1
|
Marković L, Bukovac A, Varošanec AM, Jakovčević A, Tomas D, Sonicki Z, Puljko B, Dumančić F, Hrašćan R, Pećina-Šlaus N. Expression of Wnt signaling proteins LEF1, β-catenin, GSK3β, DVL1, and N-myc varies across retinoblastoma subtypes and pRb phosphorylation status. Sci Rep 2024; 14:31725. [PMID: 39738380 PMCID: PMC11685868 DOI: 10.1038/s41598-024-82044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Retinoblastoma, a rare childhood eye cancer, has hereditary and non-hereditary forms. While TNM classification helps in prognosis, understanding molecular mechanisms is vital for the clinical behavior of retinoblastoma prediction. Our study aimed to analyze the expression levels of key Wnt pathway proteins, GSK3β, LEF1, β-catenin, and DVL1, and associate them to non-phosphorylated active form (pRb) and the phosphorylated inactive form (ppRb) and N-myc expression, in retinoblastoma cells and healthy retinal cells, in order to elucidate their roles in retinoblastoma and identify potential targets that could help to improve diagnostic and therapy. Specimens from 22 retinoblastoma cases (unilateral, bilateral, and trilateral) were analyzed. Immunohistochemistry assessed proteins' expressions, followed by semi-quantitative analysis using the Immunoreactivity Score (IRS). Bayesian statistical methods were employed for data analysis. The study revealed various expression patterns of Wnt signaling proteins across different retinoblastoma types. The high expression levels were observed for LEF1 and DVL1. Inactive GSK3β and nuclear localization of β-catenin indicated Wnt signaling activation. The levels of inactive ppRb were significantly higher in retinoblastoma compared to healthy retina, as well as the levels of inactive GSK3β. Positive correlations between DVL1 and N-myc, GSK3β Y216 and GSK3β S9 and non-P β-catenin and LEF1 were established. Retinoblastomas without germline mutations (RB1+/+) exhibited high pRb, N-myc, and LEF1 levels, while those in genetically predisposed children (RB1+/-) showed lower expression of these proteins. Trilateral retinoblastomas demonstrated especially high N-myc and LEF1, but low pRb and ppRb levels. The findings highlight the meaningful role of the Wnt signaling pathway in retinoblastoma pathogenesis, providing insights into potential therapeutic targets. Understanding molecular features may pave the way for personalized treatments and improve outcomes for retinoblastoma patients.
Collapse
Affiliation(s)
- Leon Marković
- Department of Ophthalmology, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital "Sveti Duh", Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anja Bukovac
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Maria Varošanec
- Department of Ophthalmology, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital "Sveti Duh", Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Antonia Jakovčević
- Department of Pathology and Cytology Ljudevit Jurak, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Davor Tomas
- Department of Pathology and Cytology Ljudevit Jurak, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Zdenko Sonicki
- Department of Medical Statistics, Epidemiology and Medical Informatics, Andrija Štampar School of Public Health, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Borna Puljko
- Croatian Institute for Brain Research School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Fran Dumančić
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Fogarty EA, Buchert EM, Ma Y, Nicely AB, Buttitta LA. Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues. G3 (BETHESDA, MD.) 2024; 14:jkae203. [PMID: 39171889 PMCID: PMC11457063 DOI: 10.1093/g3journal/jkae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in the Drosophila wing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of the Drosophila eye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and showed that they encode for dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset and find that the principles of cell cycle gene regulation identified in terminally differentiating Drosophila tissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle genes, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.
Collapse
Affiliation(s)
- Elizabeth A Fogarty
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Elli M Buchert
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yiqin Ma
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ava B Nicely
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Laura A Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, Jain V, Kamal MA, Saboor M, Ashraf GM, Chuturgoon A. Retinoblastoma: An update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon 2024; 10:e32844. [PMID: 38975183 PMCID: PMC11226919 DOI: 10.1016/j.heliyon.2024.e32844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection - USC INRAe 1488, University of Reims, PO Box 1039, 51687, Reims, France
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
4
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Fogarty EA, Buchert EM, Ma Y, Nicely AB, Buttitta LA. Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592773. [PMID: 38766255 PMCID: PMC11100713 DOI: 10.1101/2024.05.06.592773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in the Drosophila wing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of the Drosophila eye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and show that they encode dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset, and find that the principles of cell cycle gene regulation identified in terminally differentiating Drosophila tissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle gens, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.
Collapse
Affiliation(s)
- Elizabeth A. Fogarty
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Elli M. Buchert
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Yiqin Ma
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Ava B. Nicely
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| |
Collapse
|
6
|
Khade OS, Sasidharan S, Jain A, Maradani BS, Chatterjee A, Gopal D, Ravi Kumar RK, Krishnakumar S, Pandey A, Janakiraman N, Elchuri SV, Gundimeda S. Identification of dysregulation of sphingolipids in retinoblastoma using liquid chromatography-mass spectrometry. Exp Eye Res 2024; 240:109798. [PMID: 38246332 PMCID: PMC7617138 DOI: 10.1016/j.exer.2024.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Retinoblastoma (RB) is a rare ocular cancer seen in children that counts for approximately 3% of all childhood cancers. It is found that mutation in RB1, a tumour Suppressor Gene on chromosome 13 as the cause of malignancy. Retinoblastoma protein is the target for ceramide to cause apoptosis. We studied lipidomics of two RB cell lines, one aggressive cell line (NCC-RbC-51) derived from a metastatic site and one non aggressive cell line (WERI-Rb1) in comparison with a control cell line (MIO-M1). Lipid profiles of all the cell lines were studied using high resolution mass spectrometer coupled to high performance liquid chromatography. Data acquired from all the three cell lines in positive mode were analyzed to identify differentially expressed metabolites. Several phospholipids and lysophospholipids were found to be dysregulated. We observed upregulation of hexosyl ceramides, and down regulation of dihydroceramides and higher order sphingoglycolipids hinting at a hindered sphingolipid biosynthesis. The results obtained from liquid chromatography-mass spectrometry are validated by using qPCR and it was observed that genes involved in ceramide biosynthesis pathway are getting down regulated.
Collapse
Affiliation(s)
- Omkar Surendra Khade
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Sruthy Sasidharan
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Ankit Jain
- Institute of Bioinformatics, Bangalore, Karnataka, India
| | | | - Amit Chatterjee
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Divya Gopal
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Subramaniyan Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India; Department of Histopathology, Radheshyam Stem Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India; Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Seetaramanjaneyulu Gundimeda
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India.
| |
Collapse
|
7
|
Peramangalam PS, Surapally S, Veltri AJ, Zheng S, Burns R, Zhu N, Rao S, Muller-Tidow C, Bushweller JH, Pulikkan JA. N-MYC regulates cell survival via eIF4G1 in inv(16) acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadh8493. [PMID: 38416825 PMCID: PMC10901375 DOI: 10.1126/sciadv.adh8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
N-MYC (encoded by MYCN) is a critical regulator of hematopoietic stem cell function. While the role of N-MYC deregulation is well established in neuroblastoma, the importance of N-MYC deregulation in leukemogenesis remains elusive. Here, we demonstrate that N-MYC is overexpressed in acute myeloid leukemia (AML) cells with chromosome inversion inv(16) and contributes to the survival and maintenance of inv(16) leukemia. We identified a previously unknown MYCN enhancer, active in multiple AML subtypes, essential for MYCN mRNA levels and survival in inv(16) AML cells. We also identified eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) as a key N-MYC target that sustains leukemic survival in inv(16) AML cells. The oncogenic role of eIF4G1 in AML has not been reported before. Our results reveal a mechanism whereby N-MYC drives a leukemic transcriptional program and provides a rationale for the therapeutic targeting of the N-MYC/eIF4G1 axis in myeloid leukemia.
Collapse
Affiliation(s)
| | - Sridevi Surapally
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Anthony J. Veltri
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Shikan Zheng
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Robert Burns
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Nan Zhu
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Hematology, Oncology, and Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - John A. Pulikkan
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Schoof M, Godbole S, Albert TK, Dottermusch M, Walter C, Ballast A, Qin N, Olivera MB, Göbel C, Neyazi S, Holdhof D, Kresbach C, Peter LS, Epplen GD, Thaden V, Spohn M, Blattner-Johnson M, Modemann F, Mynarek M, Rutkowski S, Sill M, Varghese J, Afflerbach AK, Eckhardt A, Münter D, Verma A, Struve N, Jones DTW, Remke M, Neumann JE, Kerl K, Schüller U. Mouse models of pediatric high-grade gliomas with MYCN amplification reveal intratumoral heterogeneity and lineage signatures. Nat Commun 2023; 14:7717. [PMID: 38001143 PMCID: PMC10673884 DOI: 10.1038/s41467-023-43564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.
Collapse
Affiliation(s)
- Melanie Schoof
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Shweta Godbole
- Center for Molecular Neurobiology (ZMNH), University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas K Albert
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Annika Ballast
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Nan Qin
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marlena Baca Olivera
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carolin Göbel
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Neyazi
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Dörthe Holdhof
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Catena Kresbach
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Levke-Sophie Peter
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Gefion Dorothea Epplen
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Thaden
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center, Hamburg, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Modemann
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oncology, Hematology and Bone marrow transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Ann-Kristin Afflerbach
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alicia Eckhardt
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Münter
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Archana Verma
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4 University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Remke
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- High-Throughput Drug Screening Core Facility, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Ulrich Schüller
- Research Institute Children's Cancer Center, Hamburg, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Akdeniz Odemis D, Kebudi R, Bayramova J, Kilic Erciyas S, Kuru Turkcan G, Tuncer SB, Sukruoglu Erdogan O, Celik B, Kurt Gultaslar B, Buyukkapu Bay S, Tuncer S, Yazici H. RB1 gene mutations and genetic spectrum in retinoblastoma cases. Medicine (Baltimore) 2023; 102:e35068. [PMID: 37682130 PMCID: PMC10489529 DOI: 10.1097/md.0000000000035068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The aim of the study was to investigate the frequency and types of mutations on the retinoblastoma gene (RB1 gene) in Turkish population. RB1 gene mutation analysis was performed in a total of 219 individuals (122 probands with retinoblastoma, 14 family members with retinoblastoma and 83 clinically healthy family members). All 27 exons and close intronic regions of the RB1 gene were sequenced for small deletions and insertions using both the Sanger sequencing or NGS methods, and the large deletions and duplications were investigated using the MLPA analysis and CNV algorithm. The bilateral/trilateral retinoblastoma rate was 66% in the study population. The general frequency of RB1 gene mutation in the germline of the patients with retinoblastoma was 41.9%. Approximately 51.5% of the patients were diagnosed earlier than 12 months old, and de novo mutation was found in 32.4% of the patients. Germline small genetic rearrangement mutations were detected in 78.9% of patients and LGRs were detected in 21.1% of patients. An association was detected between the eye color of the RB patients and RB1 mutations. 8 of the mutations detected in the RB1 gene were novel in the study.
Collapse
Affiliation(s)
- Demet Akdeniz Odemis
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
| | - Rejin Kebudi
- Istanbul University, Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul, Türkiye
| | - Jamila Bayramova
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
| | - Seda Kilic Erciyas
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
| | - Gozde Kuru Turkcan
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
- Halic University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Türkiye
| | - Seref Bugra Tuncer
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
| | - Betul Celik
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
| | - Busra Kurt Gultaslar
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
| | - Sema Buyukkapu Bay
- Istanbul University, Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul, Türkiye
| | - Samuray Tuncer
- Istanbul University, Istanbul Medical Faculty, Department of Ophthalmology, Istanbul, Türkiye
| | - Hulya Yazici
- Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Türkiye
- Istanbul Arel University, Istanbul Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul, Türkiye
| |
Collapse
|
10
|
Rathore S, Verma A, Ratna R, Marwa N, Ghiya Y, Honavar SG, Tiwari A, Das S, Varshney A. Retinoblastoma: A review of the molecular basis of tumor development and its clinical correlation in shaping future targeted treatment strategies. Indian J Ophthalmol 2023; 71:2662-2676. [PMID: 37417104 PMCID: PMC10491038 DOI: 10.4103/ijo.ijo_3172_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 07/08/2023] Open
Abstract
Retinoblastoma is a retinal cancer that affects children and is the most prevalent intraocular tumor worldwide. Despite tremendous breakthroughs in our understanding of the fundamental mechanisms that regulate progression of retinoblastoma, the development of targeted therapeutics for retinoblastoma has lagged. Our review highlights the current developments in the genetic, epigenetic, transcriptomic, and proteomic landscapes of retinoblastoma. We also discuss their clinical relevance and potential implications for future therapeutic development, with the aim to create a frontline multimodal therapy for retinoblastoma.
Collapse
Affiliation(s)
- Shruti Rathore
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aman Verma
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Ocular Genetics Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Navjot Marwa
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Yagya Ghiya
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Santosh G Honavar
- Ophthalmic Plastic Surgery, Orbit and Ocular Oncology, Centre for Sight, Hyderbad, Telangana, India
| | - Anil Tiwari
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Sima Das
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Akhil Varshney
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
11
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
12
|
Wang K, Yang T, Zhang Y, Gao X, Tao L. The opportunities and challenges for nutritional intervention in childhood cancers. Front Nutr 2023; 10:1091067. [PMID: 36925958 PMCID: PMC10012036 DOI: 10.3389/fnut.2023.1091067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Diet dictates nutrient availability in the tumor microenvironment, thus affecting tumor metabolic activity and growth. Intrinsically, tumors develop unique metabolic features and are sensitive to environmental nutrient concentrations. Tumor-driven nutrient dependencies provide opportunities to control tumor growth by nutritional restriction or supplementation. This review summarized the existing data on nutrition and pediatric cancers after systematically searching articles up to 2023 from four databases (PubMed, Web of Science, Scopus, and Ovid MEDLINE). Epidemiological studies linked malnutrition with advanced disease stages and poor clinical outcomes in pediatric cancer patients. Experimental studies identified several nutrient dependencies (i.e., amino acids, lipids, vitamins, etc.) in major pediatric cancer types. Dietary modifications such as calorie restriction, ketogenic diet, and nutrient restriction/supplementation supported pediatric cancer treatment, but studies remain limited. Future research should expand epidemiological studies through data sharing and multi-institutional collaborations and continue to discover critical and novel nutrient dependencies to find optimal nutritional approaches for pediatric cancer patients.
Collapse
Affiliation(s)
- Kaiyue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yubin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Ling Tao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Nakamichi K, Stacey A, Mustafi D. Targeted long-read sequencing allows for rapid identification of pathogenic disease-causing variants in retinoblastoma. Ophthalmic Genet 2022; 43:762-770. [PMID: 36325802 DOI: 10.1080/13816810.2022.2141797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Identification of disease-causing variants of the retinoblastoma gene (RB1), the predominant cause of retinoblastoma, is challenging. Targeted long-read genome sequencing offers a novel approach to resolve the diverse range of pathogenic variants in RB1 and provides haplotype information rapidly. MATERIALS AND METHODS Genomic DNA was isolated from a venipuncture blood draw of a retinoblastoma patient. Whole genome sequencing (WGS) was carried out using the short-read Ilumina platform. WGS and targeted sequencing of RB1 was accomplished using the long-read Oxford Nanopore Technologies (ONT) platform. Deep-learning frameworks allowed haplotagging, variant calling, and variant annotation of both short- and long-read data. RESULTS Targeted long-read sequencing of the RB1 gene allowed for enhanced depth of read coverage for discovery of rare variants and haplotype analysis. A duplication leading to a frameshift and early termination in RB1 was identified as the most deleterious variant by all sequencing methods, with long-read technology providing additional information of methylation signal and haplotype information. More importantly, there was greater than 98% concordance of RB1 variants identified between short-read and targeted long-read sequencing modalities. CONCLUSIONS Targeted long-read technology allows for focused sequencing effort for variant discovery. Application of this for the first time in a retinoblastoma patient allowed haplotagged variant identification and demonstrated excellent concordance with benchmark short-read sequencing. The added benefit of targeted long-read sequencing to resolve disease-causing genomic variation in RB1 rapidly from a blood draw will provide a more definitive diagnosis of heritable RB and guide management decisions for patients and their families.
Collapse
Affiliation(s)
- Kenji Nakamichi
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - Andrew Stacey
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA.,Department of Ophthalmology, Seattle Children's Hospital, Seattlees, WA, USA
| | - Debarshi Mustafi
- Department of Ophthalmology and Roger and Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA.,Department of Ophthalmology, Seattle Children's Hospital, Seattlees, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| |
Collapse
|
14
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:ijms232214480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
15
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
16
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
17
|
Abstract
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hui-Yu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tian-Ren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
18
|
Hu X, Liu R, Hou J, Peng W, Wan S, Xu M, Li Y, Zhang G, Zhai X, Liang P, Cui H. SMARCE1 promotes neuroblastoma tumorigenesis through assisting MYCN-mediated transcriptional activation. Oncogene 2022; 41:4295-4306. [PMID: 35978151 DOI: 10.1038/s41388-022-02428-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
SMARCE1 gene, encoding a core subunit of SWI/SNF chromatin remodeling complex, is situated on chromosome 17q21-ter region that is frequently gained in neuroblastoma. However, its role in the tumorigenesis remains unknown. Here, we showed that high expression of SMARCE1 was associated with poor prognosis of patients with neuroblastoma, especially those with MYCN amplification. Knockdown of SMARCE1 reduced proliferation, colony formation, and tumorigenicity of neuroblastoma cells. Mechanistically, SMARCE1 directly interacted with MYCN, which was necessary for MYCN-mediated transcriptional activation of downstream target genes including PLK1, ODC1, and E2F2. Overexpression of PLK1, ODC1 or E2F2 significantly reversed the inhibiting effect of SMARCE1 knockdown on the proliferation, colony formation, and tumorigenicity of MYCN-amplified neuroblastoma cells. Moreover, we revealed that MYCN directly regulated SMARCE1 transcription through binding to a non-canonical E-box of SMARCE1 promoter, thus enhancing SMARCE1-MYCN cooperativity. These findings establish SMARCE1 is a critical oncogenic factor in neuroblastoma and provide a new potential target for treatment of neuroblastoma with 17q21-ter gain and MYCN amplification.
Collapse
Affiliation(s)
- Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Sicheng Wan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Minghao Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yongsen Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
19
|
MYCN induces cell-specific tumorigenic growth in RB1-proficient human retinal organoid and chicken retina models of retinoblastoma. Oncogenesis 2022; 11:34. [PMID: 35729105 PMCID: PMC9213451 DOI: 10.1038/s41389-022-00409-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Retinoblastoma is a rare, intraocular paediatric cancer that originates in the neural retina and is most frequently caused by bi-allelic loss of RB1 gene function. Other oncogenic mutations, such as amplification and increased expression of the MYCN gene, have been found even with proficient RB1 function. In this study, we investigated whether MYCN over-expression can drive carcinogenesis independently of RB1 loss-of-function mutations. The aim was to elucidate the events that result in carcinogenesis and identify the cancer cell-of-origin. We used the chicken retina, a well-established model for studying retinal neurogenesis, and established human embryonic stem cell-derived retinal organoids as model systems. We over-expressed MYCN by electroporation of piggyBac genome-integrating expression vectors. We found that over-expression of MYCN induced tumorigenic growth with high frequency in RB1-proficient chicken retinas and human organoids. In both systems, the tumorigenic cells expressed markers for undifferentiated cone photoreceptor/horizontal cell progenitors. The over-expression resulted in metastatic retinoblastoma within 7–9 weeks in chicken. Cells expressing MYCN could be grown in vitro and, when orthotopically injected, formed tumours that infiltrated the sclera and optic nerve and expressed markers for cone progenitors. Investigation of the tumour cell phenotype determined that the potential for neoplastic growth was embryonic stage-dependent and featured a cell-specific resistance to apoptosis in the cone/horizontal cell lineage, but not in ganglion or amacrine cells. We conclude that MYCN over-expression is sufficient to drive tumorigenesis and that a cell-specific resistance to apoptosis in the cone/horizontal cell lineage mediates the cancer phenotype. ![]()
Collapse
|
20
|
Sradhanjali S, Rout P, Tripathy D, Kaliki S, Rath S, Modak R, Mittal R, Chowdary TK, Reddy MM. The Oncogene MYCN Modulates Glycolytic and Invasive Genes to Enhance Cell Viability and Migration in Human Retinoblastoma. Cancers (Basel) 2021; 13:cancers13205248. [PMID: 34680394 PMCID: PMC8533785 DOI: 10.3390/cancers13205248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
Retinoblastoma is usually initiated by biallelic RB1 gene inactivation. In addition, MYCN copy number alterations also contribute to RB pathogenesis. However, MYCN expression, its role in disease progression and correlation with RB histological risk factors are not well understood. We studied the expression of MYCN in enucleated RB patient specimens by immunohistochemistry. MYCN is overexpressed in RB compared to control retina. Our microarray gene expression analysis followed by qRT-PCR validation revealed that genes involved in glucose metabolism and migration are significantly downregulated in MYCN knockdown cells. Further, targeting MYCN in RB cells using small molecule compounds or shRNAs led to decreased cell survival and migration, increased apoptosis and cell cycle arrest, suggesting that MYCN inhibition can be a potential therapeutic strategy. We also noted that MYCN inhibition results in reduction in glucose uptake, lactate production, ROS levels and gelatinolytic activity of active-MMP9, explaining a possible mechanism of MYCN in RB. Taking clues from our findings, we tested a combination treatment of RB cells with carboplatin and MYCN inhibitors to find enhanced therapeutic efficacy compared to single drug treatment. Thus, MYCN inhibition can be a potential therapeutic strategy in combination with existing chemotherapy drugs to restrict tumor cell growth in RB.
Collapse
Affiliation(s)
- Swatishree Sradhanjali
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar 751024, Odisha, India; (S.S.); (P.R.)
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, Odisha, India;
| | - Padmalochan Rout
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar 751024, Odisha, India; (S.S.); (P.R.)
- Novo Nordisk, Bangalore 560066, Karnataka, India
| | - Devjyoti Tripathy
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, LV Prasad Eye Institute, Bhubaneswar 751024, Odisha, India; (D.T.); (S.R.)
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India;
| | - Suryasnata Rath
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, LV Prasad Eye Institute, Bhubaneswar 751024, Odisha, India; (D.T.); (S.R.)
| | - Rahul Modak
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, Odisha, India;
| | - Ruchi Mittal
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Bhubaneswar 751024, Odisha, India;
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar 751024, Odisha, India
| | - Tirumala Kumar Chowdary
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India;
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar 751024, Odisha, India; (S.S.); (P.R.)
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, Odisha, India;
- Correspondence: or ; Tel.: +91-674-3987175
| |
Collapse
|
21
|
Moulin AP, Stathopoulos C, Marcelli F, Schoumans Pouw J, Beck-Popovic M, Munier FL. Secondary enucleated retinoblastoma with MYCN amplification. Ophthalmic Genet 2021; 42:354-359. [PMID: 33870828 DOI: 10.1080/13816810.2021.1897847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background: Absence of RB1 mutation is rare in retinoblastoma and MYCN amplifications were recently identified in a subset of aggressive retinoblastomas occurring in infants. Here we describe not only the clinical phenotype of MYCN retinoblastoma at presentation, but also the tumor response to the first attempt of conservative management in this context.Methods: Interventional retrospective case reportResults: A 6-month-old boy was referred with right leukocoria. Examination under anesthesia revealed a group D unilateral retinoblastoma with an extensive whitish mass and total retinal detachment. Despite partial response following combined sequential intravenous and intra-arterial chemotherapy, tumor relapse in the aqueous humor occurred with posterior chamber involvement over 360°, this transiently controlled by intracameral and intravitreal melphalan injections. Eleven months post-diagnosis the eye was enucleated due to diffuse retinal recurrence invading the ciliary body and obscuring the optic nerve, associated with neovascular glaucoma. Histopathology revealed a poorly differentiated retinoblastoma with diffuse retinal invasion, extending from the superior ciliary body to the inferior equatorial choroid. There was post laminar optic nerve extension without involvement of the surgical margin. RB1 and diffuse MYCN nuclear expression were identified. FISH and SNP-array confirmed MYCN amplification. At 65 months follow-up the patient remained in good health without local recurrence or metastasis.Conclusions: To the best of our knowledge, this study is the first to attempt conservative management of an MYCN retinoblastoma, although secondary enucleation could not be avoided due to highly aggressive recurrence resisting all targeted modalities of chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Francis L Munier
- Jules-Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| |
Collapse
|
22
|
Raieli S, Di Renzo D, Lampis S, Amadesi C, Montemurro L, Pession A, Hrelia P, Fischer M, Tonelli R. MYCN Drives a Tumor Immunosuppressive Environment Which Impacts Survival in Neuroblastoma. Front Oncol 2021; 11:625207. [PMID: 33718189 PMCID: PMC7951059 DOI: 10.3389/fonc.2021.625207] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
A wide range of malignancies presents MYCN amplification (MNA) or dysregulation. MYCN is associated with poor prognosis and its over-expression leads to several dysregulations including metabolic reprogramming, mitochondria alteration, and cancer stem cell phenotype. Some hints suggest that MYCN overexpression leads to cancer immune-escape. However, this relationship presents various open questions. Our work investigated in details the relationship of MYCN with the immune system, finding a correlated immune-suppressive phenotype in neuroblastoma (NB) and different cancers where MYCN is up-regulated. We found a downregulated Th1-lymphocytes/M1-Macrophages axis and upregulated Th2-lymphocytes/M2-macrophages in MNA NB patients. Moreover, we unveiled a complex immune network orchestrated by N-Myc and we identified 16 genes modules associated to MNA NB. We also identified a MYCN-associated immune signature that has a prognostic value in NB and recapitulates clinical features. Our signature also discriminates patients with poor survival in non-MNA NB patients where MYCN expression is not discriminative. Finally, we showed that targeted inhibition of MYCN by BGA002 (anti-MYCN antigene PNA) is able to restore NK sensibility in MYCN-expressing NB cells. Overall, our study unveils a MYCN-driven immune network in NB and shows a therapeutic option to restore sensibility to immune cells.
Collapse
Affiliation(s)
| | - Daniele Di Renzo
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | | | | | - Luca Montemurro
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Medical Faculty, University Children's Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Keinan N, Scharff Y, Goldstein O, Chamo M, Ilic S, Gazit R. Syngeneic leukemia models using lentiviral transgenics. Cell Death Dis 2021; 12:193. [PMID: 33602907 PMCID: PMC7893004 DOI: 10.1038/s41419-021-03477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Animal models are necessary to study cancer and develop treatments. After decades of intensive research, effective treatments are available for only a few types of leukemia, while others are currently incurable. Our goal was to generate novel leukemia models in immunocompetent mice. We had achieved abilities for overexpression of multiple driving oncogenes simultaneously in normal primary cells, which can be transplanted and followed in vivo. Our experiments demonstrated the induction of primary malignant growth. Leukemia lines that model various types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL), were passaged robustly in congenic wild-type immunocompetent mice. These novel leukemia lines, which may complement previous models, offer the flexibility to generate tailored models of defined oncogenes of interest. The characterization of our leukemia models in immunocompetent animals can uncover the mechanisms of malignancy progression and offer a unique opportunity to stringently test anti-cancer chemotherapies.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Viral
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/virology
- Immunocompetence
- Lentivirus/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/virology
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Oncogenes
- Transplantation, Isogeneic
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Mice
Collapse
Affiliation(s)
- Nurit Keinan
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Ye'ela Scharff
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Oron Goldstein
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Michael Chamo
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Stefan Ilic
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel
| | - Roi Gazit
- The Shraga Segal Department for Microbiology, Immunology, and Genetics, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, the Ben-Gurion University of the Negev, Beer-Sheva, POB 84105, Israel.
| |
Collapse
|
24
|
Liu Z, Chen SS, Clarke S, Veschi V, Thiele CJ. Targeting MYCN in Pediatric and Adult Cancers. Front Oncol 2021; 10:623679. [PMID: 33628735 PMCID: PMC7898977 DOI: 10.3389/fonc.2020.623679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL occurs in many types of cancers, and is frequently associated with a poor prognosis. The majority of functional studies have focused on c-MYC due to its broad expression profile in human cancers. The existence of highly conserved functional domains between MYCN and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central oncogenic role in many human cancers makes it a highly desirable therapeutic target. Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus on investigating methods to indirectly target MYC to achieve anti-tumor effects. This review will primarily summarize the recent progress in understanding the function of MYCN. It will explore efforts at targeting MYCN, including strategies aimed at suppression of MYCN transcription, destabilization of MYCN protein, inhibition of MYCN transcriptional activity, repression of MYCN targets and utilization of MYCN overexpression dependent synthetic lethality.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Samuel S Chen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Saki Clarke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
25
|
Molecular Changes in Retinoblastoma beyond RB1: Findings from Next-Generation Sequencing. Cancers (Basel) 2021; 13:cancers13010149. [PMID: 33466343 PMCID: PMC7796332 DOI: 10.3390/cancers13010149] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The gene causing retinoblastoma was the first tumor suppressor cloned (1986) and because retinoblastoma is the classic example of autosomal dominant inheritance, there has been little research on non-RB1 alterations in tumors and the impact these alterations have on growth patterns in the eye, metastases and predilection for non-ocular cancers. This study interrogated enucleated retinoblastoma specimens using a MSK-IMPACT clinical next-generation sequencing panel with the aim to correlate them with clinicopathologic characteristics. We found that vitreous seeding (the main reason for eye removal) correlates with copy number variations, specifically 1q gains and 16q loss. We also found that somatic BCOR mutations correlate with propensity for metastasis and this offers a molecular pathway for monitoring high risk tumors. In addition, the finding that 11% of these retinoblastoma patients have additional germline mutations (on other chromosomes) that predispose them to a different host of cancers throughout their lives enables more targeted and specific screening strategies. Abstract This investigation uses hybridization capture-based next-generation sequencing to deepen our understanding of genetics that underlie retinoblastoma. Eighty-three enucleated retinoblastoma specimens were evaluated using a MSK-IMPACT clinical next-generation sequencing panel to evaluate both somatic and germline alterations. Somatic copy number variations (CNVs) were also identified. Genetic profiles were correlated to clinicopathologic characteristics. RB1 inactivation was found in 79 (97.5%) patients. All specimens had additional molecular alterations. The most common non-RB1 gene alteration was BCOR in 19 (22.9%). Five (11.0%) had pathogenic germline mutations in other non-RB1 cancer predisposition genes. Significant clinicopathologic correlations included: vitreous seeds associated with 1q gains and 16q loss of heterozygosity (BH-corrected p-value = 0.008, 0.004; OR = 12.6, 26.7, respectively). BCOR mutations were associated with poor prognosis, specifically metastases-free survival (MFS) (nominal p-value 0.03). Furthermore, retinoblastoma patients can have non-RB1 germline mutations in other cancer-associated genes. No two specimens had the identical genetic profile, emphasizing the individuality of tumors with the same clinical diagnosis.
Collapse
|
26
|
Retinoblastoma: Etiology, Modeling, and Treatment. Cancers (Basel) 2020; 12:cancers12082304. [PMID: 32824373 PMCID: PMC7465685 DOI: 10.3390/cancers12082304] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoblastoma is a retinal cancer that is initiated in response to biallelic loss of RB1 in almost all cases, together with other genetic/epigenetic changes culminating in the development of cancer. RB1 deficiency makes the retinoblastoma cell-of-origin extremely susceptible to cancerous transformation, and the tumor cell-of-origin appears to depend on the developmental stage and species. These are important to establish reliable preclinical models to study the disease and develop therapies. Although retinoblastoma is the most curable pediatric cancer with a high survival rate, advanced tumors limit globe salvage and are often associated with high-risk histopathological features predictive of dissemination. The advent of chemotherapy has improved treatment outcomes, which is effective for globe preservation with new routes of targeted drug delivery. However, molecularly targeted therapeutics with more effectiveness and less toxicity are needed. Here, we review the current knowledge concerning retinoblastoma genesis with particular attention to the genomic and transcriptomic landscapes with correlations to clinicopathological characteristics, as well as the retinoblastoma cell-of-origin and current disease models. We further discuss current treatments, clinicopathological correlations, which assist in guiding treatment and may facilitate globe preservation, and finally we discuss targeted therapeutics for future treatments.
Collapse
|
27
|
Raguraman R, Parameswaran S, Kanwar JR, Vasudevan M, Chitipothu S, Kanwar RK, Krishnakumar S. Gene expression profiling of tumor stroma interactions in retinoblastoma. Exp Eye Res 2020; 197:108067. [PMID: 32585195 DOI: 10.1016/j.exer.2020.108067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 01/18/2023]
Abstract
We aimed to identify the critical molecular pathways altered upon tumor stroma interactions in retinoblastoma (RB). In vitro 2 D cocultures of RB tumor cells (Weri-Rb-1 and NCC-RbC-51) with primary bone marrow stromal cells (BMSC) was established. Global gene expression patterns in coculture samples were assessed using Affymetrix Prime view human gene chip microarray and followed with bioinformatics analyses. Key upregulated genes from Weri-Rb-1 + BMSC and NCC-RbC-51 + BMSC coculture were validated using qRT-PCR to ascertain their role in RB progression. Whole genome microarray experiments identified significant (P ≤ 0.05, 1.1 log 2 FC) transcriptome level changes induced upon coculture of RB cells with BMSC. A total of 1155 genes were downregulated and 1083 upregulated in Weri-Rb-1 + BMSC coculture. Similarly, 1865 genes showed downregulation and 1644 genes were upregulation in NCC-RbC-51 + BMSC coculture. The upregulated genes were significantly associated with pathways of focal adhesion, PI3K-Akt signalling, ECM-receptor interaction, JAK-STAT, TGF-β signalling thus contributing to RB progression. Validation of key genes by qRT-PCR revealed significant overexpression of IL8, IL6, MYC and SMAD3 in the case of Weri-Rb-1 + BMSC coculture and IL6 in the case of NCC-RbC-51 + BMSC coculture. The microarray expression study on in vitro RB coculture models revealed the pathways that could be involved in the progression of RB. The gene signature obtained in a stimulated model when a growing tumor interacts with its microenvironment may provide new horizons for potential targeted therapy in RB.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Jagat Rakesh Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | | | - Srujana Chitipothu
- Central Research Instrumentation Facility, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Rupinder Kaur Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Subramanian Krishnakumar
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia.
| |
Collapse
|
28
|
The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells. Proc Natl Acad Sci U S A 2020; 117:4885-4893. [PMID: 32071205 PMCID: PMC7060746 DOI: 10.1073/pnas.1915060117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We previously found that MYCL is required by a Batf3-dependent classical dendritic cell subset (cDC1) for optimal CD8 T cell priming, but the underlying mechanism has remained unclear. The MAX-binding proteins encompass a family of transcription factors with overlapping DNA-binding specificities, conferred by a C-terminal basic helix-loop-helix domain, which mediates heterodimerization. Thus, regulation of transcription by these factors is dependent on divergent N-terminal domains. The MYC family, including MYCL, has actions that are reciprocal to the MXD family, which is mediated through the recruitment of higher-order activator and repressor complexes, respectively. As potent proto-oncogenes, models of MYC family function have been largely derived from their activity at supraphysiological levels in tumor cell lines. MYC and MYCN have been studied extensively, but empirical analysis of MYCL function had been limited due to highly restricted, lineage-specific expression in vivo. Here we observed that Mycl is expressed in immature cDC1s but repressed on maturation, concomitant with Mxd1 induction in mature cDC1s. We hypothesized that MYCL and MXD1 regulate a shared, but reciprocal, transcriptional program during cDC1 maturation. In agreement, immature cDC1s in Mycl -/- -deficient mice exhibited reduced expression of genes that regulate core biosynthetic processes. Mature cDC1s from Mxd1 -/- mice exhibited impaired ability to inhibit the transcriptional signature otherwise supported by MYCL. The present study reveals LMYC and MXD1 as regulators of a transcriptional program that is modulated during the maturation of Batf3-dependent cDC1s.
Collapse
|
29
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1023] [Impact Index Per Article: 204.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
30
|
Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V, Augello MA, Puca L, Ahmed A, Dardenne E, Lu X, Hwang I, Bagadion AM, Sboner A, Elemento O, Paik J, Yu J, Barbieri CE, Dephoure N, Beltran H, Rickman DS. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J Clin Invest 2019; 129:3924-3940. [PMID: 31260412 DOI: 10.1172/jci127961] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital
| | | | | | | | - Adnan Ahmed
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | | | - Xiaodong Lu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Inah Hwang
- Department of Pathology and Laboratory Medicine
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Physiology and Biophysics, Institute for Computational Biomedicine, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Physiology and Biophysics, Institute for Computational Biomedicine, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Jindan Yu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christopher E Barbieri
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Urology, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Medicine.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
31
|
Rajasekaran S, Nagarajha Selvan LD, Dotts K, Kumar R, Rishi P, Khetan V, Bisht M, Sivaraman K, Krishnakumar S, Sahoo D, Campbell MJ, Elchuri SV, Miles WO. Non-coding and Coding Transcriptional Profiles Are Significantly Altered in Pediatric Retinoblastoma Tumors. Front Oncol 2019; 9:221. [PMID: 31058073 PMCID: PMC6477087 DOI: 10.3389/fonc.2019.00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma is a rare pediatric tumor of the retina, caused by the homozygous loss of the Retinoblastoma 1 (RB1) tumor suppressor gene. Previous microarray studies have identified changes in the expression profiles of coding genes; however, our understanding of how non-coding genes change in this tumor is absent. This is an important area of research, as in many adult malignancies, non-coding genes including LNC-RNAs are used as biomarkers to predict outcome and/or relapse. To establish a complete and in-depth RNA profile, of both coding and non-coding genes, in Retinoblastoma tumors, we conducted RNA-seq from a cohort of tumors and normal retina controls. This analysis identified widespread transcriptional changes in the levels of both coding and non-coding genes. Unexpectedly, we also found rare RNA fusion products resulting from genomic alterations, specific to Retinoblastoma tumor samples. We then determined whether these gene expression changes, of both coding and non-coding genes, were also found in a completely independent Retinoblastoma cohort. Using our dataset, we then profiled the potential effects of deregulated LNC-RNAs on the expression of neighboring genes, the entire genome, and on mRNAs that contain a putative area of homology. This analysis showed that most deregulated LNC-RNAs do not act locally to change the transcriptional environment, but potentially function to modulate genes at distant sites. From this analysis, we selected a strongly down-regulated LNC-RNA in Retinoblastoma, DRAIC, and found that restoring DRAIC RNA levels significantly slowed the growth of the Y79 Retinoblastoma cell line. Collectively, our work has generated the first non-coding RNA profile of Retinoblastoma tumors and has found that these tumors show widespread transcriptional deregulation.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | | | - Kathleen Dotts
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Ranjith Kumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Madhoolika Bisht
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | | | | | - Debashis Sahoo
- Department of Pediatrics and Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Wayne O Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Raguraman R, Parameswaran S, Kanwar JR, Khetan V, Rishi P, Kanwar RK, Krishnakumar S. Evidence of Tumour Microenvironment and Stromal Cellular Components in Retinoblastoma. Ocul Oncol Pathol 2019; 5:85-93. [PMID: 30976585 PMCID: PMC6422135 DOI: 10.1159/000488709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The tumour microenvironment (TME) consisting of tumour cells and multiple stromal cell types regulate tumour growth, invasion and metastasis. While the concept of TME and presence of stromal cellular components is widely established in cancers, its significance in the paediatric intraocular malignancy, retinoblastoma (RB), remains unknown. METHODS The study qualitatively identified the presence of multiple stromal cellular subtypes in RB TME by immunohistochemistry. RESULTS Results of the study identified the presence of stromal cell types such as endothelial cells, tumour-associated macrophages, fibroblasts, cancer-associated fibroblasts, retinal astrocytes and glia in RB TME. The extent of stromal marker positivity, however, did not correlate with histopathological features of RB. CONCLUSIONS The findings of the study convincingly suggest the presence of a stromal component in RB tumours. The interactions between stromal cells and tumour cells might be of profound importance in RB progression.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Larsen and Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Jagat Rakesh Kanwar
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Vikas Khetan
- Department of Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Department of Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Rupinder Kaur Kanwar
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Subramanian Krishnakumar
- Department of Larsen and Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
33
|
Martín-Del-Campo R, Bárcenas-Ibarra A, Sifuentes-Romero I, Llera-Herrera R, García-Gasca A. Methylation status of the putative Pax6 promoter in olive ridley sea turtle embryos with eye defects: An initial approach. Mech Dev 2018; 154:287-295. [PMID: 30110613 DOI: 10.1016/j.mod.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022]
Abstract
Normal development involves the interplay of genetic and epigenetic regulatory mechanisms. Pax6 is an eye-selector factor responsible for initiating the regulatory cascade for the development of the eyes. For the olive ridley sea turtle (Lepidochelys olivacea), a threatened species, eye malformations have been reported. In order to study the DNA methylation status of the putative promoter of the Pax6 gene in embryos with ocular malformations, an exploratory study was carried out in which DNA was isolated from embryos with anophthalmia, microphthalmia, and cyclopia, as well as from their normal counterparts. The 5'-flanking region from the Pax6 gene was isolated, showing two CpG islands (CGIs). The methylation status of CGIs in malformed embryos was compared with that of normal embryos by bisulfite sequencing. Putative transcription factor binding sites and regulatory features were identified. Methylation patterns were observed in both CpG and non-CpG contexts, and were unique for each malformed embryo; in the CpG context, an embryo with cyclopia showed a methylated cytosine upstream the CGI-1 not present in other embryos, an embryo with left anophthalmia presented two methylated cytosines in the CGI-1, whereas an embryo with left anophthalmia and right microphthalmia showed two methylated cytosines in the CGI-2. Normal embryos did not show methylated cytosines in the CGI-1, but one of them showed one methylcytosine in the CGI-2. Methylated transcription factor-binding sites may affect Pax6 expression associated to the cellular response to environmental compounds and hypoxia, signal transduction, cell cycle, lens physiology and development, as well as the transcription rate. Although preliminary, these results suggest that embryos with ocular malformations present unique DNA methylation patterns in the putative promoter of the Pax6 gene in L. olivacea, and probably those subtle, random changes in the methylation status can cause (at least in part) the aberrant phenotypes observed in these embryos.
Collapse
Affiliation(s)
- Rodolfo Martín-Del-Campo
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| | - Annelisse Bárcenas-Ibarra
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico
| | - Itzel Sifuentes-Romero
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Raúl Llera-Herrera
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico; Instituto de Ciencias del Mar y Limnología (Unidad Académica Mazatlán), Universidad Nacional Autónoma de México, Avenida Joel Montes Camarena s/n, PO Box 811, Mazatlán, Sinaloa 82040, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| |
Collapse
|
34
|
Rickman DS, Schulte JH, Eilers M. The Expanding World of N-MYC–Driven Tumors. Cancer Discov 2018; 8:150-163. [DOI: 10.1158/2159-8290.cd-17-0273] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
|
35
|
Newman EA, Chukkapalli S, Bashllari D, Thomas TT, Van Noord RA, Lawlor ER, Hoenerhoff MJ, Opipari AW, Opipari VP. Alternative NHEJ pathway proteins as components of MYCN oncogenic activity in human neural crest stem cell differentiation: implications for neuroblastoma initiation. Cell Death Dis 2017; 8:3208. [PMID: 29238067 PMCID: PMC5870584 DOI: 10.1038/s41419-017-0004-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Abstract
Neuroblastoma is a cancer of neural crest stem cell (NCSC) lineage. Signaling pathways that regulate NCSC differentiation have been implicated in neuroblastoma tumorigenesis. This is exemplified by MYCN oncogene targets that balance proliferation, differentiation, and cell death similarly in normal NCSC and in high-risk neuroblastoma. Our previous work discovered a survival mechanism by which MYCN-amplified neuroblastoma circumvents cell death by upregulating components of the error-prone non-canonical alternative nonhomologous end-joining (alt-NHEJ) DNA repair pathway. Similar to proliferating stem cells, high-risk neuroblastoma cells have enhanced DNA repair capacity, overcoming DNA damage with higher repair efficiency than somatic cells. Adequate DNA maintenance is required for lineage protection as stem cells proliferate and during tumor progression to overcome oncogene-induced replication stress. On this basis, we hypothesized that alt-NHEJ overexpression in neuroblastoma is a cancer cell survival mechanism that originates from DNA repair systems of NCSC, the presumed progenitor cell of origin. A human NCSC model was generated in which inducible MYCN triggered an immortalized phenotype capable of forming metastatic neuroectodermal tumors in mice, resembling human neuroblastoma. Critical alt-NHEJ components (DNA Ligase III, DNA Ligase I, and Poly [ADP-ribose polymerase 1]) were highly expressed in normal early NCSC, and decreased as cells became terminally differentiated. Constitutive MYCN expression maintained high alt-NHEJ protein expression, preserving the expression pattern of the immature neural phenotype. siRNA knockdown of alt-NHEJ components reversed MYCN effects on NCSC proliferation, invasion, and migration. DNA Ligase III, Ligase I, and PARP1 silencing significantly decreased neuroblastoma markers expression (TH, Phox2b, and TRKB). These results utilized the first human NCSC model of neuroblastoma to uncover an important link between MYCN and alt-NHEJ expression in developmental tumor initiation, setting precedence to investigate alt-NHEJ repair mechanics in neuroblastoma DNA maintenance.
Collapse
Affiliation(s)
- Erika A Newman
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sahiti Chukkapalli
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniela Bashllari
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tina T Thomas
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Raelene A Van Noord
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth R Lawlor
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Pediatrics, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark J Hoenerhoff
- In Vivo Animal Core (IVAC), The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Valerie P Opipari
- Department of Pediatrics, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Stenfelt S, Blixt MKE, All-Ericsson C, Hallböök F, Boije H. Heterogeneity in retinoblastoma: a tale of molecules and models. Clin Transl Med 2017; 6:42. [PMID: 29124525 PMCID: PMC5680409 DOI: 10.1186/s40169-017-0173-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma, an intraocular pediatric cancer, develops in the embryonic retina following biallelic loss of RB1. However, there is a wide range of genetic and epigenetic changes that can affect RB1 resulting in different clinical outcomes. In addition, other transformations, such as MYCN amplification, generate particularly aggressive tumors, which may or may not be RB1 independent. Recognizing the cellular characteristics required for tumor development, by identifying the elusive cell-of-origin for retinoblastoma, would help us understand the development of these tumors. In this review we summarize the heterogeneity reported in retinoblastoma on a molecular, cellular and tissue level. We also discuss the challenging heterogeneity in current retinoblastoma models and suggest future platforms that could contribute to improved understanding of tumor initiation, progression and metastasis in retinoblastoma, which may ultimately lead to more patient-specific treatments.
Collapse
Affiliation(s)
- Sonya Stenfelt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Maria K E Blixt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Henrik Boije
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
37
|
Ewens KG, Bhatti TR, Moran KA, Richards-Yutz J, Shields CL, Eagle RC, Ganguly A. Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 2017; 6:619-630. [PMID: 28211617 PMCID: PMC5345671 DOI: 10.1002/cam4.1010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
A small, but unique subgroup of retinoblastoma has been identified with no detectable mutation in the retinoblastoma gene (RB1) and with high levels of MYCN gene amplification. This manuscript investigated alternate pathways of inactivating pRb, the encoded protein in these tumors. We analyzed the mutation status of the RB1 gene and MYCN copy number in a series of 245 unilateral retinoblastomas, and the phosphorylation status of pRb in a subset of five tumors using immunohistochemistry. There were 203 tumors with two mutations in RB1 (RB1-/- , 83%), 29 with one (RB1+/- , 12%) and 13 with no detectable mutations (RB1+/+ , 5%). Eighteen tumors carried MYCN amplification between 29 and 110 copies: 12 had two (RB1-/- ) or one RB1 (RB1+/- ) mutations, while six had no mutations (RB1+/+ ). Immunohistochemical staining of tumor sections with antibodies against pRb and phosphorylated Rb (ppRb) displayed high levels of pRb and ppRb in both RB1+/+ and RB1+/- tumors with MYCN amplification compared to no expression of these proteins in a classic RB1-/- , MYCN-low tumor. These results establish that high MYCN amplification can be present in retinoblastoma with or without coding sequence mutations in the RB1 gene. The functional state of pRb is inferred to be inactive due to phosphorylation of pRb in the MYCN-amplified retinoblastoma without coding sequence mutations. This makes inactivation of RB1 by gene mutation or its protein product, pRb, by protein phosphorylation, a necessary condition for initiating retinoblastoma tumorigenesis, independent of MYCN amplification.
Collapse
Affiliation(s)
- Kathryn G Ewens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tricia R Bhatti
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly A Moran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Richards-Yutz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carol L Shields
- Oncology Services, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph C Eagle
- Department of Pathology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Wu N, Jia D, Bates B, Basom R, Eberhart CG, MacPherson D. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence. J Clin Invest 2017; 127:888-898. [PMID: 28165337 DOI: 10.1172/jci88508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/15/2016] [Indexed: 01/24/2023] Open
Abstract
The most frequent focal alterations in human retinoblastoma are mutations in the tumor-suppressor gene retinoblastoma (RB) and amplification of the oncogene MYCN. Whether MYCN overexpression drives retinoblastoma has not been assessed in model systems. Here, we have shown that Rb inactivation collaborates strongly with MYCN overexpression and leads to retinoblastoma in mice. Overexpression of human MYCN in the context of Rb inactivation increased the expression of MYC-, E2F-, and ribosome-related gene sets, promoted excessive proliferation, and led to retinoblastoma with anaplastic changes. We then modeled responses to MYCN-directed therapy by suppressing MYCN expression in MYCN-driven retinoblastomas. Initially, MYCN suppression led to proliferation arrest and partial tumor regression with loss of anaplasia. However, over time, retinoblastomas reemerged, typically without reactivation of human MYCN or amplification of murine Mycn. A subset of returning retinoblastomas showed genomic amplification of a Mycn target gene encoding the miR cluster miR-17~92, while most retinoblastomas reemerged without clear genetic alterations in either Mycn or known Mycn targets. This Rb/MYCN model recapitulates key genetic driver alterations seen in human retinoblastoma and reveals the emergence of MYCN independence in an initially MYCN-driven tumor.
Collapse
|
39
|
N-Myc overexpression increases cisplatin resistance in neuroblastoma via deregulation of mitochondrial dynamics. Cell Death Discov 2016; 2:16082. [PMID: 28028439 PMCID: PMC5149579 DOI: 10.1038/cddiscovery.2016.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022] Open
Abstract
N-Myc is a global transcription factor that regulates the expression of genes involved in a number of essential cellular processes including: ribosome biogenesis, cell cycle and apoptosis. Upon deregulation, N-Myc can drive pathologic expression of many of these genes, which ultimately defines its oncogenic potential. Overexpression of N-Myc has been demonstrated to contribute to tumorigenesis, most notably for the pediatric tumor, neuroblastoma. Herein, we provide evidence that deregulated N-Myc alters the expression of proteins involved in mitochondrial dynamics. We found that N-Myc overexpression leads to increased fusion of the mitochondrial reticulum secondary to changes in protein expression due to aberrant transcriptional and post-translational regulation. We believe the structural changes in the mitochondrial network in response to N-Myc amplification in neuroblastoma contributes to two important aspects of tumor development and maintenance—bioenergetic alterations and apoptotic resistance. Specifically, we found that N-Myc overexpressing cells are resistant to programmed cell death in response to exposure to low doses of cisplatin, and demonstrated that this was dependent on increased mitochondrial fusion. We speculate that these changes in mitochondrial structure and function may contribute significantly to the aggressive clinical ph9enotype of N-Myc amplified neuroblastoma.
Collapse
|
40
|
CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep 2016; 6:35264. [PMID: 27739525 PMCID: PMC5064383 DOI: 10.1038/srep35264] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is a pediatric eye tumor in which bi-allelic inactivation of the Retinoblastoma 1 (RB1) gene is the initiating genetic lesion. Although recently curative rates of retinoblastoma have increased, there are at this time no molecular targeted therapies available. This is, in part, due to the lack of highly penetrant and rapid retinoblastoma animal models that facilitate rapid identification of targets that allow therapeutic intervention. Different mouse models are available, all based on genetic deactivation of both Rb1 and Retinoblastoma-like 1 (Rbl1), and each showing different kinetics of retinoblastoma development. Here, we show by CRISPR/Cas9 techniques that similar to the mouse, neither rb1 nor rbl1 single mosaic mutant Xenopus tropicalis develop tumors, whereas rb1/rbl1 double mosaic mutant tadpoles rapidly develop retinoblastoma. Moreover, occasionally presence of pinealoblastoma (trilateral retinoblastoma) was detected. We thus present the first CRISPR/Cas9 mediated cancer model in Xenopus tropicalis and the first genuine genetic non-mammalian retinoblastoma model. The rapid kinetics of our model paves the way for use as a pre-clinical model. Additionally, this retinoblastoma model provides unique possibilities for fast elucidation of novel drug targets by triple multiplex CRISPR/Cas9 gRNA injections (rb1 + rbl1 + modifier gene) in order to address the clinically unmet need of targeted retinoblastoma therapy.
Collapse
|
41
|
Vaughan L, Clarke PA, Barker K, Chanthery Y, Gustafson CW, Tucker E, Renshaw J, Raynaud F, Li X, Burke R, Jamin Y, Robinson SP, Pearson A, Maira M, Weiss WA, Workman P, Chesler L. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget 2016; 7:57525-57544. [PMID: 27438153 PMCID: PMC5295370 DOI: 10.18632/oncotarget.10544] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.
Collapse
Affiliation(s)
- Lynsey Vaughan
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yvan Chanthery
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Clay W. Gustafson
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elizabeth Tucker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Jane Renshaw
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Clinical Pharmacology and Trials Team, Sutton, Surrey, UK
| | - Xiaodun Li
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Target Selection and Hit Discovery Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yann Jamin
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Simon P. Robinson
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Andrew Pearson
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Michel Maira
- Novartis Pharma AG, Basel, Switzerland
- Present address: Basilea Pharmaceutica International AG, Basel, Switzerland
| | - William A. Weiss
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden NHS Trust, Children and Young People's Unit, Sutton, Surrey, UK
| |
Collapse
|
42
|
Schwab M, Corvi R, Amler LC. N-MYC Oncogene Amplification: A Consequence of Genomic Instability in Human Neuroblastoma. Neuroscientist 2016. [DOI: 10.1177/107385849500100505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increase of the dosage of cellular oncogenes by DNA amplification is a frequent genetic alteration of cancer cells and arises as the consequence of genomic instability. The presence of amplified cellular oncogenes is usually signaled by conspicuous chromosomal abnormalities "double minutes," or "homogeneously staining chromosomal regions." Some human cancers carry a specific amplified oncogene at high incidence. In neuroblastomas, which are tumors of the peripheral nervous system that arise from primitive neuroectodermal cells derived from neural crest, the amplification of the gene N-MYC has been associated with aggressively growing cancers and is an indicator for poor prognosis. N-MYC amplification is of predictive value for iden tifying neuroblastoma patients who either require specific therapeutic regimens or who do not benefit from chemotherapy. The Neuroscientist 1:277-285, 1995
Collapse
Affiliation(s)
- Manfred Schwab
- German Cancer Research Center Division of Cytogenetics
Heidelberg, Germany
| | - Raffaella Corvi
- German Cancer Research Center Division of Cytogenetics
Heidelberg, Germany
| | - Lukas C. Amler
- German Cancer Research Center Division of Cytogenetics
Heidelberg, Germany
| |
Collapse
|
43
|
Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation. PLoS One 2015; 10:e0138366. [PMID: 26379276 PMCID: PMC4574557 DOI: 10.1371/journal.pone.0138366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment.
Collapse
|
44
|
Bonney PA, Boettcher LB, Krysiak RS, Fung KM, Sughrue ME. Histology and molecular aspects of central neurocytoma. Neurosurg Clin N Am 2015; 26:21-9. [PMID: 25432180 DOI: 10.1016/j.nec.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Central neurocytoma (CN) is a well-differentiated tumor of neural cells occurring within the ventricles. It is composed of monomorphic cells with round, regular nuclei within clear cytoplasm and must be distinguished from other clear cell tumors. Immunohistochemical markers of CN that aid in diagnosis include synaptophysin and neuronal nuclear antigen. The molecular biology of these tumors is becoming increasingly elucidated, particularly with the use of microarray analyses. Several oncogenic pathways have been suggested by these studies. Although progress continues to be made, knowledge of CN has yet to dictate targeted therapies in treating patients with these tumors.
Collapse
Affiliation(s)
- Phillip A Bonney
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Lillian B Boettcher
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Richard S Krysiak
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 451, Oklahoma City, OK 73104, USA
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA; Oklahoma Comprehensive Brain Tumor Clinic, Oklahoma City, OK 73104, USA.
| |
Collapse
|
45
|
Abstract
Retinoblastoma is a rare childhood cancer of the developing retina. Most retinoblastomas initiate with biallelic inactivation of the RB1 gene through diverse mechanisms including point mutations, nucleotide insertions, deletions, loss of heterozygosity and promoter hypermethylation. Recently, a novel mechanism of retinoblastoma initiation was proposed. Gallie and colleagues discovered that a small proportion of retinoblastomas lack RB1 mutations and had MYCN amplification [1]. In this study, we identifed recurrent chromosomal, regional and focal genomic lesions in 94 primary retinoblastomas with their matched normal DNA using SNP 6.0 chips. We also analyzed the RB1 gene mutations and compared the mechanism of RB1 inactivation to the recurrent copy number variations in the retinoblastoma genome. In addition to the previously described focal amplification of MYCN and deletions in RB1 and BCOR, we also identifed recurrent focal amplification of OTX2, a transcription factor required for retinal photoreceptor development. We identifed 10 retinoblastomas in our cohort that lacked RB1 point mutations or indels. We performed whole genome sequencing on those 10 tumors and their corresponding germline DNA. In one of the tumors, the RB1 gene was unaltered, the MYCN gene was amplified and RB1 protein was expressed in the nuclei of the tumor cells. In addition, several tumors had complex patterns of structural variations and we identified 3 tumors with chromothripsis at the RB1 locus. This is the first report of chromothripsis as a mechanism for RB1 gene inactivation in cancer.
Collapse
|
46
|
Benavente CA, McEvoy JD, Finkelstein D, Wei L, Kang G, Wang YD, Neale G, Ragsdale S, Valentine V, Bahrami A, Temirov J, Pounds S, Zhang J, Dyer MA. Cross-species genomic and epigenomic landscape of retinoblastoma. Oncotarget 2014; 4:844-59. [PMID: 23765217 PMCID: PMC3757242 DOI: 10.18632/oncotarget.1051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) of human cancer are important for advancing our understanding of tumor initiation and progression as well as for testing novel therapeutics. Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. GEMMs faithfully recapitulate the histopathology, molecular, cellular, morphometric, neuroanatomical and neurochemical features of human retinoblastoma. In this study, we analyzed the genomic and epigenomic landscape of murine retinoblastoma and compared them to human retinoblastomas to gain insight into shared mechanisms of tumor progression across species. Similar to human retinoblastoma, mouse tumors have low rates of single nucleotide variations. However, mouse retinoblastomas have higher rates of aneuploidy and regional and focal copy number changes that vary depending on the genetic lesions that initiate tumorigenesis in the developing murine retina. Furthermore, the epigenetic landscape in mouse retinoblastoma was significantly different from human tumors and some pathways that are candidates for molecular targeted therapy for human retinoblastoma such as SYK or MCL1 are not deregulated in GEMMs. Taken together, these data suggest there are important differences between mouse and human retinoblastomas with respect to the mechanism of tumor progression and those differences can have significant implications for translational research to test the efficacy of novel therapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Claudia A Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beltran H. The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Mol Cancer Res 2014; 12:815-22. [PMID: 24589438 DOI: 10.1158/1541-7786.mcr-13-0536] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N-myc (MYCN), a member of the Myc family of basic-helix-loop-helix-zipper (bHLHZ) transcription factors, is a central regulator of many vital cellular processes. As such, N-myc is well recognized for its classic oncogenic activity and association with human neuroblastoma. Amplification and overexpression of N-myc has been described in other tumor types, particularly those of neural origin and neuroendocrine tumors. This review outlines N-myc's contribution to normal development and oncogenic progression. In addition, it highlights relevant transcriptional targets and mechanisms of regulation. Finally, the clinical implications of N-Myc as a biomarker and potential as a target using novel therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Himisha Beltran
- Author's Affiliation: Weill Cornell Medical College, New York, New York
| |
Collapse
|
48
|
MAX Inactivation in Small Cell Lung Cancer Disrupts MYC–SWI/SNF Programs and Is Synthetic Lethal with BRG1. Cancer Discov 2013; 4:292-303. [DOI: 10.1158/2159-8290.cd-13-0799] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Involvement of germline DDX1–MYCN duplication in inherited nephroblastoma. Eur J Med Genet 2013; 56:643-7. [DOI: 10.1016/j.ejmg.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/14/2013] [Indexed: 01/06/2023]
|
50
|
Hossain MM, Banik NL, Ray SK. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification. Gene 2013; 529:27-36. [PMID: 23941992 DOI: 10.1016/j.gene.2013.07.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/07/2023]
Abstract
Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification.
Collapse
Affiliation(s)
- Md Motarab Hossain
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | | | | |
Collapse
|