1
|
Lee S, Jeon YR, Shin C, Kwon SY, Shin S. Pan-TRK positive uterine sarcoma in immunohistochemistry without neurotrophic tyrosine receptor kinase gene fusions: A case report. World J Clin Cases 2025; 13:96876. [PMID: 39823101 PMCID: PMC11577503 DOI: 10.12998/wjcc.v13.i2.96876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics, increasingly supported by molecular genetic diagnostics. Data on neurotrophic tyrosine receptor kinase (NTRK) gene fusion-positive uterine sarcoma, potentially aggressive and morphologically similar to fibrosarcoma, are limited due to its recent recognition. Pan-TRK immunohistochemistry (IHC) analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies. CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix, which was pan-TRK IHC-positive but lacked NTRK gene fusions, accompanied by a brief literature review. A 55-year-old woman presented to the emergency department with abdominal pain and distension, exhibiting significant ascites and multiple solid pelvic masses. Pelvic examination revealed a tumor encompassing the uterine cervix, extending to the vagina and uterine corpus. A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain. However, subsequent next generation sequencing revealed no NTRK gene fusion, leading to a diagnosis of poorly differentiated, advanced-stage sarcoma. CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas. Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
Collapse
Affiliation(s)
- Seungmee Lee
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Yu-Ra Jeon
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Changmin Shin
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Sun-Young Kwon
- Department of Pathology and Institute for Cancer Research, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Sojin Shin
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| |
Collapse
|
2
|
Sun Y, Ma L, Zhang X, Wang Z. Advances in the Treatment of Rare Mutations in Non-Small Cell Lung Cancer. Onco Targets Ther 2024; 17:1095-1115. [PMID: 39583247 PMCID: PMC11585992 DOI: 10.2147/ott.s487870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality rate worldwide, with nearly 2.5 million new cases and more than 1.8 million deaths reported globally in 2022. Lung cancer is broadly categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with NSCLC accounting for about 85% of all cases. Early-stage lung cancers often present without obvious symptoms, resulting in most patients being diagnosed at an advanced stage where traditional chemotherapy has limited efficacy. Recent advances in molecular biology have elucidated the pivotal role of gene mutations in tumor development, paving the way for targeted therapies that have markedly benefited patients. Beyond the well-known epidermal growth factor receptor (EGFR) mutation, an increasing number of new molecular targets have been identified, including ROS1 rearrangement, BRAF mutation, NTRK fusion, RET fusion, MET mutation, KRAS G12C mutation, HER2 mutation, ALK rearrangement, and NRG1 fusion. Some of these targeted therapies have already been approved by the Food and Drug Administration (FDA), and many others are currently undergoing clinical trials. This review summarizes recent advances in NSCLC treatment with molecular targets, highlighting progress, challenges, and their impact on patient prognosis.
Collapse
Affiliation(s)
- Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Fiechter JG, Johnson C, Bryant J, McCollom J, Zhang R. Orthoplastic Approach to the Treatment and Reconstruction of a Neurotrophic Receptor Tyrosine Kinase Type 3 Soft Tissue Sarcoma Arising From the Occipitalis Muscle. Cureus 2024; 16:e74241. [PMID: 39717285 PMCID: PMC11663614 DOI: 10.7759/cureus.74241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/25/2024] Open
Abstract
We present a multidisciplinary approach to the treatment of a neurotrophic receptor tyrosine kinase type 3 (NTRK3) soft tissue sarcoma (STS), arising from the occipitalis muscle. NTRK3 is a mutation only recently described in STS using next-generation sequencing and is rarely implicated in STS.Currently, there is limited literature to guide care. This case demonstrates a successful treatment option utilizing a multidisciplinary team and unique reconstruction with a hair-bearing scalp. To the best of our knowledge, this is the first case report showing an NTRK3 mutation STS arising from the occipitalis muscle. The utilization of staged hair-bearing tissue expansion post-wide R0 resection to reconstruct the scalp defect is a challenging reconstruction method. We present a single clinical experience discussing a 40-year-old female with an NTRK3 mutation STS arising from the occipitalis muscle and involving the scalp. The diagnosis was made after the analysis of a punch biopsy specimen by a bone and soft tissue pathologist as a low-grade sarcoma harboring a sperm antigen with calponin homology and coiled-coil domains 1-like (SPECC1L)-NTRK3 fusion transcript. The patient underwent R0 resection by orthopedic oncology surgery and craniofacial microvascular plastic surgery. Staged reconstruction via hair-bearing tissue expansion was performed by the latter. Eighteen months after the index procedure, no recurrent disease was detected, and the hair-bearing reconstruction was fully healed with well-concealed scars. This case is a successful treatment method for a low-grade STS harboring a SPECC1L-NTRK3 fusion transcript. There is little published literature to guide care for low-grade NTRK3 mutation STS. This case highlights the importance of multidisciplinary care for STS.
Collapse
Affiliation(s)
- Jay G Fiechter
- Orthopedics, Indiana University School of Medicine, Fort Wayne, USA
| | | | - Justin Bryant
- Craniofacial Reconstruction, Parkview Health, Fort Wayne, USA
| | - Joseph McCollom
- Medical Oncology, Parkview Cancer Institute, Fort Wayne, USA
| | | |
Collapse
|
4
|
Kot EF, Goncharuk SA, Franco ML, McKenzie DM, Arseniev AS, Benito-Martínez A, Costa M, Cattaneo A, Hristova K, Vilar M, Mineev KS. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun 2024; 15:9316. [PMID: 39472452 PMCID: PMC11522581 DOI: 10.1038/s41467-024-53710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Neurotrophin receptors of the Trk family are involved in the regulation of brain development and neuroplasticity, and therefore can serve as targets for anti-cancer and stroke-recovery drugs, antidepressants, and many others. The structures of Trk protein domains in various states upon activation need to be elucidated to allow rational drug design. However, little is known about the conformations of the transmembrane and juxtamembrane domains of Trk receptors. In the present study, we employ NMR spectroscopy to solve the structure of the TrkB dimeric transmembrane domain in the lipid environment. We verify the structure using mutagenesis and confirm that the conformation corresponds to the active state of the receptor. Subsequent study of TrkB interaction with the antidepressant drug fluoxetine, and the antipsychotic drug chlorpromazine, provides a clear self-consistent model, describing the mechanism by which fluoxetine activates the receptor by binding to its transmembrane domain.
Collapse
Affiliation(s)
- Erik F Kot
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - María Luisa Franco
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Daniel M McKenzie
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Andrea Benito-Martínez
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Mario Costa
- Scuola Normale Superiore Laboratory of Biology BIO@SNS, Pisa, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC, València, Spain.
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Goethe University Frankfurt, Frankfurt am Main, Germany, Germany.
| |
Collapse
|
5
|
Li H, Liu H, Xiao L, Gao H, Wei H, Han A, Lin G. A Novel Oncogenic and Drug-Sensitive KIF5B-NTRK1 Fusion in Lung Adenocarcinoma. Curr Oncol 2024; 31:6621-6631. [PMID: 39590120 PMCID: PMC11593137 DOI: 10.3390/curroncol31110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
We present a case of a lung adenocarcinoma patient harboring a novel kinesin family member 5B (KIF5B)-NTRK1 gene fusion that responds well to entrectinib. Moreover, KIF5B-NTRK1 gene chimera has been shown to be an oncogene, activating both the MAPK and PI3K/AKT signaling pathways. The biopsy sample was analyzed using various methods such as hematoxylin-eosin staining (HE), immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS) based on a 1267-gene panel. Additionally, human lung adenocarcinoma cell lines A549 and H1755 were used to obtain a stable expression of chimera gene products. The cell proliferation was confirmed using CCK8 and adhesion-dependent colony formation assay. Cell invasion was confirmed using the transwell invasion assay. The protein levels of the MAPK and PI3K/AKT signaling pathways were assessed using Western blotting. The patient, a 66-year-old Chinese male, was diagnosed with adenocarcinoma (stage IVB) located in the upper lobe of the left lung. NGS analysis identified a novel KIF5B-NTRK1 fusion gene, which was further confirmed by FISH and IHC analyses. As a first-line therapy, entrectinib was administered to the patient at a dose of 600 mg once daily, resulting in a partial response. The patient's progression-free survival (PFS) has now been more than 12 months, and no serious toxicities have been observed so far. Furthermore, stable KIF5B-NTRK1-expressing cells were generated and the experimental results demonstrate enhanced proliferation abilities, along with increased levels of proteins involved in the MAPK and PI3K/AKT signaling pathways. Our study reports a novel KIF5B-NTRK1 genetic rearrangement that supports favorable responses to entrectinib. Moreover, in vitro experiments showed that the fusion gene could exert oncogenic properties by activating the MAPK and PI3K/AKT signaling pathways. To summarize, our findings broaden the spectrum of NTRK gene fusions in the context of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Huicong Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou 510080, China; (H.L.)
| | - Lisha Xiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou 510080, China; (H.L.)
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Huiting Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Gengpeng Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou 510080, China; (H.L.)
| |
Collapse
|
6
|
Choi AR, D’Agostino RB, Farris MK, Abdulhaleem M, Hunting JC, Wang Y, Smith MR, Ruiz J, Lycan TW, Petty WJ, Cramer CK, Tatter SB, Laxton AW, White JJ, Li W, Su J, Whitlow C, Xing F, Chan MD. Genomic signature for oligometastatic disease in non-small cell lung cancer patients with brain metastases. Front Endocrinol (Lausanne) 2024; 15:1364021. [PMID: 39355617 PMCID: PMC11443040 DOI: 10.3389/fendo.2024.1364021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Purpose/objectives Biomarkers for extracranial oligometastatic disease remain elusive and few studies have attempted to correlate genomic data to the presence of true oligometastatic disease. Methods Patients with non-small cell lung cancer (NSCLC) and brain metastases were identified in our departmental database. Electronic medical records were used to identify patients for whom liquid biopsy-based comprehensive genomic profiling (Guardant Health) was available. Extracranial oligometastatic disease was defined as patients having ≤5 non-brain metastases without diffuse involvement of a single organ. Widespread disease was any spread beyond oligometastatic. Fisher's exact tests were used to screen for mutations statistically associated (p<0.1) with either oligometastatic or widespread extracranial disease. A risk score for the likelihood of oligometastatic disease was generated and correlated to the likelihood of having oligometastatic disease vs widespread disease. For oligometastatic patients, a competing risk analysis was done to assess for cumulative incidence of oligometastatic progression. Cox regression was used to determine association between oligometastatic risk score and oligoprogression. Results 130 patients met study criteria and were included in the analysis. 51 patients (39%) had extracranial oligometastatic disease. Genetic mutations included in the Guardant panel that were associated (p<0.1) with the presence of oligometastatic disease included ATM, JAK2, MAP2K2, and NTRK1, while ARID1A and CCNE1 were associated with widespread disease. Patients with a positive, neutral and negative risk score for oligometastatic disease had a 78%, 41% and 11.5% likelihood of having oligometastatic disease, respectively (p<0.0001). Overall survival for patients with positive, neutral and negative risk scores for oligometastatic disease was 86% vs 82% vs 64% at 6 months (p=0.2). Oligometastatic risk score was significantly associated with the likelihood of oligoprogression based on the Wald chi-square test. Patients with positive, neutral and negative risk scores for oligometastatic disease had a cumulative incidence of oligometastatic progression of 77% vs 35% vs 33% at 6 months (p=0.03). Conclusions Elucidation of a genomic signature for extracranial oligometastatic disease derived from non-invasive liquid biopsy appears feasible for NSCLC patients. Patients with this signature exhibited higher rates of early oligoprogression. External validation could lead to a biomarker that has the potential to direct local therapies in oligometastatic patients.
Collapse
Affiliation(s)
- Ariel R. Choi
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ralph B. D’Agostino
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael K. Farris
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mohammed Abdulhaleem
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John C. Hunting
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Margaret R. Smith
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jimmy Ruiz
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas W. Lycan
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - W. Jeffrey Petty
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christina K. Cramer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Stephen B. Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jaclyn J. White
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael D. Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Gupta R, Dittmeier M, Wohlleben G, Nickl V, Bischler T, Luzak V, Wegat V, Doll D, Sodmann A, Bady E, Langlhofer G, Wachter B, Havlicek S, Gupta J, Horn E, Lüningschrör P, Villmann C, Polat B, Wischhusen J, Monoranu CM, Kuper J, Blum R. Atypical cellular responses mediated by intracellular constitutive active TrkB (NTRK2) kinase domains and a solely intracellular NTRK2-fusion oncogene. Cancer Gene Ther 2024; 31:1357-1379. [PMID: 39039193 PMCID: PMC11405271 DOI: 10.1038/s41417-024-00809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains. In HEK293 cells, constitutive active TrkB kinase and an intracellular NTRK2-fusion oncogene (SQSTM1-NTRK2) reduced actin filopodia dynamics, phosphorylated FAK, and altered the cell morphology. Atypical cellular responses could be mimicked with the intracellular kinase domain, which did not activate the Trk-associated MAPK/ERK pathway. In glioblastoma-like U87MG cells, expression of TrkB or SQSTM1-NTRK2 reduced cell motility and caused drastic changes in the transcriptome. Clinically approved Trk inhibitors or mutating Y705 in the kinase domain, blocked the cellular effects and transcriptome changes. Atypical signaling was also seen for TrkA and TrkC. Moreover, hallmarks of atypical pTrk kinase were found in biopsies of Nestin-positive glioblastoma. Therefore, we suggest Western blot-like immunoassay screening of NTRK-related (brain) tumor biopsies to identify patients with atypical panTrk or phosphoTrk signals. Such patients could be candidates for treatment with NTRK inhibitors such as Larotrectinhib or Entrectinhib.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Melanie Dittmeier
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Gisela Wohlleben
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Vera Nickl
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Luzak
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Ludwig-Maximilians-Universität München, Biomedizinisches Zentrum, Planegg, Germany
| | - Vanessa Wegat
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Bio- Elektro- und Chemokatalyse BioCat, Straubing, Germany
| | - Dennis Doll
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Sodmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Bady
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Langlhofer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Britta Wachter
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Steven Havlicek
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Neurona Therapeutics, 170 Harbor Way, South San Francisco, CA, USA
| | - Jahnve Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Evi Horn
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
9
|
Deng R, Zhang W, Lv J, Wang F, Chen Y, Jiang C, Guan Y, Zhang C. Afatinib as first-line treatment for advanced lung squamous cell carcinoma harboring uncommon EGFR G719C and S768I co-mutation: A case report and literature review. Heliyon 2024; 10:e35304. [PMID: 39166093 PMCID: PMC11334663 DOI: 10.1016/j.heliyon.2024.e35304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Ten percent of non-small cell lung cancer patients with epidermal growth factor receptor (EGFR) mutations harbor uncommon variants. These mutations are mainly involved in lung adenocarcinomas but are rare in lung squamous cell carcinoma (LSCC). In 2018, the Food and Drug Administration-approved afatinib for this specific patient population. However, there is limited information regarding the effectiveness of afatinib for LSCC with EGFR mutations. This case report documented a unique case of a patient with LSCC, which had a rare compound EGFR mutation (G719C and S768I) and showed significant response to afatinib treatment, with 10 months of progression-free survival. New NTRK1 and RET gene mutations may play a potential role in the development of acquired resistance to afatinib following clinical progression. This case highlights the importance of genetic profiling in patients with LSCC. Although these patients have a low positive rate of EGFR mutations, searching for EGFR mutations in these patients might broaden their treatment options.
Collapse
Affiliation(s)
- Ruoyu Deng
- Department of Oncology, Qujing First People's Hospital/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, China
| | - Wen Zhang
- Department of Oncology, Qujing First People's Hospital/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, China
| | - Jialing Lv
- Department of Oncology, Qujing First People's Hospital/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, China
| | - Fang Wang
- Department of Pathology, Second People's Hospital of Qujing City, Qujing, 655000, China
| | - Yanqiong Chen
- Department of Oncology, Qujing First People's Hospital/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, China
| | - Chengqi Jiang
- Department of Oncology, Qujing First People's Hospital/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, China
| | - Yaling Guan
- Department of Oncology, Qujing First People's Hospital/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, China
| | - Chao Zhang
- Department of Oncology, Qujing First People's Hospital/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, China
| |
Collapse
|
10
|
Mahajan AT, Shivani, Datusalia AK, Coluccini C, Coghi P, Chaudhary S. Pyrazolo[1,5- a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors-Synthetic Strategies and SAR Insights. Molecules 2024; 29:3560. [PMID: 39124968 PMCID: PMC11314189 DOI: 10.3390/molecules29153560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure-activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors.
Collapse
Affiliation(s)
- Amol T. Mahajan
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Shivani
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Ashok Kumar Datusalia
- Laboratory of Molecular Neurotherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India;
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| |
Collapse
|
11
|
Tóth LJ, Mokánszki A, Méhes G. The rapidly changing field of predictive biomarkers of non-small cell lung cancer. Pathol Oncol Res 2024; 30:1611733. [PMID: 38953007 PMCID: PMC11215025 DOI: 10.3389/pore.2024.1611733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide in both men and women, however mortality in the US and EU are recently declining in parallel with the gradual cut of smoking prevalence. Consequently, the relative frequency of adenocarcinoma increased while that of squamous and small cell carcinomas declined. During the last two decades a plethora of targeted drug therapies have appeared for the treatment of metastasizing non-small cell lung carcinomas (NSCLC). Personalized oncology aims to precisely match patients to treatments with the highest potential of success. Extensive research is done to introduce biomarkers which can predict the effectiveness of a specific targeted therapeutic approach. The EGFR signaling pathway includes several sufficient targets for the treatment of human cancers including NSCLC. Lung adenocarcinoma may harbor both activating and resistance mutations of the EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent but targetable genetic alterations include ALK, ROS1, RET gene rearrangements, and various alterations of MET proto-oncogene. In addition, the importance of anti-tumor immunity and of tumor microenvironment has become evident recently. Accumulation of mutations generally trigger tumor specific immune defense, but immune protection may be upregulated as an aggressive feature. The blockade of immune checkpoints results in potential reactivation of tumor cell killing and induces significant tumor regression in various tumor types, such as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may correlate with the expression of PD-L1 by tumor cells. Due to the wide range of diagnostic and predictive features in lung cancer a plenty of tests are required from a single small biopsy or cytology specimen, which is challenged by major issues of sample quantity and quality. Thus, the efficacy of biomarker testing should be warranted by standardized policy and optimal material usage. In this review we aim to discuss major targeted therapy-related biomarkers in NSCLC and testing possibilities comprehensively.
Collapse
Affiliation(s)
- László József Tóth
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
12
|
Beech C, Hechtman JF. Molecular Approach to Colorectal Carcinoma: Current Evidence and Clinical Application. Clin Lab Med 2024; 44:221-238. [PMID: 38821642 DOI: 10.1016/j.cll.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Colorectal carcinoma is one of the most common cancer types in men and women, responsible for both the third highest incidence of new cancer cases and the third highest cause of cancer deaths. In the last several decades, the molecular mechanisms surrounding colorectal carcinoma's tumorigenesis have become clearer through research, providing new avenues for diagnostic testing and novel approaches to therapeutics. Laboratories are tasked with providing the most current information to help guide clinical decisions. In this review, we summarize the current knowledge surrounding colorectal carcinoma tumorigenesis and highlight clinically relevant molecular testing.
Collapse
Affiliation(s)
- Cameron Beech
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Jaclyn F Hechtman
- Molecular and GI Pathologist, NeoGenomics Laboratories, Fort Myers, FL, USA.
| |
Collapse
|
13
|
Hou CH, Chen WL, Lin CY. Targeting nerve growth factor-mediated osteosarcoma metastasis: mechanistic insights and therapeutic opportunities using larotrectinib. Cell Death Dis 2024; 15:381. [PMID: 38816365 PMCID: PMC11139949 DOI: 10.1038/s41419-024-06752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Osteosarcoma (OS) therapy presents numerous challenges, due largely to a low survival rate following metastasis onset. Nerve growth factor (NGF) has been implicated in the metastasis and progression of various cancers; however, the mechanism by which NGF promotes metastasis in osteosarcoma has yet to be elucidated. This study investigated the influence of NGF on the migration and metastasis of osteosarcoma patients (88 cases) as well as the underlying molecular mechanisms, based on RNA-sequencing and gene expression data from a public database (TARGET-OS). In osteosarcoma patients, the expression of NGF was significantly higher than that of other growth factors. This observation was confirmed in bone tissue arrays from 91 osteosarcoma patients, in which the expression levels of NGF and matrix metallopeptidase-2 (MMP-2) protein were significantly higher than in normal bone, and strongly correlated with tumor stage. In summary, NGF is positively correlated with MMP-2 in human osteosarcoma tissue and NGF promotes osteosarcoma cell metastasis by upregulating MMP-2 expression. In cellular experiments using human osteosarcoma cells (143B and MG63), NGF upregulated MMP-2 expression and promoted wound healing, cell migration, and cell invasion. Pre-treatment with MEK and ERK inhibitors or siRNA attenuated the effects of NGF on cell migration and invasion. Stimulation with NGF was shown to promote phosphorylation along the MEK/ERK signaling pathway and decrease the expression of microRNA-92a-1-5p (miR-92a-1-5p). In in vivo experiments involving an orthotopic mouse model, the overexpression of NGF enhanced the effects of NGF on lung metastasis. Note that larotrectinib (a tropomyosin kinase receptor) strongly inhibited the effect of NGF on lung metastasis. In conclusion, it appears that NGF promotes MMP-2-dependent cell migration by inhibiting the effects of miR-92a-1-5p via the MEK/ERK signaling cascade. Larotrectinib emerged as a potential drug for the treatment of NGF-mediated metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, No. 1, Jen-Ai Road, Taipei, 100, Taiwan, ROC
| | - Wei-Li Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan, ROC
| | - Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan, ROC.
| |
Collapse
|
14
|
Yao CY, Lin CC, Wang YH, Kao CJ, Tsai CH, Hou HA, Tien HF, Hsu CL, Chou WC. Kinome expression profiling improves risk stratification and therapeutic targeting in myelodysplastic syndromes. Blood Adv 2024; 8:2442-2454. [PMID: 38527292 PMCID: PMC11112608 DOI: 10.1182/bloodadvances.2023011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT The human kinome, which comprises >500 kinases, plays a critical role in regulating numerous essential cellular functions. Although the dysregulation of kinases has been observed in various human cancers, the characterization and clinical implications of kinase expressions in myelodysplastic syndromes (MDS) have not been systematically investigated. In this study, we evaluated the kinome expression profiles of 341 adult patients with primary MDS and identified 7 kinases (PTK7, KIT, MAST4, NTRK1, PAK6, CAMK1D, and PRKCZ) whose expression levels were highly predictive of compromised patient survival. We then constructed the kinase stratification score (KISS) by combining the weighted expressions of the 7 kinases and validated its prognostic significance in 2 external MDS cohorts. A higher KISS was associated with older age, higher peripheral blood and marrow blast percentages, higher Revised International Prognostic Scoring System (IPSS-R) risks, complex karyotype, and mutations in several adverse-risk genes in MDS, such as ASXL1, EZH2, NPM1, RUNX1, STAG2, and TP53. Multivariate analysis confirmed that a higher KISS was an independent unfavorable risk factor in MDS. Mechanistically, the KISS-high patients were enriched for gene sets associated with hematopoietic and leukemic stem cell signatures. By investigating the Genomics of Drug Sensitivity in Cancer database, we identified axitinib and taselisib as candidate compounds that could potentially target the KISS-high myeloblasts. Altogether, our findings suggest that KISS holds the potential to improve the current prognostic scheme of MDS and inform novel therapeutic opportunities.
Collapse
Affiliation(s)
- Chi-Yuan Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chin Lin
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hung Wang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hong Tsai
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Cho JH, Hwang S, Kwak YH, Yum M, Seo GH, Koh J, Ju YS, Yoon J, Kang M, Do H, Kim S, Kim G, Bae H, Lee BH. Clinical and genetic characteristics of three patients with congenital insensitivity to pain with anhidrosis: Case reports and a review of the literature. Mol Genet Genomic Med 2024; 12:e2430. [PMID: 38581121 PMCID: PMC10997844 DOI: 10.1002/mgg3.2430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Congenital insensitivity to pain with anhidrosis (CIPA) is an extremely rare autosomal recessive disorder caused by loss-of-function mutations of the NTRK1 gene, affecting the autonomic and sensory nervous system. Clinical manifestation is varied and includes recurrent fever, pain insensitivity, anhidrosis, self-mutilating behavior, and intellectual disability. METHODS Clinical and genetic features were assessed in two males and one female with genetically confirmed CIPA using exome or genome sequencing. RESULTS CIPA symptoms including recurrent fever, pain insensitivity, and anhidrosis manifested at the age of 1 year (age range: 0.3-8 years). Two patients exhibited self-mutilation tendencies, intellectual disability, and developmental delay. Four NTRK1 (NM_002529.3) mutations, c.851-33T>A (p.?), c.2020G>T (p.Asp674Tyr), c.2303C>T (p.Pro768Leu), and c.574-156_850+1113del (exons 5-7 del) were identified. Two patients exhibited early onset and severe phenotype, being homozygous for c.851-33T>A (p.?) mutations and compound heterozygous for c.851-33T>A (p.?) and c.2020G>T (p.Asp674Tyr) mutation of NTRK1. The third patient with compound heterozygous mutations of c.2303C>T (p.Pro768Leu) and c.574-156_850+1113del (exons 5-7 del) displayed a late onset and milder clinical manifestation. CONCLUSION All three patients exhibited variable phenotypes and disease severity. This research enriches our understanding of clinical and genetic aspects of CIPA, highlighting variable phenotypes and disease severity.
Collapse
Affiliation(s)
- Jun Hee Cho
- Medical Genetics Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Soojin Hwang
- Medical Genetics Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Yoon Hae Kwak
- Department of Orthopedic Surgery, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Mi‐Sun Yum
- Department of Pediatric NeurologyAsan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
| | - Go Hun Seo
- Division of Medical Genetics, 3billion, Inc.SeoulRepublic of Korea
| | | | | | - Ji‐Hee Yoon
- Medical Genetics Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Minji Kang
- Asan Medical CenterAsan Institute for Life SciencesSeoulRepublic of Korea
| | - Hyo‐Sang Do
- Asan Medical CenterAsan Institute for Life SciencesSeoulRepublic of Korea
| | - Soyoung Kim
- Asan Medical CenterAsan Institute for Life SciencesSeoulRepublic of Korea
| | - Gu‐Hwan Kim
- Medical Genetics Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Hyunwoo Bae
- Medical Genetics Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| |
Collapse
|
16
|
Luo Q, Zhou G, Li Z, Dong J, Zhao H, Xu H, Lu X. ω-transaminase-catalyzed synthesis of (R)-2-(1-aminoethyl)-4-fluorophenol, a chiral intermediate of novel anti-tumor drugs. Enzyme Microb Technol 2024; 175:110406. [PMID: 38330706 DOI: 10.1016/j.enzmictec.2024.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol has attracted increasing attentions in recent years in the field of pharmaceuticals because of its important use as a building block in the synthesis of novel anti-tumor drugs targeting tropomyosin receptor kinases. In the present study, a ω-transaminase (ωTA) library consisting of 21 (R)-enantioselective enzymes was constructed and screened for the asymmetric biosynthesis of (R)-2-(1-aminoethyl)-4-fluorophenol from its prochiral ketone. Using (R)-α-methylbenzylamine, D-alanine, or isopropylamine as amino donor, 18 ωTAs were identified with target activity and the enzyme AbTA, which was originally identified from Arthrobacter sp. KNK168, was found to be a potent candidate. The E. coli whole cells expressing AbTA could be used as catalysts. The optimal temperature and pH for the activity were 35-40 °C and pH8.0, respectively. Simple alcohols (such as ethanol, isopropanol, and methanol) and dimethyl sulfoxide were shown to be good cosolvents. High activities were detected when using ethanol and dimethyl sulfoxide at the concentrations of 5-20%. In the scaled-up reaction of 1-liter containing 13 mM ketone substrate, about 50% conversion was achieved in 24 h. 6.4 mM (R)-2-(1-aminoethyl)-4-fluorophenol was generated. After a simple and efficient process of product isolation and purification (with 98.8% recovery), 0.986 g yellowish powder of the product (R)-2-(1-aminoethyl)-4-fluorophenol with high (R)-enantiopurity (up to 100% enantiomeric excess) was obtained. This study established an overall process for the biosynthesis of the high value pharmaceutical chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol by ωTA. Its applicable potential was exemplified by gram-scale production.
Collapse
Affiliation(s)
- Quan Luo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Guan Zhou
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Zhongxia Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; College of Life Science and Technology, Harbin Normal University, Shida Rd 1, Harbin 150025, China
| | - Jiangpeng Dong
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Hang Zhao
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Huifang Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 168, Qingdao 266237, China.
| |
Collapse
|
17
|
Hagopian G, Nagasaka M. Oncogenic fusions: Targeting NTRK. Crit Rev Oncol Hematol 2024; 194:104234. [PMID: 38122917 DOI: 10.1016/j.critrevonc.2023.104234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is responsible for the highest number of cancer-related deaths in the United States. Thankfully, advancements in the detection and targeting of gene mutations have greatly improved outcomes for many patients. One significant mutation driving oncogenesis in various cancers, including NSCLC, is the neurotrophic tyrosine receptor kinase (NTRK) fusion. Presently, larotrectinib and entrectinib are the only FDA-approved therapies for NTRK-mutated cancers. Despite the efficacy and tolerability exhibited by these therapies, several clinical hurdles persist for physicians, including resistance mutations and limited penetration of the central nervous system (CNS), which diminishes their effectiveness. The treatment landscape for NTRK cancers is still being explored, with numerous new tyrosine kinase inhibitors currently in development or undergoing phase 1 and 2 clinical trials. In this review, we delve into both established and novel therapies targeting NTRK-mutated NSCLC.
Collapse
Affiliation(s)
- Garo Hagopian
- Department of Medicine, University of California Irvine Medical Center, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine Medical Center, Orange, CA, USA; Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
18
|
Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024; 14:517-532. [PMID: 38322338 PMCID: PMC10840435 DOI: 10.1016/j.apsb.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Neurotrophic receptor kinase (NTRK) fusions are actionable oncogenic drivers of multiple pediatric and adult solid tumors, and tropomyosin receptor kinase (TRK) has been considered as an attractive therapeutic target for "pan-cancer" harboring these fusions. Currently, two generations TRK inhibitors have been developed. The representative second-generation inhibitors selitrectinib and repotrectinib were designed to overcome clinic acquired resistance of the first-generation inhibitors larotrectinib or entrectinib resulted from solvent-front and gatekeeper on-target mutations. However, xDFG (TRKAG667C/A/S, homologous TRKCG696C/A/S) and some double mutations still confer resistance to selitrectinib and repotrectinib, and overcoming these resistances represents a major unmet clinical need. In this review, we summarize the acquired resistance mechanism of the first- and second-generation TRK inhibitors, and firstly put forward the emerging selective type II TRK inhibitors to overcome xDFG mutations mediated resistance. Additionally, we concluded our perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Cui Z, Zhai Z, Xie D, Wang L, Cheng F, Lou S, Zou F, Pan R, Chang S, Yao H, She J, Zhang Y, Yang X. From genomic spectrum of NTRK genes to adverse effects of its inhibitors, a comprehensive genome-based and real-world pharmacovigilance analysis. Front Pharmacol 2024; 15:1329409. [PMID: 38357305 PMCID: PMC10864613 DOI: 10.3389/fphar.2024.1329409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction: The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions has facilitated the development of precision oncology. Two first-generation NTRK inhibitors (larotrectinib and entrectinib) are currently approved for the treatment of patients with solid tumors harboring NTRK gene fusions. Nevertheless, comprehensive NTRK profiling at the pan-cancer genomic level and real-world studies pertaining to the adverse events of NTRK inhibitors are lacking. Methods: We characterize the genome of NTRK at the pan-cancer level through multi-omics databases such as The Cancer Genome Atlas (TCGA). Through the FDA Adverse Event Reporting System (FAERS) database, we collect reports of entrectinib and larotrectinib-induced adverse events and perform a pharmacovigilance analysis using various disproportionality methods. Results: NTRK1/2/3 expression is lower in most tumor tissues, while they have higher methylation levels. NTRK gene expression has prognostic value in some cancer types, such as breast invasive carcinoma (BRCA). The cancer type with highest NTRK alteration frequency is skin cutaneous melanoma (SKCM) (31.98%). Thyroid carcinoma (THCA) has the largest number of NTRK fusion cases, and the most common fusion pair is ETV6-NTRK3. Adverse drug events (ADEs) obtained from the FAERS database for larotrectinib and entrectinib are 524 and 563, respectively. At the System Organ Class (SOC) level, both drugs have positive signal value for "nervous system disorder". Other positive signals for entrectinib include "cardiac disorders", "metabolism and nutrition disorders", while for larotrectinib, it is "hepatobiliary disorders". The unexpected signals are also listed in detail. ADEs of the two NTRK inhibitors mainly occur in the first month. The median onset time of ADEs for entrectinib and larotrectinib was 16 days (interquartile range [IQR] 6-86.5) and 44 days ([IQR] 7-136), respectively. Conclusion: Our analysis provides a broad molecular view of the NTRK family. The real-world adverse drug event analysis of entrectinib and larotrectinib contributes to more refined medication management.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - De Xie
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siyu Lou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shixue Chang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haoyan Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing She
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yidan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Karakas C, Giampoli EJ, Love T, Hicks DG, Velez MJ. Validation and interpretation of Pan-TRK immunohistochemistry: a practical approach and challenges with interpretation. Diagn Pathol 2024; 19:10. [PMID: 38200576 PMCID: PMC10777531 DOI: 10.1186/s13000-023-01426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Actionable, solid tumor activating neurotrophic receptor tyrosine kinase (NTRK) fusions are best detected via nucleic acid-based assays, while Pan-TRK immunohistochemistry (IHC) serves as a reasonable screening modality. We describe a practical and cost-effective approach to validate pan-TRK and discuss challenges that may be encountered. METHODS Pan-TRK Clone EPR17341 was validated in accordance with the 2014 consensus statements set forth by the College of American Pathologists. Confirmation of IHC results were guided by the European Society of Medical Oncology recommendations for standard methods to detect NTRK fusions. RESULTS Within 36 samples, ETV6-NTRK3 (n = 8) and TPM4-NTRK3 (n = 1) fusions were confirmed. ETV6-NTRK3 fusion positive cases revealed cytoplasmic and nuclear staining. A TPM4-NTRK3 fusion positive high grade malignant peripheral nerve sheath tumor revealed diffuse cytoplasmic staining. A high grade ovarian serous carcinoma revealed focal punctate staining and revealed a non-actionable NTRK1 truncation at intron 2. Diffuse cytoplasmic staining was observed in a case of fusion-negative polymorphous adenocarcinoma. Wild-type expression of TRK in pulmonary meningothelial-like nodules was discovered following a false-positive IHC interpretation. CONCLUSION Pan-TRK IHC shows some utility as a diagnostic and surrogate marker for NTRK screening however, physiologic or non-specific expression may lead to false-positive results.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen J Giampoli
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tanzy Love
- Department of Biostatistics and Computation Biology, University of Rochester, Rochester, NY, USA
| | - David G Hicks
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Moises J Velez
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
21
|
Zhou T, Ji Y. Bayesian Methods for Information Borrowing in Basket Trials: An Overview. Cancers (Basel) 2024; 16:251. [PMID: 38254740 PMCID: PMC10813856 DOI: 10.3390/cancers16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Basket trials allow simultaneous evaluation of a single therapy across multiple cancer types or subtypes of the same cancer. Since the same treatment is tested across all baskets, it may be desirable to borrow information across them to improve the statistical precision and power in estimating and detecting the treatment effects in different baskets. We review recent developments in Bayesian methods for the design and analysis of basket trials, focusing on the mechanism of information borrowing. We explain the common components of these methods, such as a prior model for the treatment effects that embodies an assumption of exchangeability. We also discuss the distinct features of these methods that lead to different degrees of borrowing. Through simulation studies, we demonstrate the impact of information borrowing on the operating characteristics of these methods and discuss its broader implications for drug development. Examples of basket trials are presented in both phase I and phase II settings.
Collapse
Affiliation(s)
- Tianjian Zhou
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Fan Y, Zhang B, Du X, Wang B, Yan Q, Guo L, Yao W. Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling. Curr Cancer Drug Targets 2024; 24:271-287. [PMID: 37670705 DOI: 10.2174/1568009623666230904150957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.
Collapse
Affiliation(s)
- Yichao Fan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Boya Zhang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bangmin Wang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Guo
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Weitao Yao
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Cipri S, Fabozzi F, Del Baldo G, Milano GM, Boccuto L, Carai A, Mastronuzzi A. Targeted therapy for pediatric central nervous system tumors harboring mutagenic tropomyosin receptor kinases. Front Oncol 2023; 13:1235794. [PMID: 38144536 PMCID: PMC10748602 DOI: 10.3389/fonc.2023.1235794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
The family of the neurotrophic tyrosine kinase receptor (NTRK) gene encodes for members of the tropomyosin receptor kinase (TRK) family. Rearrangements involving NTRK1/2/3 are rare oncogenic factors reported with variable frequencies in an extensive range of cancers in pediatrics and adult populations, although they are more common in the former than in the latter. The alterations in these genes are causative of the constitutive activation of TRKs that drive carcinogenesis. In 2017, first-generation TRK inhibitor (TRKi) larotrectinib was granted accelerated approval from the FDA, having demonstrated histologic-agnostic activity against NTRKs fusions tumors. Since this new era has begun, resistance to first-generation TRKi has been described and has opened the development of second-generation molecules, such as selitrectinib and repotrectinib. In this review, we provide a brief overview of the studies on NTRK alterations found in pediatric central nervous system tumors and first and second-generation TRKi useful in clinical practice.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
24
|
Zhu T, Xie J, He H, Li H, Tang X, Wang S, Li Z, Tian Y, Li L, Zhu J, Zhu G. Phase separation underlies signaling activation of oncogenic NTRK fusions. Proc Natl Acad Sci U S A 2023; 120:e2219589120. [PMID: 37812694 PMCID: PMC10589674 DOI: 10.1073/pnas.2219589120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/02/2023] [Indexed: 10/11/2023] Open
Abstract
NTRK (neurotrophic tyrosine receptor kinase) gene fusions that encode chimeric proteins exhibiting constitutive activity of tropomyosin receptor kinases (TRK), are oncogenic drivers in multiple cancer types. However, the underlying mechanisms in oncogenesis that involve various N-terminal fusion partners of NTRK fusions remain elusive. Here, we show that NTRK fusion proteins form liquid-like condensates driven by their N-terminal fusion partners. The kinase reactions are accelerated in these condensates where the complexes for downstream signaling activation are also concentrated. Our work demonstrates that the phase separation driven by NTRK fusions is not only critical for TRK activation, but the condensates formed through phase separation serve as organizational hubs for oncogenic signaling.
Collapse
Affiliation(s)
- Tianxin Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | | | - Hao He
- Etern Biopharma, Shanghai201203, China
| | - Huan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Xianbin Tang
- Department of Pathology, Taihe hospital, Hubei University of Medicine, Shiyan442000, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Ziwen Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Yawen Tian
- Lingang Laboratory, Shanghai200031, China
| | - Lingyu Li
- Lingang Laboratory, Shanghai200031, China
| | | | | |
Collapse
|
25
|
Bhole RP, Kute PR, Chikhale RV, Bonde CG, Pant A, Gurav SS. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg Chem 2023; 139:106720. [PMID: 37480814 DOI: 10.1016/j.bioorg.2023.106720] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.
| | - Payal R Kute
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | | | - C G Bonde
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur Campus 425 405, India.
| | - Amit Pant
- School of Medicine Creighton University, Omaha, Neraska, USA.
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403001, India.
| |
Collapse
|
26
|
Konda P, Garinet S, Van Allen EM, Viswanathan SR. Genome-guided discovery of cancer therapeutic targets. Cell Rep 2023; 42:112978. [PMID: 37572322 DOI: 10.1016/j.celrep.2023.112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
The success of precision oncology-which aims to match the right therapies to the right patients based on molecular status-is predicated on a robust pipeline of molecular targets against which therapies can be developed. Recent advances in genomics and functional genetics have enabled the unbiased discovery of novel molecular targets at scale. We summarize the promise and challenges in integrating genomic and functional genetic landscapes of cancer to establish the next generation of cancer targets.
Collapse
Affiliation(s)
- Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon Garinet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Meng Y, Huang K, Shi M, Huo Y, Han L, Liu B, Li Y. Research Advances in the Role of the Tropomyosin Family in Cancer. Int J Mol Sci 2023; 24:13295. [PMID: 37686101 PMCID: PMC10488083 DOI: 10.3390/ijms241713295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.
Collapse
Affiliation(s)
- Yucheng Meng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yifei Huo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Liang Han
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| |
Collapse
|
28
|
Huang S, Ye J, Gao X, Huang X, Huang J, Lu L, Lu C, Li Y, Luo M, Xie M, Lin Y, Liang R. Progress of research on molecular targeted therapies for colorectal cancer. Front Pharmacol 2023; 14:1160949. [PMID: 37614311 PMCID: PMC10443711 DOI: 10.3389/fphar.2023.1160949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, accounting for approximately 10% of global cancer incidence and mortality. Approximately 20% of patients with CRC present metastatic disease (mCRC) at the time of diagnosis. Moreover, up to 50% of patients with localized disease eventually metastasize. mCRC encompasses a complex cascade of reactions involving multiple factors and processes, leading to a diverse array of molecular mechanisms. Improved comprehension of the pathways underlying cancer cell development and proliferation, coupled with the accessibility of relevant targeted agents, has propelled advancements in CRC treatment, ultimately leading to enhanced survival rates. Mutations in various pathways and location of the primary tumor in CRC influences the efficacy of targeted agents. This review summarizes available targeted agents for different CRC pathways, with a focus on recent advances in anti-angiogenic and anti-epidermal growth factor receptor agents, BRAF mutations, and human epidermal growth factor receptor 2-associated targeted agents.
Collapse
Affiliation(s)
- Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
29
|
Santini D, Botticelli A, Galvano A, Iuliani M, Incorvaia L, Gristina V, Taffon C, Foderaro S, Paccagnella E, Simonetti S, Fazio F, Scagnoli S, Pomati G, Pantano F, Perrone G, De Falco E, Russo A, Spinelli GP. Network approach in liquidomics landscape. J Exp Clin Cancer Res 2023; 42:193. [PMID: 37542343 PMCID: PMC10401883 DOI: 10.1186/s13046-023-02743-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023] Open
Abstract
Tissue-based biopsy is the present main tool to explore the molecular landscape of cancer, but it also has many limits to be frequently executed, being too invasive with the risk of side effects. These limits and the ability of cancer to constantly evolve its genomic profile, have recently led to the need of a less invasive and more accurate alternative, such as liquid biopsy. By searching Circulating Tumor Cells and residues of their nucleic acids or other tumor products in body fluids, especially in blood, but also in urine, stools and saliva, liquid biopsy is becoming the future of clinical oncology. Despite the current lack of a standardization for its workflows, that makes it hard to be reproduced, liquid biopsy has already obtained promising results for cancer screening, diagnosis, prognosis, and risk of recurrence.Through a more accessible molecular profiling of tumors, it could become easier to identify biomarkers predictive of response to treatment, such as EGFR mutations in non-small cell lung cancer and KRAS mutations in colorectal cancer, or Microsatellite Instability and Mismatch Repair as predictive markers of pembrolizumab response.By monitoring circulating tumor DNA in longitudinal repeated sampling of blood we could also predict Minimal Residual Disease and the risk of recurrence in already radically resected patients.In this review we will discuss about the current knowledge of limitations and strengths of the different forms of liquid biopsies for its inclusion in normal cancer management, with a brief nod to their newest biomarkers and its future implications.
Collapse
Affiliation(s)
- Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Andrea Botticelli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Chiara Taffon
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Simone Foderaro
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Elisa Paccagnella
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
| | - Sonia Simonetti
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Federico Fazio
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy.
| | - Simone Scagnoli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | | | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Giuseppe Perrone
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, 80122, Naples, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| |
Collapse
|
30
|
Parrado Fernandez C, Juric S, Backlund M, Dahlström M, Madjid N, Lidell V, Rasti A, Sandin J, Nordvall G, Forsell P. Neuroprotective and Disease-Modifying Effects of the Triazinetrione ACD856, a Positive Allosteric Modulator of Trk-Receptors for the Treatment of Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2023; 24:11159. [PMID: 37446337 DOI: 10.3390/ijms241311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The introduction of anti-amyloid monoclonal antibodies against Alzheimer's disease (AD) is of high importance. However, even though treated patients show very little amyloid pathology, there is only a modest effect on the rate of cognitive decline. Although this effect can possibly increase over time, there is still a need for alternative treatments that will improve cognitive function in patients with AD. Therefore, the purpose of this study was to characterize the triazinetrione ACD856, a novel pan-Trk positive allosteric modulator, in multiple models to address its neuroprotective and potential disease-modifying effects. The pharmacological effect of ACD856 was tested in recombinant cell lines, primary cortical neurons, or animals. We demonstrate that ACD856 enhanced NGF-induced neurite outgrowth, increased the levels of the pre-synaptic protein SNAP25 in PC12 cells, and increased the degree of phosphorylated TrkB in SH-SY5Y cells. In primary cortical neurons, ACD856 led to increased levels of phospho-ERK1/2, showed a neuroprotective effect against amyloid-beta or energy-deprivation-induced neurotoxicity, and increased the levels of brain-derived neurotrophic factor (BDNF). Consequently, administration of ACD856 resulted in a significant increase in BDNF in the brains of 21 months old mice. Furthermore, repeated administration of ACD856 resulted in a sustained anti-depressant effect, which lasted up to seven days, suggesting effects that go beyond merely symptomatic effects. In conclusion, the results confirm ACD856 as a cognitive enhancer, but more importantly, they provide substantial in vitro and in vivo evidence of neuroprotective and long-term effects that contribute to neurotrophic support and increased neuroplasticity. Presumably, the described effects of ACD856 may improve cognition, increase resilience, and promote neurorestorative processes, thereby leading to a healthier brain in patients with AD.
Collapse
Affiliation(s)
- Cristina Parrado Fernandez
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Sanja Juric
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Maria Backlund
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | | | - Nather Madjid
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | | | - Azita Rasti
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| |
Collapse
|
31
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
32
|
Yin L, Shi C, He X, Qiu Y, Chen H, Chen M, Zhang Z, Chen Y, Zhou Y, Zhang H. NTRK-rearranged spindle cell neoplasms: a clinicopathological and molecular study of 13 cases with peculiar characteristics at one of the largest institutions in China. Pathology 2023; 55:362-374. [PMID: 36641377 DOI: 10.1016/j.pathol.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
NTRK-rearranged spindle cell neoplasms (NTRK-RSCNs) represent an emerging group of rare tumours defined using molecular means. To the best of our knowledge, there have been no large series of reports about this tumour in the Chinese population in English full-text articles. Herein, we present 13 NTRK-RSCNs with peculiar characteristics. Ten of the 13 (77%) patients were children without sex differences. The tumour locations included six trunks, four extremities, two recta, and one small bowel. The histological morphology included four lipofibromatosis-like neural tumour (LPF-NT)-like, eight malignant peripheral nerve sheath tumours (MPNST)/fibrosarcoma-like, and one extremely rare myxofibrosarcoma-like pattern. Immunohistochemically, all cases were CD34, pan-TRK and TRK-A positive, SOX-10 negative, and H3K27me3 intact. S-100 protein expression was identified in 11 of 13 (85%) cases. Genetically, NTRK1 rearrangements were considered positive (7/13, 54%) or suspicious for positivity (6/13, 46%) by fluorescence in situ hybridisation. Next-generation sequencing and Sanger sequencing confirmed NTRK1 fusions with a variety of partner genes, including five LMNA, three TPM3, one SQSTM1, three novel CPSF6, IGR (downstream PMVK), and GAS2L1 genes. Interestingly, the last tumour concurrently harboured a second EWSR1-PBX1 fusion, which has never been reported. Four patients developed local recurrence and two of them suffered metastasis. In our study, NTRK-RSCNs had peculiar fusions that displayed unusual or complicated clinicopathological features. Histological clues and IHC helped streamline a small subset of potential candidates. Although FISH is a powerful technology for identifying NTRK rearrangements, RNA-/DNA-based NGS is recommended for highly suspected cases in which FISH signal patterns are not discernible as classic positive patterns, particularly if targeted therapy is considered.
Collapse
Affiliation(s)
- Lijuan Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changle Shi
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yihua Chen
- Department of Pathology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yanyan Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Mansinho A, Fernandes RM, Carneiro AV. Histology-Agnostic Drugs: A Paradigm Shift-A Narrative Review. Adv Ther 2023; 40:1379-1392. [PMID: 36418841 PMCID: PMC10070286 DOI: 10.1007/s12325-022-02362-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
Cancer diagnosis and therapeutics have been traditionally based on pathologic classification at the organ of origin. The availability of an unprecedented amount of clinical and biologic data provides a unique window of opportunity for the development of new drugs. What was once treated as a homogeneous disease with a one-size-fits-all approach was shown to be a rather heterogeneous condition, with multiple targetable mutations that can vary during the course of the disease. Clinical trial designs have had to adapt to the exponential growth of targetable mechanisms and new agents, with ensuing challenges that are closer to those experienced with rare diseases and orphan medicines. To face these problems, precision/enrichment and other novel trial designs have been developed, and the concept of histology-agnostic targeted therapeutic agents has emerged. Patients are selected for a specific agent based on specific genomic or molecular alterations, with the same compound used to potentially treat a multiplicity of cancers, granted that the actionable driver alteration is present. There are currently approved drugs for such indications, but this approach has raised issues on multiple levels. This review aims to address the challenges of this new concept and provide insights into possible solutions and frameworks on how to tackle them.
Collapse
Affiliation(s)
- André Mansinho
- Serviço de Oncologia Médica, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Miguel Fernandes
- Laboratório de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - António Vaz Carneiro
- Instituto de Saúde Baseada na Evidência, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
- BC/CDI, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
34
|
Trouvilliez S, Lagadec C, Toillon RA. TrkA Co-Receptors: The Janus Face of TrkA? Cancers (Basel) 2023; 15:cancers15071943. [PMID: 37046604 PMCID: PMC10093326 DOI: 10.3390/cancers15071943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Larotrectinib and Entrectinib are specific pan-Trk tyrosine kinase inhibitors (TKIs) approved by the Food and Drug Administration (FDA) in 2018 for cancers with an NTRK fusion. Despite initial enthusiasm for these compounds, the French agency (HAS) recently reported their lack of efficacy. In addition, primary and secondary resistance to these TKIs has been observed in the absence of other mutations in cancers with an NTRK fusion. Furthermore, when TrkA is overexpressed, it promotes ligand-independent activation, bypassing the TKI. All of these clinical and experimental observations show that genetics does not explain all therapeutic failures. It is therefore necessary to explore new hypotheses to explain these failures. This review summarizes the current status of therapeutic strategies with TrkA inhibitors, focusing on the mechanisms potentially involved in these failures and more specifically on the role of TrkA.
Collapse
Affiliation(s)
- Sarah Trouvilliez
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Chann Lagadec
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Robert-Alain Toillon
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
- GdR2082 APPICOM-«Approche Intégrative Pour Une Compréhension Multi-Échelles de la Fonction des Protéines Membranaires», 75016 Paris, France
| |
Collapse
|
35
|
Jiang H, Xiong H, Gu SX, Wang M. E3 ligase ligand optimization of Clinical PROTACs. Front Chem 2023; 11:1098331. [PMID: 36733714 PMCID: PMC9886873 DOI: 10.3389/fchem.2023.1098331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Proteolysis targeting chimeras (PROTACs) technology can realize the development of drugs for non-druggable targets that are difficult to achieve with traditional small molecules, and therefore has attracted extensive attention from both academia and industry. Up to now, there are more than 600 known E3 ubiquitin ligases with different structures and functions, but only a few have developed corresponding E3 ubiquitin ligase ligands, and the ligands used to design PROTAC molecules are limited to a few types such as VHL (Von-Hippel-Lindau), CRBN (Cereblon), MDM2 (Mouse Doubleminute 2 homolog), IAP (Inhibitor of apoptosis proteins), etc. Most of the PROTAC molecules that have entered clinical trials were developed based on CRBN ligands, and only DT2216 was based on VHL ligand. Obviously, the structural optimization of E3 ubiquitin ligase ligands plays an instrumental role in PROTAC technology from bench to bedside. In this review, we review the structure optimization process of E3 ubiquitin ligase ligands currently entering clinical trials on PROTAC molecules, summarize some characteristics of these ligands in terms of druggability, and provide some preliminary insights into their structural optimization. We hope that this review will help medicinal chemists to develop more druggable molecules into clinical studies and to realize the greater therapeutic potential of PROTAC technology.
Collapse
Affiliation(s)
- Hanrui Jiang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, China,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Huan Xiong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China,Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, China,*Correspondence: Shuang-Xi Gu, ; Mingliang Wang,
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China,Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,*Correspondence: Shuang-Xi Gu, ; Mingliang Wang,
| |
Collapse
|
36
|
Yu QX, Zhao WJ, Wang HY, Zhang L, Qin L, Zhang L, Han JL. Case Report: Identification of a novel NTRK3-AJUBA fusion co-existing with ETV6-NTRK3 fusion in papillary thyroid carcinoma. Front Oncol 2023; 13:1123812. [PMID: 37188179 PMCID: PMC10176450 DOI: 10.3389/fonc.2023.1123812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
NTRK fusions are validated oncogenic drivers of various adult and pediatric tumor types, including thyroid cancer, and serve as a therapeutic target. Recently, tropomyosin receptor kinase (TRK) inhibitors, such as entrectinib and larotrectinib, display promising therapeutic efficacy in NTRK-positive solid tumors. Although some NTRK fusion partners have been identified in thyroid cancer, the spectrum of NTRK fusion is not fully characterized. In this study, a dual NTRK3 fusion was identified by targeted RNA-Seq in a 47-year-old female patient with papillary thyroid carcinoma. The patient harbors a novel in-frame fusion between NTRK3 exon 13 and AJUBA exon 2, co-existing with a known in-frame fusion between ETV6 exon 4 and NTRK3 exon 14. The dual NTRK3 fusion was validated by Sanger sequencing and fluorescence in situ hybridization (FISH) but lack TRK protein expression as defined by pan-TRK immunohistochemistry (IHC). We supposed the pan-TRK IHC result to be falsely negative. In conclusion, we present the first case of a novel NTRK3-AJUBA fusion co-existing with a known ETV6-NTRK3 fusion in thyroid cancer. These findings extend the spectrum of translocation partners in NTRK3 fusion, and the effect of dual NTRK3 fusion on TRK inhibitor therapy and prognosis needs long-term follow-up.
Collapse
Affiliation(s)
- Qing-Xiang Yu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Wen-Jun Zhao
- Department of Thyroid & Bariatric Metabolic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - He-Yue Wang
- Department of Thyroid & Bariatric Metabolic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Zhang
- Department of Thyroid & Bariatric Metabolic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lan Qin
- Clinical Genome Center, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Lei Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
- *Correspondence: Lei Zhang, ; Jian-li Han,
| | - Jian-li Han
- Department of Thyroid & Bariatric Metabolic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- *Correspondence: Lei Zhang, ; Jian-li Han,
| |
Collapse
|
37
|
Wang Y, Wang G, Zheng H, Liu J, Ma G, Huang G, Song Q, Du J. Distinct gene mutation profiles among multiple and single primary lung adenocarcinoma. Front Oncol 2022; 12. [PMID: 36531058 PMCID: PMC9755731 DOI: 10.3389/fonc.2022.1014997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
With the development of technologies, multiple primary lung cancer (MPLC) has been detected more frequently. Although large-scale genomics studies have made significant progress, the aberrant gene mutation in MPLC is largely unclear. In this study, 141 and 44 lesions from single and multiple primary lung adenocarcinoma (SP- and MP-LUAD) were analyzed. DNA and RNA were extracted from formalin-fixed, paraffin-embedded tumor tissue and sequenced by using the next-generation sequencing-based YuanSu450TM gene panel. We systematically analyzed the clinical features and gene mutations of these lesions, and found that there were six genes differently mutated in MP-LUAD and SP-LUAD lesions, including RBM10, CDK4, ATRX, NTRK1, PREX2, SS18. Data from the cBioPortal database indicated that mutation of these genes was related to some clinical characteristics, such as TMB, tumor type, et al. Besides, heterogeneity analysis suggested that different lesions could be tracked back to monophyletic relationships. We compared the mutation landscape of MP-LUAD and SP-LUAD and identified six differentially mutated genes (RBM10, CDK4, ATRX, NTRK1, PREX2, SS18), and certain SNV loci in TP53 and EGFR which might play key roles in lineage decomposition in multifocal samples. These findings may provide insight into personalized prognosis prediction and new therapies for MP-LUAD patients.
Collapse
|
38
|
Testa G, Mainardi M, Vannini E, Pancrazi L, Cattaneo A, Costa M. Disentangling the signaling complexity of nerve growth factor receptors by
CRISPR
/Cas9. FASEB J 2022; 36:e22498. [PMID: 37036720 DOI: 10.1096/fj.202101760rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
The binding of nerve growth factor (NGF) to the tropomyosin-related kinase A (TrkA) and p75NTR receptors activates a large variety of pathways regulating critical processes as diverse as proliferation, differentiation, membrane potential, synaptic plasticity, and pain. To ascertain the details of TrkA-p75NTR interaction and cooperation, a plethora of experiments, mostly based on receptor overexpression or downregulation, have been performed. Among the heterogeneous cellular systems used for studying NGF signaling, the PC12 pheochromocytoma-derived cell line is a widely used model. By means of CRISPR/Cas9 genome editing, we created PC12 cells lacking TrkA, p75NTR , or both. We found that TrkA-null cells become unresponsive to NGF. Conversely, the absence of p75NTR enhances the phosphorylation of TrkA and its effectors. Using a patch-clamp, we demonstrated that the individual activation of TrkA and p75NTR by NGF results in antagonizing effects on the membrane potential. These newly developed PC12 cell lines can be used to investigate the specific roles of TrkA and p75NTR in a genetically defined cellular model, thus providing a useful platform for future studies and further gene editing.
Collapse
Affiliation(s)
- Giovanna Testa
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
| | - Marco Mainardi
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Eleonora Vannini
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Laura Pancrazi
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Antonino Cattaneo
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- European Brain Research Institute “Rita Levi Montalcini” (EBRI) Rome Italy
| | - Mario Costa
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- Neuroscience Institute National Research Council (CNR) Pisa Italy
- Centro Pisano ricerca e implementazione clinica Flash Radiotherapy “CPFR@CISUP”, “S. Chiara” Hospital Pisa Italy
| |
Collapse
|
39
|
Expression and Signaling Pathways of Nerve Growth Factor (NGF) and Pro-NGF in Breast Cancer: A Systematic Review. Curr Oncol 2022; 29:8103-8120. [PMID: 36354700 PMCID: PMC9689427 DOI: 10.3390/curroncol29110640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Breast cancer represents the most common type of cancer and is the leading cause of death due to cancer among women. Thus, the prevention and early diagnosis of breast cancer is of primary urgency, as well as the development of new treatments able to improve its prognosis. Nerve Growth Factor (NGF) is a neurotrophic factor involved in the regulation of neuronal functions through the binding of the Tropomyosin receptor kinase A (TrkA) and the Nerve Growth Factor receptor or Pan-Neurotrophin Receptor 75 (NGFR/p75NTR). In addition, its precursor (pro-NGF) can extert biological activity by forming a trimeric complex with NGFR/p75NTR and sortilin, or by binding to TrkA receptors with low affinity. Several examples of in vitro and in vivo evidence show that NGF is both synthesized and released by breast cancer cells, and has mitogen, antiapoptotic and angiogenic effects on these cells through the activation of different signaling cascades that involve TrkA and NGFR/p75NTR receptors. Conversely, pro-NGF signaling has been related to breast cancer invasion and metastasis. Other studies suggested that NGF and its receptors could represent a good diagnostic and prognostic tool, as well as promising therapeutic targets for breast cancer. In this paper, we comprehensively summarize and systematically review the current experimental evidence on this topic. INPLASY ID: INPLASY2022100017.
Collapse
|
40
|
Nordvall G, Forsell P, Sandin J. Neurotrophin-targeted therapeutics: A gateway to cognition and more? Drug Discov Today 2022; 27:103318. [PMID: 35850433 DOI: 10.1016/j.drudis.2022.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/09/2023]
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), are small proteins expressed in the brain and peripheral tissues, which regulate several key aspects of neuronal function, including neurogenesis, synaptic plasticity and neuroprotection, but also programmed cell death. This broad range of effects is a result of a complex downstream signaling pathway, with differential spatial and temporal activation patterns further diversifying their physiological effects. Alterations in neurotrophin levels, or known polymorphisms in neurotrophin genes, have been linked to a variety of disorders, including depression and Alzheimer's disease (AD). Historically, their therapeutic potential in these disorders has been hampered by the lack of suitable tool molecules for clinical studies. However, recent advancements have led to the development of new therapeutic candidates, which are now in clinical testing.
Collapse
|
41
|
Gu J, Wu Q, Zhang Q, You Q, Wang L. A decade of approved first-in-class small molecule orphan drugs: Achievements, challenges and perspectives. Eur J Med Chem 2022; 243:114742. [PMID: 36155354 DOI: 10.1016/j.ejmech.2022.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
In the past decade (2011-2020), there was a growing interest in the discovery and development of orphan drugs for the treatment of rare diseases. However, rare diseases only account for a population of 0.65‰-1‰ which usually occur with previously unknown biological mechanisms and lack of specific therapeutics, thus to increase the demands for the first-in-class (FIC) drugs with new biological targets or mechanisms. Considering the achievements in the past 10 years, a total of 410 drugs were approved by U.S. Food and Drug Administration (FDA), which contained 151 FIC drugs and 184 orphan drugs, contributing to make up significant numbers of the approvals. Notably, more than 50% of FIC drugs are developed as orphan drugs and some of them have already been milestones in drug development. In this review, we aim to discuss the FIC small molecules for the development of orphan drugs case by case and highlight the R&D strategy with novel targets and scientific breakthroughs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyu Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
42
|
Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 2022; 14:986443. [PMID: 36158555 PMCID: PMC9493475 DOI: 10.3389/fnagi.2022.986443] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has multiple biological functions which are mediated by the activation of two receptors, tropomyosin receptor kinase B (TrkB) receptor and the p75 neurotrophin receptor, involving in physiological and pathological processes throughout life. The diverse presence and activity of BDNF indicate its potential role in the pathogenesis, progression and treatment of both neurological and psychiatric disorders. This review is to provide a comprehensive assessment of the current knowledge and future directions in BDNF-associated research in the central nervous system (CNS), with an emphasis on the physiological and pathological functions of BDNF as well as its potential treatment effects in CNS diseases, including depression, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shafei Song
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Hao Wang,
| |
Collapse
|
43
|
Lim LM, Chung WY, Hwang DY, Yu CC, Ke HL, Liang PI, Lin TW, Cheng SM, Huang AM, Kuo HT. Whole-exome sequencing identified mutational profiles of urothelial carcinoma post kidney transplantation. J Transl Med 2022; 20:324. [PMID: 35864526 PMCID: PMC9301867 DOI: 10.1186/s12967-022-03522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Kidney transplantation is a lifesaving option for patients with end-stage kidney disease. In Taiwan, urothelial carcinoma (UC) is the most common de novo cancer after kidney transplantation (KT). UC has a greater degree of molecular heterogeneity than do other solid tumors. Few studies have explored genomic alterations in UC after KT. We performed whole-exome sequencing to compare the genetic alterations in UC developed after kidney transplantation (UCKT) and in UC in patients on hemodialysis (UCHD). After mapping and variant calling, 18,733 and 11,093 variants were identified in patients with UCKT and UCHD, respectively. We excluded known single-nucleotide polymorphisms (SNPs) and retained genes that were annotated in the Catalogue of Somatic Mutations in Cancer (COSMIC), in the Integrative Onco Genomic cancer mutations browser (IntOGen), and in the Cancer Genome Atlas (TCGA) database of genes associated with bladder cancer. A total of 14 UCKT-specific genes with SNPs identified in more than two patients were included in further analyses. The single-base substitution (SBS) profile and signatures showed a relative high T > A pattern compared to COMSIC UC mutations. Ingenuity pathway analysis was used to explore the connections among these genes. GNAQ, IKZF1, and NTRK3 were identified as potentially involved in the signaling network of UCKT. The genetic analysis of posttransplant malignancies may elucidate a fundamental aspect of the molecular pathogenesis of UCKT.
Collapse
Affiliation(s)
- Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Chih-Chuan Yu
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - A-Mei Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hung-Tien Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
44
|
Lee HJ, Moon Y, Choi J, Heo JD, Kim S, Nallapaneni HK, Chin YW, Lee J, Han SY. Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effects. Biomol Ther (Seoul) 2022; 30:360-367. [PMID: 35264466 PMCID: PMC9252884 DOI: 10.4062/biomolther.2021.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase Cγ, and ERK1/2. Furthermore, KRC-108 exhibited anti-tumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Jinju 52834, Republic of Korea
| | - Yeongyu Moon
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jungil Choi
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Sekwang Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Jinju 52834, Republic of Korea
| | | | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Jinju 52834, Republic of Korea
| |
Collapse
|
45
|
Delaye M, Ibadioune S, Julié C, Marin C, Peschaud F, Lupinacci R, Vacher S, Ahmanache L, Antonio S, Schnitzler A, Buecher B, Mariani P, Allory Y, Grati OT, Emile JF, Neuzillet C, Bièche I. Rational testing for gene fusion in colorectal cancer: MSI and RAS-BRAF wild-type metastatic colorectal cancer as target population for systematic screening. Eur J Cancer 2022; 170:85-90. [DOI: 10.1016/j.ejca.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 11/25/2022]
|
46
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
47
|
Li MM, Drilon A, Laetsch TW. Editorial. Cancer Genet 2022; 266-267:37-38. [PMID: 35728328 DOI: 10.1016/j.cancergen.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marilyn M Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Department of Pediatrics and Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexander Drilon
- Early Drug Development Service, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Theodore W Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics and Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Jiang Q, Li M, Li H, Chen L. Entrectinib, a new multi-target inhibitor for cancer therapy. Biomed Pharmacother 2022; 150:112974. [PMID: 35447552 DOI: 10.1016/j.biopha.2022.112974] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical practice shows that when single-target drugs treat multi-factor diseases such as tumors, cardiovascular system and endocrine system diseases, it is often difficult to achieve good therapeutic effects, and even serious adverse reactions may occur. Multi-target drugs can simultaneously regulate multiple links of disease, improve efficacy, reduce adverse reactions, and improve drug resistance. They are ideal drugs for treating complex diseases, and therefore have become the main direction of drug development. At present, some multi-target drugs have been successfully used in many major diseases. Entrectinib is an oral small molecule inhibitor that targets TRK, ROS1, and ALK. It is used to treat locally advanced or metastatic solid tumors with NTRK1/2/3, ROS1 and ALK gene fusion mutations. It can pass through the blood-brain barrier and is the only TRK inhibitor clinically proven to be effective against primary and metastatic brain diseases. In 2019, entrectinib was approved by the FDA to treat adult patients with ROS1-positive metastatic non-small cell lung cancer. Case reports showed that continuous administration of entrectinib was effective and tolerable. In this review, we give a brief introduction to TKK, ROS1 and ALK, and on this basis, we give a detailed and comprehensive introduction to the mechanism of action, pharmacokinetics, pharmacodynamics, clinical efficacy, tolerability and drug interactions of entrectinib.
Collapse
Affiliation(s)
- Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Mingxue Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
49
|
Wu T, Qin Q, Lv R, Liu N, Yin W, Hao C, Sun Y, Zhang C, Sun Y, Zhao D, Cheng M. Discovery of quinazoline derivatives CZw-124 as a pan-TRK inhibitor with potent anticancer effects in vitro and in vivo. Eur J Med Chem 2022; 238:114451. [PMID: 35617855 DOI: 10.1016/j.ejmech.2022.114451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Herein, we report the discovery process and antitumor activity of the TRK inhibitor CZw-124 (8o), which is a quinazoline derivative. Starting from a PAK4 inhibitor, we used various drug design strategies, including pharmacophore feature supplementation, F-scanning, and blocking metabolic sites, and finally found a TRK inhibitor CZw-124 that is effective in vitro and in vivo. Docking studies and molecular dynamics simulations revealed a possible mode of binding of CZw-124 to TRKA. Biological activity evaluation showed that CZw-124 belongs to a class of pan-TRK inhibitors with moderate kinase selectivity. It inhibited the proliferation and induced the apoptosis of Km-12 cells in vitro by interfering with the phosphorylation of TRKA. Pharmacodynamic evaluation in vivo showed that CZw-124 had a tumor inhibition rate comparable to that of larotrectinib after oral administration of 40 mg/kg/d (tumor growth inhibiton = 71%).
Collapse
Affiliation(s)
- Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
50
|
Suzuki C, Nishiyama A, Arai S, Tange S, Tajima A, Tanimoto A, Fukuda K, Takumi Y, Kotani H, Takeuchi S, Yanagimura N, Ohtsubo K, Yamamoto N, Omori K, Yano S. Inhibition of EGFR and MEK surmounts entrectinib resistance in a brain metastasis model of NTRK1-rearranged tumor cells. Cancer Sci 2022; 113:2323-2335. [PMID: 35363931 PMCID: PMC9277414 DOI: 10.1111/cas.15354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022] Open
Abstract
Tropomyosin receptor kinase (TRK) inhibitors have demonstrated histology-agnostic efficacy in patients with neurotrophic receptor tyrosine kinase (NTRK) gene fusion. Although responses to TRK inhibitors can be dramatic and durable, duration of response may eventually be limited by acquired resistance via several mechanisms, including resistance mutations such as NTRK1-G595R. Repotrectinib is a second-generation TRK inhibitor, which is active against NTRK1-G595R. However, its efficacy against entrectinib-resistant tumors has not been fully elucidated. In the present study, we established entrectinib-resistant tumor cells (M3B) in a brain metastasis model inoculated with NTRK1-rearranged KM12SM cells, and examined the sensitivity of M3B cells to repotrectinib. While M3B cells harbored the NTRK1-G595R mutation, they were unexpectedly resistant to repotrectinib. The resistance was due to extracellular signal-regulated kinase (ERK) reactivation partially mediated by epidermal growth factor receptor (EGFR) activation. We further demonstrate that the triplet combination of repotrectinib, EGFR inhibitor, and MEK inhibitor could sensitize M3B cells in vitro as well as in a brain metastasis model. These results indicate that resistant mutations, such as NTRK1-G595R, and alternative pathway activation, such as ERK activation, could simultaneously occur in entrectinib-resistant tumors, thereby causing resistance to second-generation inhibitor repotrectinib. These findings highlight the importance of intensive examinations to identify resistance mechanisms and application of the appropriate combination treatment to circumvent the resistance.
Collapse
Affiliation(s)
- Chiaki Suzuki
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shoichiro Tange
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yohei Takumi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kotani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naohiro Yanagimura
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|