper (Th) cell subsets. In parallel, analysis of association of the nuclear scaffold/matrix with the Ifng gene promoter has been carried out. The RNA polymerase II (RNA pol II) interacted with the Ifng gene promoter in analyzed activated neutral Th cells, IFN-gamma producing Th1 cells and IFN-gamma silent Th2 cells. However, the interaction of the Ifng gene promoter with the nuclear matrix occurred differentially in a lineage-specific manner. The pattern of the nuclear matrix interaction correlated directly with the gene expression. Strong association of the promoter with the nuclear matrix was observed only in the Th1 cell subset where the Ifng gene was actively transcribed. We propose that it is the interaction of the Ifng gene promoter with the nuclear matrix that may set off transcription in activated Th cells by promoter-associated RNA pol II.
Collapse
Affiliation(s)
- Elvira R Eivazova
- Vanderbilt University School of Medicine, Department of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
26
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL, Javed A, Montecino M, Choi JY, Vradii D, Zaidi SK, Pratap J, Young D. Organization of transcriptional regulatory machinery in nuclear microenvironments: implications for biological control and cancer. ADVANCES IN ENZYME REGULATION 2007; 47:242-50. [PMID: 17363043 PMCID: PMC2683591 DOI: 10.1016/j.advenzreg.2006.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shaposhnikov SA, Akopov SB, Chernov IP, Thomsen PD, Joergensen C, Collins AR, Frengen E, Nikolaev LG. A map of nuclear matrix attachment regions within the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1. Genomics 2007; 89:354-61. [PMID: 17188460 DOI: 10.1016/j.ygeno.2006.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/23/2006] [Accepted: 11/01/2006] [Indexed: 10/23/2022]
Abstract
There is abundant evidence that the DNA in eukaryotic cells is organized into loop domains that represent basic structural and functional units of chromatin packaging. To explore the DNA domain organization of the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1, we have identified a significant portion of the scaffold/matrix attachment regions (S/MARs) within this region. Forty independent putative S/MAR elements were assigned within the 16q22.1 locus. More than 90% of these S/MARs are AT rich, with GC contents as low as 27% in 2 cases. Thirty-nine (98%) of the S/MARs are located within genes and 36 (90%) in gene introns, of which 15 are in first introns of different genes. The clear tendency of S/MARs from this region to be located within the introns suggests their regulatory role. The S/MAR resource constructed may contribute to an understanding of how the genes in the region are regulated and of how the structural architecture and functional organization of the DNA are related.
Collapse
Affiliation(s)
- Sergey A Shaposhnikov
- Department of Nutrition, Faculty of Medicine, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Razin SV. Spatial organization of the eukaryotic genome and the action of epigenetic mechanisms. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406120015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Michalak E, Lipiński D, Słomski R. Loop formation by the transgene WAP:6xHishGH in transgenic rabbit fibroblasts, revealed by fluorescence in situ hybridization to nuclear halos. J Appl Genet 2006; 47:247-9. [PMID: 16877804 DOI: 10.1007/bf03194631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using fluorescence in situ hybridization (FISH) to somatic nuclear halos from transgenic rabbits WAP:6xHishGH, we present evidence for stability of transgenesis at the chromatin level. FISH performed on fibroblasts from a homozygous individual showed 2 independent loops from both chromosomes of pair 7. On a heterozygous individual, FISH detected a single loop. According to the concept of chromatin loops and their influence on gene expression, this shows that the human growth hormone transgene, which was actively expressed in mammary gland under the influence of the tissue-specific promoter, was inactive in examined skin fibroblasts.
Collapse
Affiliation(s)
- Ewa Michalak
- Department of Biochemistry and Biotechnology, Agricultural University, Poznań, Poland.
| | | | | |
Collapse
|
30
|
Morshed M, Ando M, Yamamoto J, Hotta A, Kaneoka H, Kojima J, Nishijima KI, Kamihira M, Iijima S. YY1 binds to regulatory element of chicken lysozyme and ovalbumin promoters. Cytotechnology 2006; 52:159-70. [PMID: 19002874 DOI: 10.1007/s10616-006-9017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022] Open
Abstract
Chicken lysozyme is highly expressed in the oviduct. The 5' regulatory region of this gene contains a negative element that represses transcription. To assess the molecular basis underlying the regulation of lysozyme gene expression, we investigated the binding protein to this region. Sequence motif analysis suggested the existence of putative YY1 binding sites in this regulatory region. Electrophoretic mobility shift assay showed the specific binding of YY1 to the negative element. In addition, chromatin immunoprecipitation assay indicated that YY1 specifically bound to the negative element in oviduct cells but not in erythrocytes. It was suggested by electrophoretic mobility shift assay and chromatin immunoprecipitation assay that YY1 also bound to the negative regulatory region in the promoter of the ovalbumin gene which also shows oviduct-specific expression. Western blot analysis showed that YY1 was expressed in relatively high levels in the oviduct and nucleus fractionation experiments showed that YY1 was localized both in chromosome and nuclear matrix fractions. These results suggest that there are some specific roles in the negative regulatory regions of these genes in relation to the multifunctional transcription factor YY1.
Collapse
Affiliation(s)
- Mahboob Morshed
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hibino Y, Usui T, Morita Y, Hirose N, Okazaki M, Sugano N, Hiraga K. Molecular properties and intracellular localization of rat liver nuclear scaffold protein P130. ACTA ACUST UNITED AC 2006; 1759:195-207. [PMID: 16814881 DOI: 10.1016/j.bbaexp.2006.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 04/12/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
We examined the molecular basis of rat P130, a nuclear scaffold protein, and its functions. P130 comprising 845 amino acid residues possesses several functional domains and yields an electrophoretically distinctive isoform, P123, by altering its phosphorylation status in association with translocation across the nuclear membrane and from the digitonin-extractable fraction of the nucleus to the nuclear scaffold. The functional domains, NLS, NES, and zinc-finger bearing DNA-binding domains, ZF1 and ZF2, aid these translocations. P130 binds RNA through two RNA-binding domains (RB1 and RB2) similar to those of hnRNPs I and L. Microsome- and polysome-localized P130 and P123 were found in rat liver and Ac2F hepatoma cells. This localization required prior entry of P130 to the nucleus, but did not require RB1 and RB2. Thus, P130 initially purified from rat liver nuclear scaffold has the potential to play a variety of roles in biological events not only in the nuclear scaffold but also in various subcellular compartments. P130 (AB205483) is identical to matrin 3 (M63485 and BC062231), although the primary structure of rat matrin 3 has been revised, since it was first published.
Collapse
Affiliation(s)
- Yasuhide Hibino
- The Department of Biochemistry, School of Medicine, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani Toyama, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bala S, Kumar A, Soni S, Sinha S, Hanspal M. Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division. Biochem Biophys Res Commun 2006; 342:1040-8. [PMID: 16510120 DOI: 10.1016/j.bbrc.2006.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 02/10/2006] [Indexed: 11/29/2022]
Abstract
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.
Collapse
Affiliation(s)
- Shashi Bala
- Center of Cell Biology, Department of Medicine, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | |
Collapse
|
33
|
Corry GN, Underhill DA. Subnuclear compartmentalization of sequence-specific transcription factors and regulation of eukaryotic gene expression. Biochem Cell Biol 2005; 83:535-47. [PMID: 16094457 DOI: 10.1139/o05-062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein-protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.
Collapse
Affiliation(s)
- Gareth N Corry
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
34
|
Ioudinkova ES, Petrov AV, Vassetzky YS, Razin SV. Spatial Organization of the Chicken α-Globin Gene Domain in Cells of Different Origins. Mol Biol 2005. [DOI: 10.1007/s11008-005-0105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Stein GS, Lian JB, Stein JL, van Wijnen AJ, Javed A, Montecino M, Zaidi SK, Young DW, Choi JY, Pratap J. Combinatorial organization of the transcriptional regulatory machinery in biological control and cancer. ACTA ACUST UNITED AC 2005; 45:136-54. [PMID: 16135382 DOI: 10.1016/j.advenzreg.2005.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggests functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three dimensional context of nuclear architecture control the sorting and integration of regulatory information as well as the combinatorial assembly, organization and activities of transcriptional machinery at scaffold-associated subnuclear sites that support gene expression. During the past several years our laboratory has been addressing intranuclear trafficking mechanisms that direct transcription factors to transcriptionally active nuclear microenvironments. We are pursuing these studies using the AML/Runx/Cbfa transcription factors that govern hematopoietic and bone-specific transcription as a paradigm. Our objective is to gain insight into linkage of intranuclear organization of genes, transcripts, and regulatory proteins with fidelity of biological control and contributions of aberrant nuclear structure/function relationships to the onset and progression of tumorigenesis.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Iarovaia OV, Akopov SB, Nikolaev LG, Sverdlov ED, Razin SV. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix. Nucleic Acids Res 2005; 33:4157-63. [PMID: 16049024 PMCID: PMC1180747 DOI: 10.1093/nar/gki733] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spatial organization of an ∼170 kb region of human chromosome 19, including CD22 and GPR40–GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix.
Collapse
Affiliation(s)
| | - Sergey B. Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS117997 Moscow, Russia
| | - Lev G. Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS117997 Moscow, Russia
| | - Eugene D. Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS117997 Moscow, Russia
| | - Sergey V. Razin
- To whom correspondence should be addressed. Tel: +7 95 135 30 92; Fax: +7 95 135 41 05;
| |
Collapse
|
37
|
Maya-Mendoza A, Hernández-Muñoz R, Gariglio P, Aranda-Anzaldo A. Natural ageing in the rat liver correlates with progressive stabilisation of DNA–nuclear matrix interactions and withdrawal of genes from the nuclear substructure. Mech Ageing Dev 2005; 126:767-82. [PMID: 15888332 DOI: 10.1016/j.mad.2005.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/14/2005] [Accepted: 01/25/2005] [Indexed: 11/17/2022]
Abstract
In the interphase nucleus, the DNA of higher eukaryotes is organised in supercoiled loops anchored to a nuclear matrix (NM). Replication, transcription and splicing seem to occur at macromolecular complexes organised upon the NM. Thus, the topological relationship between genes located in the loops and the NM appears to be very important for nuclear physiology. Here, we report that natural ageing in the rat liver correlates with a progressive strengthening of the NM framework and the stabilisation of the DNA loop-NM interactions, as well as with a progressive increase in the relative distance of genes to the NM. Both phenomena correlate with the gradual loss of proliferating potential and progression towards terminal differentiation in the hepatocytes, suggesting that wholesale modifications in the topological relationships within the cell nucleus are markers of tissue ageing and senescence, at least in the mammalian liver. We discuss the possible functional implications of such structural modifications that may underlie both terminal hepatocyte differentiation and their eventual replicative senescence.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Edo
| | | | | | | |
Collapse
|
38
|
Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem 2005; 280:24600-9. [PMID: 15851481 DOI: 10.1074/jbc.m414076200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Special AT-rich binding protein 1 (SATB1) originally was identified as a protein that bound to the nuclear matrix attachment regions (MARs) of the immunoglobulin heavy chain intronic enhancer. Subsequently, SATB1 was shown to repress many genes expressed in the thymus, including interleukin-2 receptor alpha, c-myc, and those encoded by mouse mammary tumor virus (MMTV), a glucocorticoid-responsive retrovirus. SATB1 binds to MARs within the MMTV provirus to repress transcription. To address the role of the nuclear matrix in SATB1-mediated repression, a series of SATB1 deletion constructs was used to determine protein localization. Wild-type SATB1 localized to the soluble nuclear, chromatin, and nuclear matrix fractions. Mutants lacking amino acids 224-278 had a greatly diminished localization to the nuclear matrix, suggesting the presence of a nuclear matrix targeting sequence (NMTS). Transient transfection experiments showed that NMTS fusions to green fluorescent protein or LexA relocalized these proteins to the nuclear matrix. Difficulties with previous assay systems prompted us to develop retroviral vectors to assess effects of different SATB1 domains on expression of MMTV proviruses or integrated reporter genes. SATB1 overexpression repressed MMTV transcription in the presence and absence of functional glucocorticoid receptor. Repression was alleviated by deletion of the NMTS, which did not affect DNA binding, or by deletion of the MAR-binding domain. Our studies indicate that both nuclear matrix association and DNA binding are required for optimal SATB1-mediated repression of the integrated MMTV promoter and may allow insulation from cellular regulatory elements.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Nucleus/metabolism
- DNA/chemistry
- DNA Primers/chemistry
- Dimerization
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Humans
- Interleukin-2 Receptor alpha Subunit
- Introns
- Jurkat Cells
- Ligands
- Mammary Glands, Animal
- Mammary Tumor Virus, Mouse/genetics
- Matrix Attachment Region Binding Proteins/metabolism
- Matrix Attachment Region Binding Proteins/physiology
- Mice
- Microscopy, Fluorescence
- Mutation
- Plasmids/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- RNA/metabolism
- Rats
- Receptors, Glucocorticoid/metabolism
- Receptors, Interleukin/metabolism
- Recombinant Fusion Proteins/chemistry
- Retroviridae/genetics
- Ribonucleases/metabolism
- Subcellular Fractions
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Jin Seo
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
39
|
Maya-Mendoza A, Hernández-Muñoz R, Gariglio P, Aranda-Anzaldo A. Gene positional changes relative to the nuclear substructure during carbon tetrachloride-induced hepatic fibrosis in rats. J Cell Biochem 2005; 93:1084-98. [PMID: 15449316 DOI: 10.1002/jcb.20264] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the interphase nucleus the DNA of higher eukaryotes is organized in loops anchored to a substructure known as the nuclear matrix (NM). The topological relationship between gene sequences located in the DNA loops and the NM appears to be very important for nuclear physiology because processes such as replication, transcription, and processing of primary transcripts occur at macromolecular complexes located at discrete sites upon the NM. Mammalian hepatocytes rarely divide but preserve a proliferating capacity that is displayed in vivo after specific stimulus. We have previously shown that transient changes in the relative position of specific genes to the NM occur during the process of liver regeneration after partial ablation of the liver, but also that such changes correlate with the replicating status of the cells. Moreover, since chronic exposure to carbon tetrachloride (CCl4) leads to bouts of hepatocyte damage and regeneration, and eventually to non-reversible liver fibrosis in the rat, we used this animal model in order to explore if genes that show differential activity in the liver change or modify their relative position to the NM during the process of liver fibrosis induction. We found that changes in the relative position of specific genes to the NM occur during the chronic administration of CCl4, but also that such changes correlate with the proliferating status of the hepatocytes that goes from quiescence to regeneration to replicative senescence along the course of CCl4-induced liver fibrosis, indicating that specific configurations in the higher-order DNA structure underlie the stages of progression towards liver fibrosis.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apdo. Postal 428, C.P. 50000, Toluca, Edo. Méx., México
| | | | | | | |
Collapse
|
40
|
Iarovaia OV, Shkumatov P, Razin SV. Breakpoint cluster regions of the AML-1 and ETO genes contain MAR elements and are preferentially associated with the nuclear matrix in proliferating HEL cells. J Cell Sci 2005; 117:4583-90. [PMID: 15331666 DOI: 10.1242/jcs.01332] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The spatial organization in interphase nuclei of the breakpoint cluster regions (BCRs) of the AML-1 and ETO genes frequently participating in reciprocal t(8;21) translocations was studied using cytological and biochemical approaches. Both BCRs were found to be localized preferentially, but not exclusively, to the nuclear matrix, as shown by hybridization of specific probes with nuclear halos. This association was not related to transcription, because the transcribed regions of both genes located far from BCRs were located preferentially in loop DNA, as shown by in situ hybridization. The sites of association with the nuclear matrix of the intensely transcribed AML-1 gene were mapped also using the biochemical PCR-based approach. Only the BCR was found to be associated with the nuclear matrix, whereas the other transcribed regions of this gene turned out to be positioned randomly in respect to the nuclear matrix. The data are discussed in the framework of the hypothesis postulating that the nuclear matrix plays an important role in determining the positions of recombination-prone areas.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, Vavilov Street 34/5, 119334, Moscow, Russia
| | | | | |
Collapse
|
41
|
Nair SS, Mishra SK, Yang Z, Balasenthil S, Kumar R, Vadlamudi RK. Potential Role of a Novel Transcriptional Coactivator PELP1 in Histone H1 Displacement in Cancer Cells. Cancer Res 2004; 64:6416-23. [PMID: 15374949 DOI: 10.1158/0008-5472.can-04-1786] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The estrogen receptor plays an important role in breast cancer progression. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), also called modulator of nongenomic activity of estrogen receptor (MNAR), a novel coactivator of estrogen receptor, modulates estrogen receptor transactivation functions. The mechanisms by which PELP1 modulates estrogen receptor genomic functions is not known. Here, using biochemical and scanning confocal microscopic analysis, we have demonstrated nuclear localization and functional implications of PELP1. Subnuclear fractionation showed PELP1 association with chromatin and nuclear matrix fractions. Ligand stimulation promoted recruitment of PELP1 to 17beta-estradiol responsive promoters, its colocalization with acetylated H3, and increased PELP1-associated histone acetyltransferase enzymatic activity. Far Western analysis revealed that PELP1 interacts with histone 1 and 3, with more preference toward histone 1. Using deletion analysis, we have identified the PELP1 COOH-terminal region as the histone 1 binding site. The PELP1 mutant lacking histone 1-binding domain acts as a dominant-negative and blocks estrogen receptor alpha-mediated transcription. Chromatin immunoprecipitation analysis showed a cyclic association and dissociation of PELP1 with the promoter, with recruitment of histone 1 and PELP1 occurring in opposite phases. PELP1 overexpression increased the micrococcal nuclease sensitivity of estrogen response element-containing nucleosomes. Our results provide novel insights about the transcription regulation of PELP1 and suggest that PELP1 participates in chromatin remodeling activity via displacement of histone 1 in cancer cells.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | |
Collapse
|
42
|
Zaidi SK, Young DW, Choi JY, Pratap J, Javed A, Montecino M, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Intranuclear trafficking: organization and assembly of regulatory machinery for combinatorial biological control. J Biol Chem 2004; 279:43363-6. [PMID: 15277516 DOI: 10.1074/jbc.r400020200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular logistics of nuclear regulatory processes necessitate temporal and spatial regulation of protein-protein and protein-DNA interactions in response to physiological cues. Biochemical, in situ, and in vivo genetic evidence demonstrates the requirement for intranuclear localization of regulatory complexes that functionally couple cellular responses to signals that mediate combinatorial control of gene expression. We have summarized evidence that subnuclear targeting of transcription factors mechanistically links gene expression with architectural organization and assembly of nuclear regulatory machinery for biological control. The compromised intranuclear targeting of regulatory proteins under pathological conditions provides options for the diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stein GS, Lian JB, Montecino M, Stein JL, van Wijnen AJ, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D, Pockwinse S. Nuclear microenvironments support physiological control of gene expression. Chromosome Res 2004; 11:527-36. [PMID: 12971727 DOI: 10.1023/a:1024943214431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing recognition that the organization of nucleic acids and regulatory proteins is functionally linked to the assembly, localization and activity of gene regulatory machinery. Cellular, molecular, biochemical and in-vivo genetic evidence support an obligatory relationship between nuclear microenvironments where regulatory complexes reside and fidelity of transcriptional control. Perturbations in mechanisms governing the intranuclear trafficking of transcription factors and the temporal/spatial organization of regulatory proteins within the nucleus occur with compromised gene expression that abrogates skeletal development and mediates leukemogenesis.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Razin SV, Rynditch A, Borunova V, Ioudinkova E, Smalko V, Scherrer K. The 33 kb transcript of the chicken ?-globin gene domain is part of the nuclear matrix. J Cell Biochem 2004; 92:445-57. [PMID: 15156557 DOI: 10.1002/jcb.20066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Giant nuclear transcripts, and in particular the RNAs of the globin gene domains which are much larger than their canonical pre-mRNAs, have been an enigma for many years. We show here that in avian erythroblastosis virus (AEV)-transformed chicken erythroleukaemic cells, where globin gene expression is abortive, the whole domain of alpha-globin genes is transcribed for about 33 kb in the globin direction and that this RNA is part of the nuclear matrix. Northern blot hybridisation with strand-specific riboprobes, recognising genes and intergenic sequences, and RT-PCR with downstream primers, show that the continuous full domain transcript (FDT) starts in the vicinity of a putative LCR and includes all the genes as well as known regulatory sites, the replication origin, and the DNA loop anchorage region in the upstream area. Absent in chicken fibroblasts, the globin FDT overlaps the major part of the ggPRX housekeeping gene that is transcribed in the opposite direction. RT-PCR and in situ hybridisation with genic and extra-genic globin probes demonstrated that the globin FDT is a component of the nuclear matrix. We suggest that the globin FDTs keep the domain in an active state, and the globin RNAs on the processing pathway are a component of the nuclear matrix. They may take part in the dynamic nuclear architecture when productively processed, or turn over slowly when globins are not synthesised.
Collapse
Affiliation(s)
- Sergey V Razin
- Institut J Monod, 2, Place Jussieu, 75251 Paris, Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
45
|
Yun JP, Chew EC, Liew CT, Chan JYH, Jin ML, Ding MX, Fai YH, Li HKR, Liang XM, Wu QL. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix. J Cell Biochem 2003; 90:1140-8. [PMID: 14635188 DOI: 10.1002/jcb.10706] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has become obvious that a better understanding and potential elucidation of the nucleolar phosphoprotein B23 involving in functional interrelationship between nuclear organization and gene expression. In present study, protein B23 expression were investigated in the regenerative hepatocytes at different periods (at days 0, 1, 2, 3, 4, 7) during liver regeneration after partial hepatectomy on the rats with immunohistochemistry and Western blot analysis. Another experiment was done with immunolabeling methods and two-dimensional (2-D) gel electrophoresis for identification of B23 in the regenerating hepatocytes and HepG2 cells (hepatoblastoma cell line) after sequential extraction with detergents, nuclease, and salt. The results showed that its expression in the hepatocytes had a locative move and quantitative change during the process of liver regeneration post-operation. Its immunochemical localization in the hepatocytes during the process showed that it moved from nucleoli of the hepatocytes in the stationary stage to nucleoplasm, cytoplasm, mitotic spindles, and mitotic chromosomes of the hepatocytes in the regenerating livers. It was quantitatively increased progressively to peak level at day 3 post-operation and declined gradually to normal level at day 7. It was detected in nuclear matrix protein (NMP) composition extracted from the regenerating hepatocytes and HepG2 cells and identified with isoelectric point (pI) value of 5.1 and molecular weight of 40 kDa. These results indicated that B23 was a proliferate shuttle protein involving in cell cycle and cell proliferation associated with nuclear matrix.
Collapse
Affiliation(s)
- Jing-Ping Yun
- Department of Pathology, Cancer Center of Sun Yat-sen University, Guangzhou 510060, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gajkowska B, Wojewódzka U. A new look at the cellular scaffold by embedment-free electron microscopy method. J Cell Mol Med 2003; 7:258-64. [PMID: 14594550 PMCID: PMC6741325 DOI: 10.1111/j.1582-4934.2003.tb00226.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The basic scaffold of most cells is afforded by the cytoskeleton (comprising microfilaments, intermediate filaments and the microtubules). The conventional methods of electron microscopy fail to visualize filamentous cell structure. They can show only these filaments lying at the section surface. Heavy metal staining (I), and the optical properties of the resins used for embedding are similar to those of proteins hence most proteinaceous structures remain unresolved and the cytoplasm seems to be quite homogenous (II). Aldehyde fixation could cross-link proteins and lead to the emergence of artificial structures (III). These limitations may be overcome by the use of the embedment-free electron microscopy (EF-EM). This technique present cellular scaffold as a purified, isolated, three-dimensional network with various thickness of filaments. Our study on the dynamic aspect of cellular scaffold indicate that the thickness and arrangement of filaments depend on cell type and both physiological or pathological environments. Thank also to the adaptation of immunocytochemistry to EF-EM it was possible to understand the nuclear matrix and cytomatrix structure in relation to function. Thus, combination these methods revealed findings suggesting the nuclear homing of proapoptotic proteins and their association with intermediate filaments.
Collapse
Affiliation(s)
- Barbara Gajkowska
- Laboratory of Cell Ultrastructure, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
47
|
Maya-Mendoza A, Hernández-Muñoz R, Gariglio P, Aranda-Anzaldo A. Gene positional changes relative to the nuclear substructure correlate with the proliferating status of hepatocytes during liver regeneration. Nucleic Acids Res 2003; 31:6168-79. [PMID: 14576303 PMCID: PMC275467 DOI: 10.1093/nar/gkg825] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 09/10/2003] [Accepted: 09/10/2003] [Indexed: 11/14/2022] Open
Abstract
In the interphase nucleus the DNA of higher eukaryotes is organised in loops anchored to a proteinaceous substructure variously named but commonly known as the nuclear matrix. Important processes of nuclear physiology, such as replication, transcription and processing of primary transcripts, occur at macromolecular complexes located at discrete sites upon the nuclear substructure. The topological relationships between gene sequences located in the DNA loops and the nuclear substructure appear to be non-random, thus posing the question of whether such relationships remain invariant or change after the critical nuclear transitions associated with cell proliferation and tissue regeneration in vivo. The hepatocytes are cells that preserve a proliferating capacity that is readily displayed after partial ablation of the liver, leading to liver regeneration in experimental animals such as the rat. Using this animal model coupled to a recently developed PCR-based method for mapping the position of specific DNA sequences relative to the nuclear substructure, we provide evidence that transient changes in the topological relationships between specific genes and the nuclear substructure occur during liver regeneration and that such changes correlate with the actual proliferating status of the cells, thus suggesting that specific transitions in the higher-order DNA structure are characteristic of the quiescent (G0) and replicating (S) phases of the cell cycle in vivo.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, C.P. 50000, Toluca, Edo. Méx., México
| | | | | | | |
Collapse
|
48
|
Maya-Mendoza A, Aranda-Anzaldo A. Positional mapping of specific DNA sequences relative to the nuclear substructure by direct polymerase chain reaction on nuclear matrix-bound templates. Anal Biochem 2003; 313:196-207. [PMID: 12605856 DOI: 10.1016/s0003-2697(02)00611-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nuclear DNA of higher eukaryotes is organized in supercoiled loops anchored to a proteinaceous substructure commonly known as the nuclear matrix. Current evidence suggests that important processes of nuclear physiology, such as replication, transcription, and processing of primary transcripts, take place at macromolecular complexes located at discrete, well-defined sites upon the nuclear matrix. A number of authors have reported that actively transcribed genes are closely associated with the nuclear matrix. The topological relationship between the gene sequences located in the DNA loops and the nuclear matrix appears to be very important for appropriate nuclear physiology. Here, we describe a polymerase chain reaction-based method for directly mapping any DNA sequence position relative to the nuclear matrix that avoids the problem posed by DNA fragments nonspecifically bound to the nuclear matrix, without the need of purifying the specifically nuclear matrix-bound DNA.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, C.P. 50000, Toluca, Edo. Méx., Mexico
| | | |
Collapse
|
49
|
Stein GS, Lian JB, Stein JL, Wijnen AJV, Montecino M, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. J Cell Biochem 2003; 88:340-55. [PMID: 12520536 DOI: 10.1002/jcb.10364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggest functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three-dimensional context of nuclear architecture control the sorting of regulatory information as well as the assembly and activities of sites within the nucleus that support gene expression. Vitamin D control of gene expression serves as a paradigm for experimentally addressing mechanisms that govern the intranuclear targeting of regulatory factors to nuclear domains where transcription of developmental and tissue-specific genes occur. We will present an overview of molecular, cellular, genetic, and biochemical approaches that provide insight into the trafficking of regulatory factors that mediate vitamin D control of gene expression to transcriptionally active subnuclear sites. Examples will be presented that suggest modifications in the intranuclear targeting of transcription factors abrogate competency for vitamin D control of skeletal gene expression during development and fidelity of gene expression in tumor cells.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Newton DC, Miller TL, Teichert AM, Phillips MJ, Davidoff MS, Marsden PA. An alternative promoter of the human neuronal nitric oxide synthase gene is expressed specifically in Leydig cells. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:369-80. [PMID: 11786430 PMCID: PMC1867129 DOI: 10.1016/s0002-9440(10)64380-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a modulatory role in the biology of a variety of neuroendocrine tissues and is especially relevant to gonadal function. We have previously reported the cloning and characterization of a variant of the nNOS protein, termed testis nNOS (TnNOS), the mRNA for which was restricted in expression to male gonadal tissues. To examine the cell-specificity of the testis-specific NOS regulatory regions we defined patterns of beta-galactosidase expression of an insertional transgene in which the reporter gene lacZ was under the transcriptional control of the human TnNOS promoter. beta-galactosidase activity was detected exclusively in the interstitial cells of the testis in transgenic mice. These cells also evidenced positive staining for nNOS protein and were identified as androgen-producing Leydig cells by staining with the Leydig cell marker, P(450)scc. Expression of the promoter was absent in cells of the seminiferous tubules, specifically germline cells of different stages and Sertoli cells. In contrast to the male gonad, beta-galactosidase activity was not detected in ovaries of adult female mice. Activity was also not evident in organs known to express full-length nNOS, such as skeletal muscle, kidney, or cerebellum. The same pattern of beta-galactosidase staining was observed in independent transgenic founders and was distinct from that observed for an endothelial NOS promoter/reporter transgene. In the testis of male adult eNOS promoter-reporter transgenic mice, beta-galactosidase activity was expressed only in endothelial cells of large- and medium-sized arterial blood vessels. Transcriptional activity of the human TnNOS promoter could not be detected in a variety of cell types, including Leydig cells, using episomal promoter-reporter constructs suggesting that a nuclear environment and higher order genomic complexity are required for appropriate promoter function. The restricted expression pattern of an nNOS variant in Leydig cells of the male gonad suggests an important role in the regulation of testosterone release and represents an intriguing model with which to dissect the molecular basis of Leydig cell-specific gene expression.
Collapse
Affiliation(s)
- Yang Wang
- Renal Division and Department of Medicine, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|