1
|
Wu EJ, Kandalkar AT, Ehrmann JF, Tong AB, Zhang J, Cong Q, Wu H. A structural atlas of death domain fold proteins reveals their versatile roles in biology and function. Proc Natl Acad Sci U S A 2025; 122:e2426986122. [PMID: 39977327 PMCID: PMC11874512 DOI: 10.1073/pnas.2426986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Death domain fold (DDF) superfamily proteins are critically important players in pathways of cell death and inflammation. DDFs are often essential scaffolding domains in receptors, adaptors, or effectors of these pathways by mediating homo- and hetero-oligomerization including helical filament assembly. At the downstream ends of these pathways, effector oligomerization by DDFs brings the enzyme domains into proximity for their dimerization and activation. Hundreds of structures of these domains have been solved. However, a comprehensive understanding of DDFs is lacking. In this article, we report the curation of a DDF structural atlas as a public website (deathdomain.org) and deduce the common and distinct principles of DDF-mediated oligomerization among the four families (death domain or DD, death effector domain or DED, caspase recruitment domain or CARD, and pyrin domain or PYD). We further annotate DDFs genome-wide based on AlphaFold-predicted models and protein sequences. These studies reveal mechanistic rules for this widely distributed domain superfamily.
Collapse
Affiliation(s)
- Emily J. Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Saratoga High School, Saratoga, CA95070
| | - Ankita T. Kandalkar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Alexander B. Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences, Chemistry Graduate Group, University of California, Berkeley, CA94720
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| |
Collapse
|
2
|
König C, Ivanisenko NV, Hillert-Richter LK, Namjoshi D, Natu K, Espe J, Reinhold D, Kolchanov NA, Ivanisenko VA, Kähne T, Bose K, Lavrik IN. Targeting type I DED interactions at the DED filament serves as a sensitive switch for cell fate decisions. Cell Chem Biol 2024; 31:1969-1985.e6. [PMID: 39053461 DOI: 10.1016/j.chembiol.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the h2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface. Additionally, our data suggest that DEDid targets other type I DED interactions such as those of FADD. Both approaches of blocking type I DED interactions inhibited CD95L-induced DISC assembly, caspase activation and apoptosis. We showed that inhibition of procaspase-8 type I interactions by mutations not only diminished procaspase-8 recruitment to the DISC but also destabilized the FADD core of DED filaments. Taken together, this study offers insights to develop strategies to target DED proteins, which may be considered in diseases associated with cell death and inflammation.
Collapse
Affiliation(s)
- Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Deepti Namjoshi
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Kalyani Natu
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, India
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical immunology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikolai A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; State Novosibirsk University, Novosibirsk, Russia
| | - Thilo Kähne
- Institute of Experimental and Internal Medicine (iEIM), Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, India
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
3
|
Yang CY, Tseng YC, Tu YF, Kuo BJ, Hsu LC, Lien CI, Lin YS, Wang YT, Lu YC, Su TW, Lo YC, Lin SC. Reverse hierarchical DED assembly in the cFLIP-procaspase-8 and cFLIP-procaspase-8-FADD complexes. Nat Commun 2024; 15:8974. [PMID: 39419969 PMCID: PMC11487272 DOI: 10.1038/s41467-024-53306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
cFLIP, a master anti-apoptotic regulator, targets the FADD-induced DED complexes of procaspase-8 in death receptor and ripoptosome signaling pathways. Several tumor cells maintain relatively high levels of cFLIP in achieving their immortality. However, understanding the three-dimensional regulatory mechanism initiated or mediated by elevated levels of cFLIP has been limited by the absence of the atomic coordinates for cFLIP-induced DED complexes. Here we report the crystal plus cryo-EM structures to uncover an unconventional mechanism where cFLIP and procaspase-8 autonomously form a binary tandem DED complex, independent of FADD. This complex gains the ability to recruit FADD, thereby allosterically modulating cFLIP assembly and partially activating caspase-8 for RIPK1 cleavage. Our structure-guided mutagenesis experiments provide critical insights into these regulatory mechanisms, elucidating the resistance to apoptosis and necroptosis in achieving immortality. Finally, this research offers a unified model for the intricate bidirectional hierarchy-based processes using multiprotein helical assembly to govern cell fate decisions.
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
4
|
Yang CY, Lien CI, Tseng YC, Tu YF, Kulczyk AW, Lu YC, Wang YT, Su TW, Hsu LC, Lo YC, Lin SC. Deciphering DED assembly mechanisms in FADD-procaspase-8-cFLIP complexes regulating apoptosis. Nat Commun 2024; 15:3791. [PMID: 38710704 PMCID: PMC11074299 DOI: 10.1038/s41467-024-47990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.
Collapse
Grants
- AS-TP-107-L16, AS-TP-107-L16-1, AS-102-TP-B14 and AS-102-TP-B14-2 Academia Sinica
- AS-TP-107-L16-2 and AS-102-TP-B14-1 Academia Sinica
- AS-TP-107-L16-3 Academia Sinica
- MoST 107-2320-B-001-018-, 108-2311-B-001-018-, 109-2311-B-001-016-, and 110-2311-B-001-015- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 107-2320-B-006-062-MY3, and 111-2311-B-006-005-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 108-2320-B-002-020-MY3, 111-2320-B-002-048-MY3, and 112-2326-B-002-007- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Arkadiusz W Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, Department of Biochemistry and Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
5
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
6
|
Bai ZQ, Ma X, Liu B, Huang T, Hu K. Solution structure of c-FLIP death effector domains. Biochem Biophys Res Commun 2022; 617:1-6. [PMID: 35688044 DOI: 10.1016/j.bbrc.2022.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
The formation of death-inducing signaling complex (DISC) and death effector domain (DED) filament initiates extrinsic apoptosis. Recruitment and activation of procaspase-8 at the DISC are regulated by c-FLIP. The interaction between c-FLIP and procaspase-8 is mediated by their tandem DEDs (tDED). However, the structure of c-FLIPtDED and how c-FLIP interferes with procaspase-8 activation at the DISC remain elusive. Here, we solved the monomeric structure of c-FLIPtDED (F114G) at near physiological pH by solution nuclear magnetic resonance (NMR). Structural superimposition reveals c-FLIPtDED (F114G) adopts a structural topology similar to that of procaspase-8tDED. Our results provide a structural basis for understanding how c-FLIP interacts with procaspase-8 and the molecular mechanisms of c-FLIP in regulating cell death.
Collapse
Affiliation(s)
- Zhi-Qiang Bai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201, Yunnan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Affiliation(s)
- Douglas R Green
- St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
8
|
An engineered construct of cFLIP provides insight into DED1 structure and interactions. Structure 2022; 30:229-239.e5. [PMID: 34800372 PMCID: PMC8818036 DOI: 10.1016/j.str.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023]
Abstract
Cellular FLICE-like inhibitory protein (cFLIP) is a member of the Death Domain superfamily with pivotal roles in many cellular processes and disease states, including cancer and autoimmune disorders. In the context of the death-inducing signaling complex (DISC), cFLIP isoforms regulate extrinsic apoptosis by controlling procaspase-8 activation. The function of cFLIP is mediated through a series of protein-protein interactions, engaging the two N-terminal death effector domains (DEDs). Here, we solve the structure of an engineered DED1 domain of cFLIP using solution nuclear magnetic resonance (NMR) and we define the interaction with FADD and calmodulin, protein-protein interactions that regulate the function of cFLIP in the DISC. cFLIP DED1 assumes a canonical DED fold characterized by six α helices and is able to bind calmodulin and FADD through two separate interfaces. Our results clearly demonstrate the role of DED1 in the cFLIP/FADD association and contribute to the understanding of the assembly of DISC filaments.
Collapse
|
9
|
Huoh YS, Hur S. Death domain fold proteins in immune signaling and transcriptional regulation. FEBS J 2021; 289:4082-4097. [PMID: 33905163 DOI: 10.1111/febs.15901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Death domain fold (DDF) superfamily comprises of the death domain (DD), death effector domain (DED), caspase activation recruitment domain (CARD), and pyrin domain (PYD). By utilizing a conserved mode of interaction involving six distinct surfaces, a DDF serves as a building block that can densely pack into homomultimers or filaments. Studies of immune signaling components have revealed that DDF-mediated filament formation plays a central role in mediating signal transduction and amplification. The unique ability of DDFs to self-oligomerize upon external signals and induce oligomerization of partner molecules underlies key processes in many innate immune signaling pathways, as exemplified by RIG-I-like receptor signalosome and inflammasome assembly. Recent studies showed that DDFs are not only limited to immune signaling pathways, but also are involved with transcriptional regulation and other biological processes. Considering that DDF annotation still remains a challenge, the current list of DDFs and their functions may represent just the tip of the iceberg within the full spectrum of DDF biology. In this review, we discuss recent advances in our understanding of DDF functions, structures, and assembly architectures with a focus on CARD- and PYD-containing proteins. We also discuss areas of future research and the potential relationship of DDFs with biomolecular condensates formed by liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
10
|
Haratipour Z, Aldabagh H, Li Y, Greene LH. Network Connectivity, Centrality and Fragmentation in the Greek-Key Protein Topology. Protein J 2020; 38:497-505. [PMID: 31317305 DOI: 10.1007/s10930-019-09850-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and computationally predicting the protein folding process remains one of the most challenging scientific problems and has uniquely garnered the interdisciplinary efforts of researchers from both the biological, chemical, physical and computational disciplines. Previous studies have demonstrated the importance of long-range interactions in guiding the native structure. However, predicting how the native long-range interaction network forms to generate a specific topology from among all other conformations remains unresolved. The present research study conducts an exploratory study to identify amino acids and long-range interactions that have the potential to play a key role in building and maintaining the protein topology. Towards this end, the application of network science is utilized and developed to analyze the structures of a group of proteins that share a common Greek-key topology but differ in sequence, secondary structure and function. We investigate the idea that the residues with high betweeness centrality score are potentially significant in maintaining the protein network and in governing the Greek-key topology. This hypothesis is tested by two different computational methods: through a fragmentation test and by the analysis of diameter impacts. In summary, we find a subset of selected residues in similar geographical positions in all model proteins, which demonstrates the role of these specific residues and regions in governing the Greek-key topology from a network perspective.
Collapse
Affiliation(s)
- Zeinab Haratipour
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Hind Aldabagh
- Department of Computer Science, Old Dominion University, Norfolk, VA, 23529, USA
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA, 23529, USA
| | - Lesley H Greene
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
11
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN. Controlling Cell Death through Post-translational Modifications of DED Proteins. Trends Cell Biol 2020; 30:354-369. [PMID: 32302548 DOI: 10.1016/j.tcb.2020.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
Abstract
Apoptosis is a form of programmed cell death, deregulation of which occurs in multiple disorders, including neurodegenerative and autoimmune diseases as well as cancer. The formation of a death-inducing signaling complex (DISC) and death effector domain (DED) filaments are critical for initiation of the extrinsic apoptotic pathway. Post-translational modifications (PTMs) of DED-containing DISC components such as FADD, procaspase-8, and c-FLIP comprise an additional level of apoptosis regulation, which is necessary to overcome the threshold for apoptosis induction. In this review we discuss the influence of PTMs of FADD, procaspase-8, and c-FLIP on DED filament assembly and cell death induction, with a focus on the 3D organization of the DED filament.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Max Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
13
|
Agrawal I, Jha S. Comprehensive review of ASC structure and function in immune homeostasis and disease. Mol Biol Rep 2020; 47:3077-3096. [PMID: 32124174 DOI: 10.1007/s11033-020-05345-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
Apoptosis associated speck like protein containing CARD (ASC) is widely researched and recognized as an adaptor protein participating in inflammasome assembly and pyroptosis. It contains a bipartite structure comprising of a pyrin and a caspase recruitment domain (CARD) domain. These two domains help ASC function as an adaptor molecule. ASC is encoded by the gene PYCARD. ASC plays pivotal role in various diseases as well as different homeostatic processes. ASC plays a regulatory role in different cancers showing differential regulation with respect to tissue and stage of disease. Besides cancer, ASC also plays a central role in sensing, regulation, and/or disease progression in bacterial infections, viral infections and in varied inflammatory diseases. ASC is expressed in different types of immune and non-immune cells. Its localization pattern also varies with different kinds of stimuli encountered by cell. This review will summarize the literature on the structure cellular and tissue expression, localization and disease association of ASC.
Collapse
Affiliation(s)
- Ishan Agrawal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwad, Jodhpur, Rajasthan, 342037, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwad, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
14
|
de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys 2019; 670:15-31. [PMID: 31152698 PMCID: PMC8455077 DOI: 10.1016/j.abb.2019.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The inflammasome is a multi-protein platform that assembles upon the presence of cues derived from infection or tissue damage, and triggers the inflammatory response. Inflammasome components include sensor proteins that detect danger signals, procaspase 1 and the adapter ASC (apoptosis-associated speck-like protein containing a CARD) tethering these molecules together. Upon inflammasome assembly, procaspase 1 self-activates and renders functional cytokines to arbitrate in the defense mechanism. This assembly is mediated by self-association and protein interactions via Death Domains. The inflammasome plays a critical role in innate immunity and its dysregulation is the culprit of many autoimmune disorders. An in-depth understanding of the factors involved in inflammasome assembly could help fight these conditions. This review describes our current knowledge on the biophysical aspects of inflammasome formation from the perspective of ASC. The specific characteristics of the three-dimensional solution structure and interdomain dynamics of ASC are explained in relation to its function in inflammasome assembly. Additionally, the review elaborates on the identification of ASC interacting surfaces at the amino acid level using NMR techniques. Finally, the macrostructures formed by full-length ASC and its two Death Domains studied with Transmission Electron Microscopy are compared in the context of a directional model for inflammasome assembly.
Collapse
Affiliation(s)
- Eva de Alba
- Department of Bioengineering. School of Engineering. University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
15
|
Yin X, Li W, Ma H, Zeng W, Peng C, Li Y, Liu M, Chen Q, Zhou R, Jin T. Crystal structure and activation mechanism of DR3 death domain. FEBS J 2019; 286:2593-2610. [PMID: 30941855 DOI: 10.1111/febs.14834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
Abstract
Death receptor 3 (DR3) (a.k.a. tumor necrosis factor receptor superfamily 25) plays a key role in the immune system by activating nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Here we present the crystal structures of human and mouse DR3 intracellular death domain (DD) at 2.7 and 2.5 Å resolutions, respectively. The mouse DR3 DD adopts a classical six-helix bundle structure while human DR3 DD displays an extended fold. Though there is one-amino-acid difference in the linker between maltose-binding protein (MBP) tag and DR3 DD, according to our self-interaction analysis, the hydrophobic interface discovered in MBP-hDR3 DD crystal structure is responsible for both hDR3 DD and mDR3 DD homotypic interaction. Furthermore, our biochemical analysis indicates that the sequence variation between human and mouse DR3 DD does not affect its structure and function. Small-angle X-ray scattering analysis shows the averaged solution structures of both human and mouse MBP-DR3 DD are the combination of different conformations with different proportion. Through switching to the open conformation, DR3 DD could improve the interaction with downstream element TNFR-associated death domain (TRADD). Here we propose an activation-dependent structural rearrangement model: the DD region is folded as the six-helix bundles in the resting state, while upon extracellular ligand engagement, it switches to the open conformation, which facilitates its self-association and the recruitment of TRADD. Our results provide detailed insights into the architecture of DR3 DD and the molecular mechanism of activation. DATABASES: All refined structure coordinates as well as the corresponding structure factors have been deposited in the PDB under the accession codes 5YGS, 5YEV, 5YGP, 5ZNY, 5ZNZ.
Collapse
Affiliation(s)
- Xueying Yin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenqian Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Huan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Weihong Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Chao Peng
- Zhangjiang Lab, National Facility for Protein Science in Shanghai, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yajuan Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Muziying Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| |
Collapse
|
16
|
Nanson JD, Kobe B, Ve T. Death, TIR, and RHIM: Self-assembling domains involved in innate immunity and cell-death signaling. J Leukoc Biol 2018; 105:363-375. [PMID: 30517972 DOI: 10.1002/jlb.mr0318-123r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
The innate immune system consists of pattern recognition receptors (PRRs) that detect pathogen- and endogenous danger-associated molecular patterns (PAMPs and DAMPs), initiating signaling pathways that lead to the induction of cytokine expression, processing of pro-inflammatory cytokines, and induction of cell-death responses. An emerging concept in these pathways and associated processes is signaling by cooperative assembly formation (SCAF), which involves formation of higher order oligomeric complexes, and enables rapid and strongly amplified signaling responses to minute amounts of stimulus. Many of these signalosomes assemble through homotypic interactions of members of the death-fold (DF) superfamily, Toll/IL-1 receptor (TIR) domains, or the RIP homotypic interaction motifs (RHIM). We review the current understanding of the structure and function of these domains and their molecular interactions with a particular focus on higher order assemblies.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
17
|
Antoniou N, Vlachakis D, Memou A, Leandrou E, Valkimadi PE, Melachroinou K, Re DB, Przedborski S, Dauer WT, Stefanis L, Rideout HJ. A motif within the armadillo repeat of Parkinson's-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Sci Rep 2018; 8:3455. [PMID: 29472595 PMCID: PMC5823876 DOI: 10.1038/s41598-018-21931-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/07/2018] [Indexed: 01/15/2023] Open
Abstract
In experimental models, both in vivo and cellular, over-expression of Parkinson’s linked mutant leucine-rich repeat kinase 2 (LRRK2) is sufficient to induce neuronal death. While several cell death associated proteins have been linked to LRRK2, either as protein interactors or as putative substrates, characterization of the neuronal death cascade remains elusive. In this study, we have mapped for the first time the domain within LRRK2 that mediates the interaction with FADD, thereby activating the molecular machinery of the extrinsic death pathway. Using homology modeling and molecular docking approaches, we have identified a critical motif within the N-terminal armadillo repeat region of LRRK2. Moreover, we show that co-expression of fragments of LRRK2 that contain the FADD binding motif, or deletion of this motif itself, blocks the interaction with FADD, and is neuroprotective. We further demonstrate that downstream of FADD, the mitochondrial proteins Bid and Bax are recruited to the death cascade and are necessary for neuronal death. Our work identifies multiple novel points within neuronal death signaling pathways that could potentially be targeted by candidate therapeutic strategies and highlight how the extrinsic pathway can be activated intracellularly in a pathogenic context.
Collapse
Affiliation(s)
- Nasia Antoniou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Computational Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anna Memou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Emmanouela Leandrou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polytimi-Eleni Valkimadi
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Melachroinou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Department of Neurology/Motor Neuron Center, Columbia University, New York, NY, USA
| | - William T Dauer
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Second Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Hardy J Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
18
|
Park YH, Jeong MS, Jang SB. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF). BMB Rep 2017; 49:159-66. [PMID: 26615973 PMCID: PMC4915230 DOI: 10.5483/bmbrep.2016.49.3.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Indexed: 11/21/2022] Open
Abstract
Several members of tumor necrosis factor receptor (TNFR) superfamily that these
members activate caspase-8 from death-inducing signaling complex (DISC) in TNF
ligand-receptor signal transduction have been identified. In the extrinsic
pathway, apoptotic signal transduction is induced in death domain (DD)
superfamily; it consists of a hexahelical bundle that contains 80 amino acids.
The DD superfamily includes about 100 members that belong to four subfamilies:
death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and
death effector domain (DED). This superfamily contains key building blocks: with
these blocks, multimeric complexes are formed through homotypic interactions.
Furthermore, each DD-binding event occurs exclusively. The DD superfamily
regulates the balance between death and survival of cells. In this study, the
structures, functions, and unique features of DD superfamily members are
compared with their complexes. By elucidating structural insights of DD
superfamily members, we investigate the interaction mechanisms of DD domains;
these domains are involved in TNF ligand-receptor signaling. These DD
superfamily members play a pivotal role in the development of more specific
treatments of cancer. [BMB Reports 2016; 49(3): 159-166]
Collapse
Affiliation(s)
- Young-Hoon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University; Genetic Engineering Institute, Pusan National University, Busan 46241, Korea
| |
Collapse
|
19
|
Fu TM, Li Y, Lu A, Li Z, Vajjhala PR, Cruz AC, Srivastava DB, DiMaio F, Penczek PA, Siegel RM, Stacey KJ, Egelman EH, Wu H. Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Mol Cell 2016; 64:236-250. [PMID: 27746017 PMCID: PMC5089849 DOI: 10.1016/j.molcel.2016.09.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.
Collapse
Affiliation(s)
- Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yang Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony C Cruz
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Devendra B Srivastava
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Richard M Siegel
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Cleaved c-FLIP mediates the antiviral effect of TNF-α against hepatitis B virus by dysregulating hepatocyte nuclear factors. J Hepatol 2016; 64:268-277. [PMID: 26409214 DOI: 10.1016/j.jhep.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/31/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cytokines are key molecules implicated in the defense against virus infection. Tumor necrosis factor-alpha (TNF-α) is well known to block the replication of hepatitis B virus (HBV). However, the molecular mechanism and the downstream effector molecules remain largely unknown. METHODS In this study, we investigated the antiviral effect and mechanism of p22-FLIP (FLICE-inhibitory protein) by ectopic expression in vitro and in vivo. In addition, to provide the biological relevance of our study, we examined that the p22-FLIP is involved in TNF-α-mediated suppression of HBV in primary human hepatocytes. RESULTS We found that p22-FLIP, a newly discovered c-FLIP cleavage product, inhibited HBV replication at the transcriptional level in both hepatoma cells and primary human hepatocytes, and that c-FLIP conversion to p22-FLIP was stimulated by the TNF-α/NF-κB pathway. p22-FLIP inhibited HBV replication through the upregulation of HNF3β but downregulation of HNF4α, thus inhibiting both HBV enhancer elements. Finally, p22-FLIP potently inhibited HBV DNA replication in a mouse model of HBV replication. CONCLUSIONS Taken together, these findings suggest that the anti-apoptotic p22-FLIP serves a novel function of inhibiting HBV transcription, and mediates the antiviral effect of TNF-α against HBV replication.
Collapse
|
21
|
Structural Characterizations of the Fas Receptor and the Fas-Associated Protein with Death Domain Interactions. Protein J 2016; 35:51-60. [PMID: 26743763 DOI: 10.1007/s10930-015-9646-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Fas receptor is a representative death receptor, and the Fas-associated protein with death domain (FADD) is a crucial adapter protein needed to support the Fas receptor's activity. The Fas-FADD interactions constitute an important signaling pathway that ultimately induces apoptosis or programmed cell death in biological systems. The interactions responsible for this cell-death process are governed by the binding process of the Fas ligand to the Fas, followed by the caspase cascade activation. Using a computational approach, the present communication explores certain essential structural aspects of the Fas-FADD death domains and their interfacial interactions.
Collapse
|
22
|
Vajjhala PR, Lu A, Brown DL, Pang SW, Sagulenko V, Sester DP, Cridland SO, Hill JM, Schroder K, Stow JL, Wu H, Stacey KJ. The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments. J Biol Chem 2015; 290:29217-30. [PMID: 26468282 DOI: 10.1074/jbc.m115.687731] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 01/19/2023] Open
Abstract
Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors.
Collapse
Affiliation(s)
| | - Alvin Lu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Darren L Brown
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siew Wai Pang
- From the School of Chemistry and Molecular Biosciences and
| | | | - David P Sester
- From the School of Chemistry and Molecular Biosciences and
| | | | - Justine M Hill
- From the School of Chemistry and Molecular Biosciences and
| | - Kate Schroder
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Stow
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hao Wu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Katryn J Stacey
- From the School of Chemistry and Molecular Biosciences and the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia,
| |
Collapse
|
23
|
Singh N, Hassan A, Bose K. Molecular basis of death effector domain chain assembly and its role in caspase-8 activation. FASEB J 2015; 30:186-200. [PMID: 26370846 DOI: 10.1096/fj.15-272997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Assembly of a death-inducing signaling complex is a key event in the extrinsic apoptotic pathway, enabling activation of the caspase cascade and subsequent cell death. However, the molecular events governing DISC assembly have remained largely elusive because of the lack of information on mechanism and specificity regulating the death effector domain (DED)-DED interaction network. Using molecular modeling, mutagenesis, and biochemical and ex vivo experiments, we identified the precise binding interface and hot spots crucial for intermolecular DED chain assembly. Mutation of key interface residues (Leu42/Phe45) in procaspase-8 DED-A completely abrogated DED chain formation in HEK293 cells and prevented its association with FADD. A significant 2.6-3.6-fold reduction in procaspase-8 activation was observed in functional cell-death assays after substitution of the interfacial residues. Based on our results we propose a new model for DISC formation that refines the current understanding of the activation mechanism. Upon stimulation, FADD self-associates weakly via reciprocal interaction between helices α1/α4 and α2/α3 of the DED to form an oligomeric signaling platform that provides a stage for the initial recruitment of procaspase-8 through direct interaction with α1/α4 of DED-A, followed by sequential interaction mediated by helices α2/α5 of DED-B, to form the procaspase-8 DED chain that is crucial for its activation and subsequent cell death.
Collapse
Affiliation(s)
- Nitu Singh
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| | - Ali Hassan
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| |
Collapse
|
24
|
Abstract
Death-inducing signaling complex (DISC) is a platform for the activation of initiator caspase in extrinsic apoptosis. Assembly of DISC is accomplished by two different types of homotypic interaction: one is between death domains (DDs) of a death receptor and FADD, and the other is between death effecter domains (DEDs) of FADD, procaspase-8/-10 and cFLIP. Recent biochemical investigations on the stoichiometry of DISC have revealed that single-DED-containing FADD exists in DISC in a substantially lower abundance than the sum of tandem-DEDs-containing components that are procaspase-8 and cFLIP. In addition, the homology models of the tandem DEDs in procaspase-8 and cFLIP show that two different interaction faces, H1-H4 face and H2-H5 face, are exposed for possible inter-molecular DED-DED interactions. These recent findings led to a proposal of the DED chain model for the interactions between FADD, procaspase-8 and cFLIP in DISC. This emerging view provides new insights on the topology of DED-DED network in DISC and furthermore on how procaspase-8 and cFLIP cluster for dimerization and proteolytic activation.
Collapse
Affiliation(s)
- Jin Kuk Yang
- Department of Chemistry, School of Natural Sciences, Soongsil University, Seoul, 156-743, Korea,
| |
Collapse
|
25
|
Abstract
The tumor necrosis factor receptors (TNFRs) play essential roles in innate and adaptive immunity. Depending on conditions, TNFR induces multiple cell fates including cell survival, cell apoptosis, and cell programmed necrosis. Here, we review recent progress in structural studies of the TNFR signaling pathway. The structural basis for the high order signal complexes, including the DISC, ripoptosome, necrosome, and RIP3/MLKL complex, may provide novel insights for understanding the biophysical principles of cell signaling cascades.
Collapse
|
26
|
DED or alive: assembly and regulation of the death effector domain complexes. Cell Death Dis 2015; 6:e1866. [PMID: 26313917 PMCID: PMC4558505 DOI: 10.1038/cddis.2015.213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.
Collapse
|
27
|
Hwang EY, Jeong MS, Park SY, Jang SB. Evidence of complex formation between FADD and c-FLIP death effector domains for the death inducing signaling complex. BMB Rep 2015; 47:488-93. [PMID: 24355299 PMCID: PMC4206723 DOI: 10.5483/bmbrep.2014.47.9.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 01/18/2023] Open
Abstract
Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED. [BMB Reports 2014; 47(9): 488-493]
Collapse
Affiliation(s)
- Eun Young Hwang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - So Young Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
28
|
Shen C, Yue H, Pei J, Guo X, Wang T, Quan JM. Crystal structure of the death effector domains of caspase-8. Biochem Biophys Res Commun 2015; 463:297-302. [PMID: 26003730 DOI: 10.1016/j.bbrc.2015.05.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/28/2023]
Abstract
Caspase-8 is a key mediator in various biological processes such as apoptosis, necroptosis, inflammation, T/B cells activation, and cell motility. Caspase-8 is characterized by the N-terminal tandem death effector domains (DEDs) and the C-terminal catalytic protease domain. The DEDs mediate diverse functions of caspase-8 through homotypic interactions of the DEDs between caspase-8 and its partner proteins. Here, we report the first crystal structure of the DEDs of caspase-8. The overall structure of the DEDs of caspase-8 is similar to that of the DEDs of vFLIP MC159, which is composed of two tandem death effector domains that closely associate with each other in a head-to-tail manner. Structural analysis reveals distinct differences in the region connecting helices α2b and α4b in the second DED of the DEDs between caspase-8 and MC159, in which the helix α3b in MC159 is replaced by a loop in caspase-8. Moreover, the different amino acids in this region might confer the distinct features of solubility and aggregation for the DEDs of caspase-8 and MC159.
Collapse
Affiliation(s)
- Chen Shen
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong Yue
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianwen Pei
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaomin Guo
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Wang
- Laboratory for Computational Chemistry & Drug Design, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jun-Min Quan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
29
|
Choi JY, Kim CM, Seo EK, Bhat EA, Jang TH, Lee JH, Park HH. Crystal structure of human POP1 and its distinct structural feature for PYD domain. Biochem Biophys Res Commun 2015; 460:957-63. [PMID: 25839653 DOI: 10.1016/j.bbrc.2015.03.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 01/20/2023]
Abstract
Inflammatory caspases, such as caspase-1, which is critical for the innate immune response, are activated upon the formation of a molecular complex called the inflammasome. The inflammasome is composed of three proteins, the Nod-like receptor (NLRP, NLRC or AIM2), apoptosis associated speck-loke protein containing a caspase-recruitment domain (ASC), and caspase-1. ASC is an adaptor molecule that contains an N-terminal PYD domain and a C-terminal CARD domain for interaction with other proteins. Upon activation, the N-terminal PYD of ASC homotypically interacts with the PYD domain of the Nod-like receptor, while its C-terminal CARD homotypically interacts with the CARD domain of caspase-1. PYD only protein 1 (POP1) negatively regulates inflammatory response by blocking the formation of the inflammasome. POP1 directly binds to ASC via a PYD:PYD interaction, thereby preventing ASC recruitment to Nod-like receptor NLRPs. POP1-mediated regulation of inflammation is of great biological importance. Here, we report the crystal structure of human POP1 and speculate about the inhibitory mechanism of POP1-mediated inflammasome formation based on the current structure.
Collapse
Affiliation(s)
- Jae Young Choi
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Chang Min Kim
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Eun Kyung Seo
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Eijaz Ahmed Bhat
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Tae-Ho Jang
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea; Department of Polar Sciences, Korea University of Science and Technology, Incheon 406-840, Republic of Korea
| | - Hyun Ho Park
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea.
| |
Collapse
|
30
|
Abstract
Molluscum contagiosum virus (MCV) is the causative agent of molluscum contagiosum (MC), the third most common viral skin infection in children, and one of the five most prevalent skin diseases worldwide. No FDA-approved treatments, vaccines, or commercially available rapid diagnostics for MCV are available. This review discusses several aspects of this medically important virus including: physical properties of MCV, MCV pathogenesis, MCV replication, and immune responses to MCV infection. Sequencing of the MCV genome revealed novel immune evasion molecules which are highlighted here. Special attention is given to the MCV MC159 and MC160 proteins. These proteins are FLIPs with homologs in gamma herpesviruses and in the cell. They are of great interest because each protein regulates apoptosis, NF-κB, and IRF3. However, the mechanism that each protein uses to impart its effects is different. It is important to elucidate how MCV inhibits immune responses; this knowledge contributes to our understanding of viral pathogenesis and also provides new insights into how the immune system neutralizes virus infections.
Collapse
|
31
|
Lo YC, Lin SC, Yang CY, Tung JY. Tandem DEDs and CARDs suggest novel mechanisms of signaling complex assembly. Apoptosis 2014; 20:124-35. [DOI: 10.1007/s10495-014-1054-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Jang TH, Park HH. PIDD mediates and stabilizes the interaction between RAIDD and caspase-2 for the PIDDosome assembly. BMB Rep 2014; 46:471-6. [PMID: 24064063 PMCID: PMC4133880 DOI: 10.5483/bmbrep.2013.46.9.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PIDDosome, which is an oligomeric signaling complex composed of PIDD, RAIDD and caspase-2, can induce proximity-based dimerization and activation of caspase-2. In the PIDDosome assembly, the adaptor protein RAIDD interacts with PIDD and caspase-2 via CARD:CARD and DD:DD, respectively. To analyze the PIDDosome assembly, we purified all of the DD superfamily members and performed biochemical analyses. The results revealed that caspase-2 CARD is an insoluble protein that can be solubilized by its binding partner, RAIDD CARD, but not by full-length RAIDD; this indicates that full-length RAIDD in closed states cannot interact with caspase-2 CARD. Moreover, we found that caspase-2 CARD can be solubilized and interact with full-length RAIDD in the presence of PIDD DD, indicating that PIDD DD initially binds to RAIDD, after which caspase-2 can be recruited to RAIDD via a CARD:CARD interaction. Our study will be useful in determining the order of assembly of the PIDDosome.
Collapse
Affiliation(s)
- Tae-ho Jang
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, Korea
| | | |
Collapse
|
33
|
Lu A, Kabaleeswaran V, Fu T, Magupalli VG, Wu H. Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions. J Mol Biol 2014; 426:1420-7. [PMID: 24406744 DOI: 10.1016/j.jmb.2013.12.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 02/05/2023]
Abstract
Absent in melanoma 2 (AIM2) is a cytoplasmic double-stranded DNA sensor involved in innate immunity. It uses its C-terminal HIN domain for recognizing double-stranded DNA and its N-terminal pyrin domain (PYD) for eliciting downstream effects through recruitment and activation of apoptosis-associated Speck-like protein containing CARD (ASC). ASC in turn recruits caspase-1 and/or caspase-11 to form the AIM2 inflammasome. The activated caspases process proinflammatory cytokines IL-1β and IL-18 and induce the inflammatory form of cell death pyroptosis. Here we show that AIM PYD (AIM2(PYD)) self-oligomerizes. We notice significant sequence homology of AIM2(PYD) with the hydrophobic patches of death effector domain (DED)-containing proteins and confirm that mutations on these residues disrupt AIM2(PYD) self-association. The crystal structure at 1.82Å resolution of such a mutant, F27G of AIM2(PYD), shows the canonical six-helix (H1-H6) bundle fold in the death domain superfamily. In contrast to the wild-type AIM2(PYD) structure crystallized in fusion with the large maltose-binding protein tag, the H2-H3 region of the AIM2(PYD) F27G is well defined with low B-factors. Structural analysis shows that the conserved hydrophobic patches engage in a type I interaction that has been observed in DED/DED and other death domain superfamily interactions. While previous mutagenesis studies of PYDs point to the involvement of charged interactions, our results reveal the importance of hydrophobic interactions in the same interfaces. These centrally localized hydrophobic residues within fairly charged patches may form the hot spots in AIM2(PYD) self-association and may represent a common mode of PYD/PYD interactions in general.
Collapse
Affiliation(s)
- Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Venkataraman Kabaleeswaran
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tianmin Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Venkat Giri Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Abstract
This chapter describes reports of the structural characterization of death ligands and death receptors (DRs) from the tumor necrosis factor (TNF) and TNF receptor families. The review discusses the interactions of these proteins with agonist ligands, inhibitors, and downstream signaling molecules. Though historically labeled as being implicated in programmed cell death, the function of these proteins extends to nonapoptotic pathways. The review highlights, from a structural biology perspective, the complexity of DR signaling and the ongoing challenge to discern the precise mechanisms that occur at the point of DR activation, including how the degree to which the receptors are induced to cluster may be related to the nature of the impact upon the cell. The potential for posttranslational modification and receptor internalization to play roles in DR signaling is briefly discussed.
Collapse
Affiliation(s)
- Paul C Driscoll
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, London, United Kingdom.
| |
Collapse
|
35
|
Abstract
The PYRIN domain (PYD) is a well known protein interaction module and a prime mediator of the protein interactions necessary for apoptosis, inflammation and innate immune signaling pathway. Because PYD-mediated apoptosis, inflammation and innate immune processes are associated with many human diseases, studies in these areas are of great biological importance. Intensive biochemical and structural studies of PYD have been conducted in the past decade to elucidate PYD-mediated signaling events, and evaluations of the molecular structure of PYDs have shown the underlying molecular basis for the assembly of PYD-mediated complexes and for the regulation of inflammation and innate immunity. This review summarizes the structure and function of various PYDs and proposes a PYD:PYD interaction for assembly of the complexes involved in those signaling pathways.
Collapse
|
36
|
Schmidt C, Irausquin SJ, Valafar H. Advances in the REDCAT software package. BMC Bioinformatics 2013; 14:302. [PMID: 24098943 PMCID: PMC3840585 DOI: 10.1186/1471-2105-14-302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022] Open
Abstract
Background Residual Dipolar Couplings (RDCs) have emerged in the past two decades as an informative source of experimental restraints for the study of structure and dynamics of biological macromolecules and complexes. The REDCAT software package was previously introduced for the analysis of molecular structures using RDC data. Here we report additional features that have been included in this software package in order to expand the scope of its analyses. We first discuss the features that enhance REDCATs user-friendly nature, such as the integration of a number of analyses into one single operation and enabling convenient examination of a structural ensemble in order to identify the most suitable structure. We then describe the new features which expand the scope of RDC analyses, performing exercises that utilize both synthetic and experimental data to illustrate and evaluate different features with regard to structure refinement and structure validation. Results We establish the seamless interaction that takes place between REDCAT, VMD, and Xplor-NIH in demonstrations that utilize our newly developed REDCAT-VMD and XplorGUI interfaces. These modules enable visualization of RDC analysis results on the molecular structure displayed in VMD and refinement of structures with Xplor-NIH, respectively. We also highlight REDCAT’s Error-Analysis feature in reporting the localized fitness of a structure to RDC data, which provides a more effective means of recognizing local structural anomalies. This allows for structurally sound regions of a molecule to be identified, and for any refinement efforts to be focused solely on locally distorted regions. Conclusions The newly engineered REDCAT software package, which is available for download via the WWW from http://ifestos.cse.sc.edu, has been developed in the Object Oriented C++ environment. Our most recent enhancements to REDCAT serve to provide a more complete RDC analysis suite, while also accommodating a more user-friendly experience, and will be of great interest to the community of researchers and developers since it hides the complications of software development.
Collapse
Affiliation(s)
- Chris Schmidt
- Department of Computer Science & Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
37
|
Ando M, Kawazu M, Ueno T, Fukumura K, Yamato A, Soda M, Yamashita Y, Choi YL, Yamasoba T, Mano H. Cancer-associated missense mutations of caspase-8 activate nuclear factor-κB signaling. Cancer Sci 2013; 104:1002-8. [PMID: 23659359 DOI: 10.1111/cas.12191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with a 5-year survival rate of ~50%. With the use of a custom cDNA-capture system coupled with massively parallel sequencing, we have now investigated transforming mechanisms for this malignancy. The cDNAs of cancer-related genes (n = 906) were purified from a human HNSCC cell line (T3M-1 Cl-10) and subjected to high-throughput resequencing, and the clinical relevance of non-synonymous mutations thus identified was evaluated with luciferase-based reporter assays. A CASP8 (procaspase-8) cDNA with a novel G-to-C point mutation that results in the substitution of alanine for glycine at codon 325 was identified, and the mutant protein, CASP8 (G325A), was found to activate nuclear factor-κB (NF-κB) signaling to an extent far greater than that achieved with the wild-type protein. Moreover, forced expression of wild-type CASP8 suppressed the growth of T3M-1 Cl-10 cells without notable effects on apoptosis. We further found that most CASP8 mutations previously detected in various epithelial tumors also increase the ability of the protein to activate NF-κB signaling. Such NF-κB activation was shown to be mediated through the COOH-terminal region of the second death effector domain of CASP8. Although CASP8 mutations associated with cancer have been thought to promote tumorigenesis as a result of attenuation of the proapoptotic function of the protein, our results now show that most such mutations, including the novel G325A identified here, separately confer a gain of function with regard to activation of NF-κB signaling, indicating another role of CASP8 in the transformation of human malignancies including HNSCC.
Collapse
Affiliation(s)
- Mizuo Ando
- Department of Medical Genomics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jin T, Perry A, Smith P, Jiang J, Xiao TS. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J Biol Chem 2013; 288:13225-35. [PMID: 23530044 DOI: 10.1074/jbc.m113.468033] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AIM2 binds dsDNA and associates with ASC through their PYDs to form an inflammasome. RESULTS The AIM2 PYD structure illustrates distinct charge distribution and a unique hydrophobic patch. CONCLUSION The AIM2 PYD may bind the ASC PYD and the AIM2 HIN domain through overlapping surface. SIGNIFICANCE These findings provide insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. Absent in melanoma 2 (AIM2) is a cytosolic double-stranded (dsDNA) sensor essential for innate immune responses against DNA viruses and bacteria such as Francisella and Listeria. Upon dsDNA engagement, the AIM2 amino-terminal pyrin domain (PYD) is responsible for downstream signaling to the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) through homotypic PYD-PYD interactions and the assembly of an inflammasome. Toward a better understanding of the AIM2 signaling mechanism, we determined the crystal structure of the human AIM2 PYD. The structure reveals a death domain fold with a short α3 helix that is buttressed by a highly conserved lysine residue at the α2 helix, which may stabilize the α3 helix for potential interaction with partner domains. The surface of the AIM2 PYD exhibits distinct charge distribution with highly acidic α1-α2 helices and highly basic α5-α6 helices. A prominent solvent-exposed hydrophobic patch formed by residues Phe-27 and Phe-28 at the α2 helix resembles a similar surface involved in the death effector domain homotypic interactions. Docking studies suggest that the AIM2 PYD may bind the AIM2 hematopoietic interferon-inducible nuclear (HIN) domain or ASC PYD using overlapping surface near the α2 helix. This may ensure that AIM2 interacts with the downstream adapter ASC only upon release of the autoinhibition by the dsDNA ligand. Our work thus unveils novel structural features of the AIM2 PYD and provides insights into the potential mechanisms of the PYD-HIN and PYD-PYD interactions important for AIM2 autoinhibition and inflammasome assembly.
Collapse
Affiliation(s)
- Tengchuan Jin
- Structural Immunobiology Unit, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, MD 20892-0430, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Members of the tumor necrosis factor receptor superfamily play key roles in innate and adaptive immunity. Here, we review recent structural studies in the intracellular signal transduction of these receptors. A central theme revealed from these structural studies is that upon ligand binding, multiple intracellular proteins form higher-order signaling machines to transduce and amplify receptor activation information to different cellular fates, including NF-κB activation, apoptosis, and programmed necrosis. These studies open a new vista for understanding the biophysical principles in these signaling cascades.
Collapse
Affiliation(s)
- Jixi Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
40
|
Yan Q, McDonald JM, Zhou T, Song Y. Structural insight for the roles of fas death domain binding to FADD and oligomerization degree of the Fas-FADD complex in the death-inducing signaling complex formation: a computational study. Proteins 2012; 81:377-85. [PMID: 23042204 DOI: 10.1002/prot.24193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/07/2012] [Accepted: 09/21/2012] [Indexed: 11/08/2022]
Abstract
Fas binding to Fas-associated death domain (FADD) activates FADD-caspase-8 binding to form death-inducing signaling complex (DISC) that triggers apoptosis. The Fas-Fas association exists primarily as dimer in the Fas-FADD complex, and the Fas-FADD tetramer complexes have the tendency to form higher order oligomer. The importance of the oligomerized Fas-FADD complex in DISC formation has been confirmed. This study sought to provide structural insight for the roles of Fas death domain (Fas DD) binding to FADD and the oligomerization of Fas DD-FADD complex in activating FADD-procaspase-8 binding. Results show Fas DD binding to FADD stabilized the FADD conformation, including the increased stability of the critical residues in FADD death effector domain (FADD DED) for FADD-procaspase-8 binding. Fas DD binding to FADD resulted in the decreased degree of both correlated and anticorrelated motion of the residues in FADD and caused the reversed correlated motion between FADD DED and FADD death domain (FADD DD). The exposure of procaspase-8 binding residues in FADD that allows FADD to interact with procaspase-8 was observed with Fas DD binding to FADD. We also observed different degrees of conformational and motion changes of FADD in the Fas DD-FADD complex with different degrees of oligomerization. The increased conformational stability and the decreased degree of correlated motion of the residues in FADD in Fas DD-FADD tetramer complex were observed compared to those in Fas DD-FADD dimer complex. This study provides structural evidence for the roles of Fas DD binding to FADD and the oligomerization degree of Fas DD-FADD complex in DISC formation to signal apoptosis.
Collapse
Affiliation(s)
- Qi Yan
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
41
|
Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L, Schwabe JWR, Cain K, Macfarlane M. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 2012; 47:291-305. [PMID: 22683266 PMCID: PMC3477315 DOI: 10.1016/j.molcel.2012.05.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/24/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.
Collapse
Affiliation(s)
- Laura S Dickens
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Structural features of caspase-activating complexes. Int J Mol Sci 2012; 13:4807-4818. [PMID: 22606010 PMCID: PMC3344246 DOI: 10.3390/ijms13044807] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 12/19/2022] Open
Abstract
Apoptosis, also called programmed cell death, is an orderly cellular suicide program that is critical for the development, immune regulation and homeostasis of a multi-cellular organism. Failure to control this process can lead to serious human diseases, including many types of cancer, neurodegenerative diseases, and autoimmununity. The process of apoptosis is mediated by the sequential activation of caspases, which are cysteine proteases. Initiator caspases, such as caspase-2, -8, -9, and -10, are activated by formation of caspase-activating complexes, which function as a platform to recruit caspases, providing proximity for self-activation. Well-known initiator caspase-activating complexes include (1) DISC (Death Inducing Signaling Complex), which activates caspases-8 and 10; (2) Apoptosome, which activates caspase-9; and (3) PIDDosome, which activates caspase-2. Because of the fundamental biological importance of capases, many structural and biochemical studies to understand the molecular basis of assembly mechanism of caspase-activating complexes have been performed. In this review, we summarize previous studies that have examined the structural and biochemical features of caspase-activating complexes. By analyzing the structural basis for the assembly mechanism of the caspase-activating complex, we hope to provide a comprehensive understanding of caspase activation by these important oligomeric complexes.
Collapse
|
43
|
Fan H, Periole X, Mark AE. Mimicking the action of folding chaperones by Hamiltonian replica-exchange molecular dynamics simulations: application in the refinement of de novo models. Proteins 2012; 80:1744-54. [PMID: 22411697 DOI: 10.1002/prot.24068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/11/2012] [Accepted: 03/03/2012] [Indexed: 12/25/2022]
Abstract
The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH-REMD approach sampled structures in which the root-mean-square deviation (RMSD) of secondary structure elements (SSE-RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near-native conformations was also examined. Little correlation between the SSE-RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE-RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced-sampling techniques such as CH-REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near-native structures are still needed.
Collapse
Affiliation(s)
- Hao Fan
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2330, USA
| | | | | |
Collapse
|
44
|
Ferrao R, Wu H. Helical assembly in the death domain (DD) superfamily. Curr Opin Struct Biol 2012; 22:241-7. [PMID: 22429337 DOI: 10.1016/j.sbi.2012.02.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/26/2012] [Indexed: 02/06/2023]
Abstract
Death domain (DD) superfamily members play a central role in apoptotic and inflammatory signaling through formation of oligomeric molecular scaffolds. These scaffolds promote the activation of proinflammatory and apoptotic initiator caspases, as well as Ser/Thr kinases. Interactions between DDs are facilitated by a conserved set of interaction surfaces, type I, type II, and type III. Recently structural information on a ternary complex containing the DDs of MyD88, IRAK4, and IRAK2 and a binary complex containing Fas and FADD DDs has become available. This review will focus on how the three DD interaction surfaces cooperate to facilitate the assembly of these oligomeric signaling complexes.
Collapse
Affiliation(s)
- Ryan Ferrao
- Department of Biochemistry, Weill Cornell Medical College and Graduate School of Medical Sciences, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Bae JY, Park HH. Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem 2011; 286:39528-36. [PMID: 21880711 DOI: 10.1074/jbc.m111.278812] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NALP3 inflammasome, composed of the three proteins NALP3, ASC, and Caspase-1, is a macromolecular complex responsible for the innate immune response against infection with bacterial and viral pathogens. Formation of the inflammasome can lead to the activation of inflammatory caspases, such as Caspase-1, which then activate pro-inflammatory cytokines by proteolytic cleavage. The assembly of the NALP3 inflammasome depends on the protein-interacting domain known as the death domain superfamily. NALP3 inflammasome is assembled via a pyrin domain (PYD)/PYD interaction between ASC and NALP3 and a caspase recruitment domain/caspase recruitment domain interaction between ASC and Caspase-1. As a first step toward elucidating the molecular mechanisms of inflammatory caspase activation by formation of inflammasome, we report the crystal structure of the PYD from NALP3 at 1.7-Å resolution. Although NALP3 PYD has the canonical six-helical bundle structural fold similar to other PYDs, the high resolution structure reveals the possible biologically important homodimeric interface and the dynamic properties of the fold. Comparison with other PYD structures shows both similarities and differences that may be functionally relevant. Structural and sequence analyses further implicate conserved surface residues in NALP3 PYD for ASC interaction and inflammasome assembly. The most interesting aspect of the structure was the unexpected disulfide bond between Cys-8 and Cys-108, which might be important for regulation of the activity of NALP3 by redox potential.
Collapse
Affiliation(s)
- Ju Young Bae
- Graduate School of Biochemistry, and Research Institute of Protein Sensor, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
46
|
Kersse K, Lamkanfi M, Bertrand MJM, Vanden Berghe T, Vandenabeele P. Interaction patches of procaspase-1 caspase recruitment domains (CARDs) are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor κB signaling. J Biol Chem 2011; 286:35874-35882. [PMID: 21862576 DOI: 10.1074/jbc.m111.242321] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein interaction domains belonging to the death domain-fold superfamily are six-helix bundles that mediate the assembly of large protein complexes involved in apoptotic and inflammatory signaling. Typically, death domains (DDs), a subfamily of the death domain-fold superfamily, harbor six delineated interaction patches on their surfaces that mediate three distinct and conserved types of interaction designated as types I, II, and III. Here, we show that caspase recruitment domains (CARDs), another subfamily of the death domain-fold superfamily, multimerize by employing at least two of the three reported interaction types that were identified in DDs. On the one hand, the CARD of procaspase-1 binds the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) through a type I interaction that involves a patch surrounding residue Asp-27. On the other hand, the CARD of procaspase-1 auto-oligomerizes through a type III interaction involving a patch surrounding residue Arg-45. This oligomerization allows binding of receptor-interacting protein 2 (RIP2). In addition, we show that a 1:1 interaction between ASC and procaspase-1 is sufficient for procaspase-1 to gain proteolytic activity, whereas the formation of a higher order CARD complex involving ASC, procaspase-1, and RIP2 is required for effective procaspase-1-mediated NF-κB activation. These findings indicate that the CARD of procaspase-1 is differently involved in the formation of procaspase-1 activating platforms and procaspase-1-mediated, RIP2-dependent NF-κB activation.
Collapse
Affiliation(s)
- Kristof Kersse
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), B-9052 Ghent (Zwijnaarde), Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent (Zwijnaarde), Belgium
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu J M Bertrand
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), B-9052 Ghent (Zwijnaarde), Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent (Zwijnaarde), Belgium
| | - Tom Vanden Berghe
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), B-9052 Ghent (Zwijnaarde), Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent (Zwijnaarde), Belgium
| | - Peter Vandenabeele
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), B-9052 Ghent (Zwijnaarde), Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent (Zwijnaarde), Belgium.
| |
Collapse
|
47
|
Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, Zusman BD. Broad-spectrum antiviral therapeutics. PLoS One 2011; 6:e22572. [PMID: 21818340 PMCID: PMC3144912 DOI: 10.1371/journal.pone.0022572] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO) that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered.
Collapse
Affiliation(s)
- Todd H Rider
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
48
|
Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P. The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 2011; 36:541-52. [PMID: 21798745 DOI: 10.1016/j.tibs.2011.06.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
Abstract
The death-fold superfamily encompasses four structurally homologous subfamilies that engage in homotypic, subfamily-restricted interactions. The Death Domains (DDs), the Death Effector Domains (DEDs), the CAspase Recruitment Domains (CARDs) and the PYrin Domains (PYDs) constitute key building blocks involved in the assembly of multimeric complexes implicated in signaling cascades leading to inflammation and cell death. We review the molecular basis of these homotypic domain-domain interactions in light of their structure, function and evolution. In addition, we elaborate on three distinct types of asymmetric interactions that were recently identified from the crystal structures of three multimeric, death-fold complexes: the MyDDosome, the PIDDosome and the Fas/FADD-DISC. Insights into the mechanisms of interaction of death-fold domains will be useful to design strategies for specific modulation of complex formation and might lead to novel therapeutic applications.
Collapse
Affiliation(s)
- Kristof Kersse
- Department for Molecular Biomedical Research, VIB, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | | | |
Collapse
|
49
|
Zhang L, Li L, Zhang G. Gene discovery, comparative analysis and expression profile reveal the complexity of the Crassostrea gigas apoptosis system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:603-610. [PMID: 21237195 DOI: 10.1016/j.dci.2011.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 05/30/2023]
Abstract
Apoptosis system was reported to play important role in organism immunity, but it was a currently understudied respect in molluscan immunity studies. Base on the recent generation of ESTs in the pacific oyster, Crassostrea gigas, a survey of apoptosis-related molecules was conducted in the assembled unigenes, we found that the basic genes and domains in apoptosis-associated proteins were conserved, the overall apoptotic machinery was complex in C. gigas and that the organism had an expanded number of putative baculovirus inhibitor of apoptosis repeat domains. Moreover, four typical apoptosis-related genes were cloned in C. gigas and compared with the sequences of these genes in Drosophila melanogaster and Homo sapiens. The expression level of these four apoptosis-related genes in the hemolymph increased dramatically in the presence of the bacteria, Vibrio anguillarum, indicating their role in bacterial defense. Our results suggest that the oyster apoptosis system is not simple and cannot be represented by model invertebrates.
Collapse
Affiliation(s)
- Linlin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | |
Collapse
|
50
|
Young JA, Sermwittayawong D, Kim HJ, Nandu S, An N, Erdjument-Bromage H, Tempst P, Coscoy L, Winoto A. Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J Biol Chem 2010; 286:6521-31. [PMID: 21183682 DOI: 10.1074/jbc.m110.172288] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The production of cytokines such as type I interferon (IFN) is an essential component of innate immunity. Insufficient amounts of cytokines lead to host sensitivity to infection, whereas abundant cytokine production can lead to inflammation. A tight regulation of cytokine production is, thus, essential for homeostasis of the immune system. IFN-α production during RNA virus infection is mediated by the master transcription factor IRF7, which is activated upon ubiquitination by TRAF6 and phosphorylation by IKKε and TBK1 kinases. We found that Fas-associated death domain (FADD), first described as an apoptotic protein, is involved in regulating IFN-α production through a novel interaction with TRIM21. TRIM21 is a member of a large family of proteins that can impart ubiquitin modification onto its cellular targets. The interaction between FADD and TRIM21 enhances TRIM21 ubiquitin ligase activity, and together they cooperatively repress IFN-α activation in Sendai virus-infected cells. FADD and TRIM21 can directly ubiquitinate IRF7, affect its phosphorylation status, and interfere with the ubiquitin ligase activity of TRAF6. Conversely, a reduction of FADD and TRIM21 levels leads to higher IFN-α induction, IRF7 phosphorylation, and lower titers of RNA virus of infected cells. We conclude that FADD and TRIM21 together negatively regulate the late IFN-α pathway in response to viral infection.
Collapse
Affiliation(s)
- Jennifer A Young
- Cancer Research Laboratory and Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|