1
|
Sykes A, Caruth L, Setia Verma S, Hoshi T, Deutsch C. Disease-associated Kv1.3 variants are energy compromised with impaired nascent chain folding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.631970. [PMID: 39868087 PMCID: PMC11761497 DOI: 10.1101/2025.01.17.631970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Human Kv1.3, encoded by KCNA3 , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.3 protein expression. The intersubunit recognition domain, T1, at the cytosolic N-terminus of Kv1.3, acquires secondary, tertiary, and quaternary structures during early biogenesis while the nascent protein is attached to the ribosome and/or the ER membrane. In this study, we ask whether native KCNA3 gene variants in T1 are associated with human disease and whether they manifest early-stage folding defects, energetic instabilities, and conformational distortion of subunits. We use three approaches: first, the unbiased "genome-first" approach to determine phenotype associations of specific KCNA3 rare variants. Second, we use biochemical assays to assess early-stage tertiary and quaternary folding and membrane association of these variants during early biogenesis. Third, we use all-atom molecular dynamics simulations of the T1 tetramer to assess structural macroscopic and energetic stability differences between wildtype (WT) Kv1.3 and a single-point variant, R114G. Measured folding probabilities and membrane associations are dramatically reduced in several of the native variants compared to WT. Simulations strikingly show that the R114G variant produces more energetically unstable and dynamic T1 domains, concomitant with tertiary unwinding and impaired formation of symmetrical tetramers. Our findings identify molecular mechanisms by which rare variants influence channel assembly, potentially contributing to diverse clinical phenotypes underlying human disease.
Collapse
|
2
|
Bonchuk AN, Balagurov KI, Baradaran R, Boyko KM, Sluchanko NN, Khrustaleva AM, Burtseva AD, Arkova OV, Khalisova KK, Popov VO, Naschberger A, Georgiev PG. The Arthropoda-specific Tramtrack group BTB protein domains use previously unknown interface to form hexamers. eLife 2024; 13:e96832. [PMID: 39221775 PMCID: PMC11426971 DOI: 10.7554/elife.96832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024] Open
Abstract
BTB (bric-a-brack, Tramtrack, and broad complex) is a diverse group of protein-protein interaction domains found within metazoan proteins. Transcription factors contain a dimerizing BTB subtype with a characteristic N-terminal extension. The Tramtrack group (TTK) is a distinct type of BTB domain, which can multimerize. Single-particle cryo-EM microscopy revealed that the TTK-type BTB domains assemble into a hexameric structure consisting of three canonical BTB dimers connected through a previously uncharacterized interface. We demonstrated that the TTK-type BTB domains are found only in Arthropods and have undergone lineage-specific expansion in modern insects. The Drosophila genome encodes 24 transcription factors with TTK-type BTB domains, whereas only four have non-TTK-type BTB domains. Yeast two-hybrid analysis revealed that the TTK-type BTB domains have an unusually broad potential for heteromeric associations presumably through a dimer-dimer interaction interface. Thus, the TTK-type BTB domains are a structurally and functionally distinct group of protein domains specific to Arthropodan transcription factors.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Konstantin I Balagurov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Rozbeh Baradaran
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
| | - Anastasia M Khrustaleva
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Anna D Burtseva
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
- Moscow Institute of Physics and Technology, Institutsky lane 9MoscowRussian Federation
| | - Olga V Arkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Karina K Khalisova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of SciencesMoscowRussian Federation
| | - Andreas Naschberger
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
3
|
Hasan SM, Aswad N, Al-Sabah S. A positively charged residue at the Kv1.1 T1 interface is critical for voltage-dependent activation and gating kinetics. Am J Physiol Cell Physiol 2024; 327:C790-C797. [PMID: 39099423 DOI: 10.1152/ajpcell.00422.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Within the tetramerization domain (T1) of most voltage-gated potassium channels (Kv) are highly conserved charged residues that line the T1-T1 interface. We investigated the Kv1.1 residue R86 located at the narrowest region of the T1 interface. A Kv1.1 R86Q mutation was reported in a child diagnosed with lower limb dyskinesia (Set KK, Ghosh D, Huq AHM, Luat AF. Mov Disord Clin Pract 4: 784-786, 2017). The child did not present with episodic ataxia 1 (EA1) symptoms typically associated with Kv1.1 loss-of-function mutations. We characterized the electrophysiological outcome of the R86Q substitution by expressing Kv1.1 in Xenopus laevis oocytes. Mutated α-subunits were able to form functional channels that pass delayed rectifier currents. Oocytes that expressed only mutated α-subunits produced a significant reduction in Kv1.1 current and showed a positive shift in voltage dependence of activation. In addition, there was substantially slower activation and faster deactivation implying a reduction in the time the channel is in its open state. Oocytes co-injected with both mutated and wild-type cRNA in equal amounts, to mimic the heterozygous condition of the disease, showed a decrease in current amplitude at -10 mV, a positive shift in activation voltage-dependence and faster deactivation kinetics when compared with the wild-type channel. These findings indicate that T1 plays a role in Kv1.1's voltage-dependent activation and in its kinetics of activation and deactivation.NEW & NOTEWORTHY This is the first Kv1.1 study to characterize the electrophysiological and structural phenotype of a tetramerization (T1) domain mutation. Surprisingly, the mutated α-subunits were able to tetramerize, albeit with different gating kinetics and voltage dependence. This novel finding points to a clear role of T1 in the channel's voltage dependence and gating. Mimicking the heterozygous condition resulted in milder alterations in channel function when compared with previously reported mutations. This is in agreement with the child's milder symptoms.
Collapse
Affiliation(s)
- Sonia Majed Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Nawal Aswad
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suleiman Al-Sabah
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
4
|
Reis MC, Mandler L, Kang J, Oliver D, Halaszovich C, Nolte D. A novel KCND3 variant in the N-terminus impairs the ionic current of Kv4.3 and is associated with SCA19/22. J Cell Mol Med 2024; 28:e70039. [PMID: 39180521 PMCID: PMC11344468 DOI: 10.1111/jcmm.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 08/26/2024] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominant movement disorders. Among the SCAs associated with impaired ion channel function, SCA19/22 is caused by pathogenic variants in KCND3, which encodes the voltage-gated potassium channel Kv4.3. SCA19/22 is clinically characterized by ataxia, dysarthria and oculomotor dysfunction in combination with other signs and symptoms, including mild cognitive impairment, peripheral neuropathy and pyramidal signs. The known KCND3 pathogenic variants are localized either in the transmembrane segments, the connecting loops, or the C-terminal region of Kv4.3. We have identified a novel pathogenic variant, c.455A>G (p.D152G), localized in the N-terminus of Kv4.3. It is located in the immediate neighbourhood of the T1 domain, which is responsible for multimerization with the β-subunit KChIP2b and thus for the formation of functional heterooctamers. Electrophysiological studies showed that p.D152G does not affect channel gating, but reduces the ionic current in Kv4.3, even though the variant is not located in the transmembrane domains. Impaired channel trafficking to the plasma membrane may contribute to this effect. In a patient with a clinical picture corresponding to SCA19/22, p.D152G is the first pathogenic variant in the N-terminus of Kv4.3 to be described to date with an effect on ion channel activity.
Collapse
Affiliation(s)
| | - Laura Mandler
- Institute of Human GeneticsJustus‐Liebig‐University GiessenGiessenGermany
- Present address:
Department of NeurologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jun‐Suk Kang
- Department of NeurologyGoethe‐University FrankfurtFrankfurtGermany
- Present address:
NeuropraxisFrankfurtGermany
| | - Dominik Oliver
- Institute of PhysiologyPhilipps‐University MarburgMarburgGermany
| | | | - Dagmar Nolte
- Institute of Human GeneticsJustus‐Liebig‐University GiessenGiessenGermany
| |
Collapse
|
5
|
Jegla T, Simonson BT, Spafford JD. A broad survey of choanoflagellates revises the evolutionary history of the Shaker family of voltage-gated K + channels in animals. Proc Natl Acad Sci U S A 2024; 121:e2407461121. [PMID: 39018191 PMCID: PMC11287247 DOI: 10.1073/pnas.2407461121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024] Open
Abstract
The Shaker family of voltage-gated K+ channels has been thought of as an animal-specific ion channel family that diversified in concert with nervous systems. It comprises four functionally independent gene subfamilies (Kv1-4) that encode diverse neuronal K+ currents. Comparison of animal genomes predicts that only the Kv1 subfamily was present in the animal common ancestor. Here, we show that some choanoflagellates, the closest protozoan sister lineage to animals, also have Shaker family K+ channels. Choanoflagellate Shaker family channels are surprisingly most closely related to the animal Kv2-4 subfamilies which were believed to have evolved only after the divergence of ctenophores and sponges from cnidarians and bilaterians. Structural modeling predicts that the choanoflagellate channels share a T1 Zn2+ binding site with Kv2-4 channels that is absent in Kv1 channels. We functionally expressed three Shakers from Salpingoeca helianthica (SheliKvT1.1-3) in Xenopus oocytes. SheliKvT1.1-3 function only in two heteromultimeric combinations (SheliKvT1.1/1.2 and SheliKvT1.1/1.3) and encode fast N-type inactivating K+ channels with distinct voltage dependence that are most similar to the widespread animal Kv1-encoded A-type Shakers. Structural modeling of the T1 assembly domain supports a preference for heteromeric assembly in a 2:2 stoichiometry. These results push the origin of the Shaker family back into a common ancestor of metazoans and choanoflagellates. They also suggest that the animal common ancestor had at least two distinct molecular lineages of Shaker channels, a Kv1 subfamily lineage predicted from comparison of animal genomes and a Kv2-4 lineage predicted from comparison of animals and choanoflagellates.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology, Eberly College of Sciences and Huck Institutes of the Life Sciences, Penn State University, University Park, PA16802
| | - Benjamin T. Simonson
- Department of Biology, Eberly College of Sciences and Huck Institutes of the Life Sciences, Penn State University, University Park, PA16802
| | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| |
Collapse
|
6
|
Simonson BT, Jegla M, Ryan JF, Jegla T. Functional analysis of ctenophore Shaker K + channels: N-type inactivation in the animal roots. Biophys J 2024; 123:2038-2049. [PMID: 38291751 PMCID: PMC11309979 DOI: 10.1016/j.bpj.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
Here we explore the evolutionary origins of fast N-type ball-and-chain inactivation in Shaker (Kv1) K+ channels by functionally characterizing Shaker channels from the ctenophore (comb jelly) Mnemiopsis leidyi. Ctenophores are the sister lineage to other animals and Mnemiopsis has >40 Shaker-like K+ channels, but they have not been functionally characterized. We identified three Mnemiopsis channels (MlShak3-5) with N-type inactivation ball-like sequences at their N termini and functionally expressed them in Xenopus oocytes. Two of the channels, MlShak4 and MlShak5, showed rapid inactivation similar to cnidarian and bilaterian Shakers with rapid N-type inactivation, whereas MlShak3 inactivated ∼100-fold more slowly. Fast inactivation in MlShak4 and MlShak5 required the putative N-terminal inactivation ball sequences. Furthermore, the rate of fast inactivation in these channels depended on the number of inactivation balls/channel, but the rate of recovery from inactivation did not. These findings closely match the mechanism of N-type inactivation first described for Drosophila Shaker in which 1) inactivation balls on the N termini of each subunit can independently block the pore, and 2) only one inactivation ball occupies the pore binding site at a time. These findings suggest classical N-type activation evolved in Shaker channels at the very base of the animal phylogeny in a common ancestor of ctenophores, cnidarians, and bilaterians and that fast-inactivating Shakers are therefore a fundamental type of animal K+ channel. Interestingly, we find evidence from functional co-expression experiments and molecular dynamics that MlShak4 and MlShak5 do not co-assemble, suggesting that Mnemiopsis has at least two functionally independent N-type Shaker channels.
Collapse
Affiliation(s)
- Benjamin T Simonson
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania
| | - Max Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL; Department of Biology, University of Florida, Gainesville, FL
| | - Timothy Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania.
| |
Collapse
|
7
|
Multiple potassium channel tetramerization domain (KCTD) family members interact with Gβγ, with effects on cAMP signaling. J Biol Chem 2023; 299:102924. [PMID: 36736897 PMCID: PMC9976452 DOI: 10.1016/j.jbc.2023.102924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) initiate an array of intracellular signaling programs by activating heterotrimeric G proteins (Gα and Gβγ subunits). Therefore, G protein modifiers are well positioned to shape GPCR pharmacology. A few members of the potassium channel tetramerization domain (KCTD) protein family have been found to adjust G protein signaling through interaction with Gβγ. However, comprehensive details on the KCTD interaction with Gβγ remain unresolved. Here, we report that nearly all the 25 KCTD proteins interact with Gβγ. In this study, we screened Gβγ interaction capacity across the entire KCTD family using two parallel approaches. In a live cell bioluminescence resonance energy transfer-based assay, we find that roughly half of KCTD proteins interact with Gβγ in an agonist-induced fashion, whereas all KCTD proteins except two were found to interact through coimmunoprecipitation. We observed that the interaction was dependent on an amino acid hot spot in the C terminus of KCTD2, KCTD5, and KCTD17. While KCTD2 and KCTD5 require both the Bric-à-brac, Tramtrack, Broad complex domain and C-terminal regions for Gβγ interaction, we uncovered that the KCTD17 C terminus is sufficient for Gβγ interaction. Finally, we demonstrated the functional consequence of the KCTD-Gβγ interaction by examining sensitization of the adenylyl cyclase-cAMP pathway in live cells. We found that Gβγ-mediated sensitization of adenylyl cyclase 5 was blunted by KCTD. We conclude that the KCTD family broadly engages Gβγ to shape GPCR signal transmission.
Collapse
|
8
|
Bonchuk A, Balagurov K, Georgiev P. BTB domains: A structural view of evolution, multimerization, and protein-protein interactions. Bioessays 2023; 45:e2200179. [PMID: 36449605 DOI: 10.1002/bies.202200179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Broad-complex, Tramtrack, and Bric-à-brac/poxvirus and zinc finger (BTB/POZ) is a conserved domain found in many eukaryotic proteins with diverse cellular functions. Recent studies revealed its importance in multiple developmental processes as well as in the onset and progression of oncological diseases. Most BTB domains can form multimers and selectively interact with non-BTB proteins. Structural studies of BTB domains delineated the presence of different interfaces involved in various interactions mediated by BTBs and provided a basis for the specific inhibition of distinct protein-interaction interfaces. BTB domains originated early in eukaryotic evolution and progressively adapted their structural elements to perform distinct functions. In this review, we summarize and discuss the structural principles of protein-protein interactions mediated by BTB domains based on the recently published structural data and advances in protein modeling. We propose an update to the structure-based classification of BTB domain families and discuss their evolutionary interconnections.
Collapse
Affiliation(s)
- Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Balagurov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Nsasra E, Peretz G, Orr I, Yifrach O. Regulating Shaker Kv channel clustering by hetero-oligomerization. Front Mol Biosci 2023; 9:1050942. [PMID: 36699695 PMCID: PMC9868669 DOI: 10.3389/fmolb.2022.1050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Scaffold protein-mediated voltage-dependent ion channel clustering at unique membrane sites, such as nodes of Ranvier or the post-synaptic density plays an important role in determining action potential properties and information coding. Yet, the mechanism(s) by which scaffold protein-ion channel interactions lead to channel clustering and how cluster ion channel density is regulated are mostly unknown. This molecular-cellular gap in understanding channel clustering can be bridged in the case of the prototypical Shaker voltage-activated potassium channel (Kv), as the mechanism underlying the interaction of this channel with its PSD-95 scaffold protein partner is known. According to this mechanism, changes in the length of the intrinsically disordered channel C-terminal chain, brought about by alternative splicing to yield the short A and long B chain subunit variants, dictate affinity to PSD-95 and further controls cluster homo-tetrameric Kv channel density. These results raise the hypothesis that heteromeric subunit assembly serves as a means to regulate Kv channel clustering. Since both clustering variants are expressed in similar fly tissues, it is reasonable to assume that hetero-tetrameric channels carrying different numbers of high- (A) and low-affinity (B) subunits could assemble, thereby giving rise to distinct cluster Kv channel densities. Here, we tested this hypothesis using high-resolution microscopy, combined with quantitative clustering analysis. Our results reveal that the A and B clustering variants can indeed assemble to form heteromeric channels and that controlling the number of the high-affinity A subunits within the hetero-oligomer modulates cluster Kv channel density. The implications of these findings for electrical signaling are discussed.
Collapse
|
10
|
Liang JH, Alevy J, Akhanov V, Seo R, Massey CA, Jiang D, Zhou J, Sillitoe RV, Noebels JL, Samuel MA. Kctd7 deficiency induces myoclonic seizures associated with Purkinje cell death and microvascular defects. Dis Model Mech 2022; 15:dmm049642. [PMID: 35972048 PMCID: PMC9509889 DOI: 10.1242/dmm.049642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the potassium channel tetramerization domain-containing 7 (KCTD7) gene are associated with a severe neurodegenerative phenotype characterized by childhood onset of progressive and intractable myoclonic seizures accompanied by developmental regression. KCTD7-driven disease is part of a large family of progressive myoclonic epilepsy syndromes displaying a broad spectrum of clinical severity. Animal models of KCTD7-related disease are lacking, and little is known regarding how KCTD7 protein defects lead to epilepsy and cognitive dysfunction. We characterized Kctd7 expression patterns in the mouse brain during development and show that it is selectively enriched in specific regions as the brain matures. We further demonstrate that Kctd7-deficient mice develop seizures and locomotor defects with features similar to those observed in human KCTD7-associated diseases. We also show that Kctd7 is required for Purkinje cell survival in the cerebellum and that selective degeneration of these neurons is accompanied by defects in cerebellar microvascular organization and patterning. Taken together, these results define a new model for KCTD7-associated epilepsy and identify Kctd7 as a modulator of neuron survival and excitability linked to microvascular alterations in vulnerable regions.
Collapse
Affiliation(s)
- Justine H. Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Seo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cory A. Massey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joy Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeffrey L. Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A. Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Xu Z, Khan S, Schnicker NJ, Baker S. Pentameric assembly of the Kv2.1 tetramerization domain. Acta Crystallogr D Struct Biol 2022; 78:792-802. [PMID: 35647925 PMCID: PMC9159280 DOI: 10.1107/s205979832200568x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
The Kv family of voltage-gated potassium channels regulate neuronal excitability. The biophysical characteristics of Kv channels can be matched to the needs of different neurons by forming homotetrameric or heterotetrameric channels within one of four subfamilies. The cytoplasmic tetramerization (T1) domain plays a major role in dictating the compatibility of different Kv subunits. The only Kv subfamily lacking a representative structure of the T1 domain is the Kv2 family. Here, X-ray crystallography was used to solve the structure of the human Kv2.1 T1 domain. The structure is similar to those of other T1 domains, but surprisingly formed a pentamer instead of a tetramer. In solution the Kv2.1 T1 domain also formed a pentamer, as determined by inline SEC-MALS-SAXS and negative-stain electron microscopy. The Kv2.1 T1-T1 interface involves electrostatic interactions, including a salt bridge formed by the negative charges in a previously described CDD motif, and inter-subunit coordination of zinc. It is shown that zinc binding is important for stability. In conclusion, the Kv2.1 T1 domain behaves differently from the other Kv T1 domains, which may reflect the versatility of Kv2.1, which can assemble with the regulatory KvS subunits and scaffold ER-plasma membrane contacts.
Collapse
Affiliation(s)
- Zhen Xu
- Protein and Crystallography Facility, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Saif Khan
- Protein and Crystallography Facility, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Sheila Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J, Liao Z, Chen X, Zhang B. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res 2022; 10:2. [PMID: 35000617 PMCID: PMC8744215 DOI: 10.1186/s40364-021-00345-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
13
|
Kacher YG, Karlova MG, Glukhov GS, Zhang H, Zaklyazminskaya EV, Loussouarn G, Sokolova OS. The Integrative Approach to Study of the Structure and Functions of Cardiac Voltage-Dependent Ion Channels. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice. PLoS Genet 2021; 17:e1009412. [PMID: 33961623 PMCID: PMC8104389 DOI: 10.1371/journal.pgen.1009412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice. Meiosis is a fundamental process that consists of one round of genomic DNA replication and two rounds of chromosome segregation, producing four haploid cells. To properly distribute their genetic material, cells need to undergo complex chromosome events such as a physical linkage of homologous chromosomes (termed synapsis) and meiotic recombination. The molecules involved in these events have not been fully characterized yet, especially in mammals. Using a CRISPR/Cas9-screening system, we identified the potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis in male mice. Further, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). By observing meiosis of Zfp541 knockout germ cells, we found that Zfp541 was also essential for meiosis. These results show that the KCTD19/ZFP541 complex plays a critical role and is indispensable for male meiosis and fertility.
Collapse
|
15
|
Light-regulated voltage-gated potassium channels for acute interrogation of channel function in neurons and behavior. PLoS One 2021; 16:e0248688. [PMID: 33755670 PMCID: PMC7987177 DOI: 10.1371/journal.pone.0248688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/03/2021] [Indexed: 01/02/2023] Open
Abstract
Voltage-gated potassium (Kv) channels regulate the membrane potential and conductance of excitable cells to control the firing rate and waveform of action potentials. Even though Kv channels have been intensely studied for over 70 year, surprisingly little is known about how specific channels expressed in various neurons and their functional properties impact neuronal network activity and behavior in vivo. Although many in vivo genetic manipulations of ion channels have been tried, interpretation of these results is complicated by powerful homeostatic plasticity mechanisms that act to maintain function following perturbations in excitability. To better understand how Kv channels shape network function and behavior, we have developed a novel optogenetic technology to acutely regulate Kv channel expression with light by fusing the light-sensitive LOV domain of Vaucheria frigida Aureochrome 1 to the N-terminus of the Kv1 subunit protein to make an Opto-Kv1 channel. Recording of Opto-Kv1 channels expressed in Xenopus oocytes, mammalian cells, and neurons show that blue light strongly induces the current expression of Opto-Kv1 channels in all systems tested. We also find that an Opto-Kv1 construct containing a dominant-negative pore mutation (Opto-Kv1(V400D)) can be used to down-regulate Kv1 currents in a blue light-dependent manner. Finally, to determine whether Opto-Kv1 channels can elicit light-dependent behavioral effect in vivo, we targeted Opto-Kv1 (V400D) expression to Kv1.3-expressing mitral cells of the olfactory bulb in mice. Exposure of the bulb to blue light for 2–3 hours produced a significant increase in sensitivity to novel odors after initial habituation to a similar odor, comparable to behavioral changes seen in Kv1.3 knockout animals. In summary, we have developed novel photoactivatable Kv channels that provide new ways to interrogate neural circuits in vivo and to examine the roles of normal and disease-causing mutant Kv channels in brain function and behavior.
Collapse
|
16
|
Abstract
Voltage-gated Kv1.1 potassium channel α-subunits are broadly expressed in the nervous system where they act as critical regulators of neuronal excitability. Mutations in the KCNA1 gene, which encodes Kv1.1, are associated with the neurological diseases episodic ataxia and epilepsy. Studies in mouse models have shown that Kv1.1 is important for neural control of the heart and that Kcna1 deletion leads to cardiac dysfunction that appears to be brain-driven. Traditionally, KCNA1 was not believed to be expressed in the heart. However, recent studies have revealed that Kv1.1 subunits are not only present in cardiomyocytes, but that they also make an important heart-intrinsic functional contribution to outward K+ currents and action potential repolarization. This review recounts the winding history of discovery of KCNA1 gene expression and neurocardiac function from fruit flies to mammals and from brain to heart and looks at some of the salient questions that remain to be answered regarding emerging cardiac roles of Kv1.1.
Collapse
Affiliation(s)
- Edward Glasscock
- a Department of Biological Sciences , Southern Methodist University , Dallas , TX , USA
| |
Collapse
|
17
|
Li J, Maghera J, Lamothe SM, Marco EJ, Kurata HT. Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy. Mol Pharmacol 2020; 98:192-202. [DOI: 10.1124/mol.120.119644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
|
18
|
Guimaraes TACD, Georgiou M, Robson AG, Michaelides M. KCNV2 retinopathy: clinical features, molecular genetics and directions for future therapy. Ophthalmic Genet 2020; 41:208-215. [PMID: 32441199 PMCID: PMC7446039 DOI: 10.1080/13816810.2020.1766087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
-associated retinopathy or “cone dystrophy with supernormal rod responses” is an
autosomal recessive cone-rod dystrophy with pathognomonic ERG findings. This gene
encodes Kv8.2, a voltage-gated potassium channel subunit that acts as a modulator by
shifting the activation range of the K+ channels in photoreceptor inner
segments. Currently, no treatment is available for the condition. However, there is a
lack of prospective long-term data in large molecularly confirmed cohorts, which is a
prerequisite for accurate patient counselling/prognostication, to identify an optimal
window for intervention and outcome measures, and ultimately to design future therapy
trials. Herein we provide a detailed review of the clinical features, retinal imaging,
electrophysiology and psychophysical studies, molecular genetics, and briefly discuss
future prospects for therapy trials.
Collapse
Affiliation(s)
- Thales A C De Guimaraes
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| |
Collapse
|
19
|
Alevy J, Burger CA, Albrecht NE, Jiang D, Samuel MA. Progressive myoclonic epilepsy-associated gene Kctd7 regulates retinal neurovascular patterning and function. Neurochem Int 2019; 129:104486. [PMID: 31175897 DOI: 10.1016/j.neuint.2019.104486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022]
Abstract
Neuron function relies on and instructs the development and precise organization of neurovascular units that in turn support circuit activity. However, our understanding of the molecular cues that regulate this relationship remains sparse. Using a high-throughput screening pipeline, we recently identified several new regulators of vascular patterning. Among these was the potassium channel tetramerization domain-containing protein 7 (KCTD7). Mutations in KCTD7 are associated with progressive myoclonic epilepsy, but how KCTD7 regulates neural development and function remains poorly understood. To begin to identify such mechanisms, we focus on mouse retina, a tractable part of the central nervous system that contains precisely ordered neuron subtypes supported by a trilaminar vascular network. We find that deletion of Kctd7 induces defective patterning of the adult retina vascular network, resulting in increased branching, vessel length, and lacunarity. These alterations reflect early and specific defects in vessel development, as emergence of the superficial and deep vascular layers were delayed. These defects are likely due to a role for Kctd7 in inner retina neurons. Kctd7 is absent from vessels but present in neurons in the inner retina, and its deletion resulted in a corresponding increase in the number of bipolar cells in development and increased vessel branching in adults. These alterations were accompanied by retinal function deficits. Together, these data suggest that neuronal Kctd7 drives growth and patterning of the vasculature and that neurovascular interactions may participate in the pathogenesis of KCTD7-related human diseases.
Collapse
Affiliation(s)
- Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Structural basis for auxiliary subunit KCTD16 regulation of the GABA B receptor. Proc Natl Acad Sci U S A 2019; 116:8370-8379. [PMID: 30971491 DOI: 10.1073/pnas.1903024116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabotropic GABAB receptors mediate a significant fraction of inhibitory neurotransmission in the brain. Native GABAB receptor complexes contain the principal subunits GABAB1 and GABAB2, which form an obligate heterodimer, and auxiliary subunits, known as potassium channel tetramerization domain-containing proteins (KCTDs). KCTDs interact with GABAB receptors and modify the kinetics of GABAB receptor signaling. Little is known about the molecular mechanism governing the direct association and functional coupling of GABAB receptors with these auxiliary proteins. Here, we describe the high-resolution structure of the KCTD16 oligomerization domain in complex with part of the GABAB2 receptor. A single GABAB2 C-terminal peptide is bound to the interior of an open pentamer formed by the oligomerization domain of five KCTD16 subunits. Mutation of specific amino acids identified in the structure of the GABAB2-KCTD16 interface disrupted both the biochemical association and functional modulation of GABAB receptors and G protein-activated inwardly rectifying K+ channel (GIRK) channels. These interfacial residues are conserved among KCTDs, suggesting a common mode of KCTD interaction with GABAB receptors. Defining the binding interface of GABAB receptor and KCTD reveals a potential regulatory site for modulating GABAB-receptor function in the brain.
Collapse
|
21
|
Abstract
Kobertz comments on the family of “silent” Kv2-related regulatory subunits and a new study investigating their assembly idiosyncrasies.
Collapse
Affiliation(s)
- William R Kobertz
- Department of Biochemistry and Molecular Pharmacology, Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
22
|
Pisupati A, Mickolajczyk KJ, Horton W, van Rossum DB, Anishkin A, Chintapalli SV, Li X, Chu-Luo J, Busey G, Hancock WO, Jegla T. The S6 gate in regulatory Kv6 subunits restricts heteromeric K + channel stoichiometry. J Gen Physiol 2018; 150:1702-1721. [PMID: 30322883 PMCID: PMC6279357 DOI: 10.1085/jgp.201812121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
Atypical substitutions in the S6 activation gate sequence distinguish “regulatory” Kv subunits, which cannot homotetramerize due to T1 self-incompatibility. Pisupati et al. show that such substitutions in Kv6 work together with self-incompatibility to restrict Kv2:Kv6 heteromeric stoichiometry to 3:1. The Shaker-like family of voltage-gated K+ channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1–4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.1, Kv6s, Kv8s, and Kv9s) encodes subunits that have a “silent” or “regulatory” phenotype characterized by T1 self-incompatibility. These channels are unable to form homotetramers, but instead heteromerize with Kv2.1 or Kv2.2 to diversify the functional properties of these delayed rectifiers. While T1 self-incompatibility predicts that these heterotetramers could contain up to two regulatory (R) subunits, experiments show a predominance of 3:1R stoichiometry in which heteromeric channels contain a single regulatory subunit. Substitution of the self-compatible Kv2.1 T1 domain into the regulatory subunit Kv6.4 does not alter the stoichiometry of Kv2.1:Kv6.4 heteromers. Here, to identify other channel structures that might be responsible for favoring the 3:1R stoichiometry, we compare the sequences of mammalian regulatory subunits to independently evolved regulatory subunits from cnidarians. The most widespread feature of regulatory subunits is the presence of atypical substitutions in the highly conserved consensus sequence of the intracellular S6 activation gate of the pore. We show that two amino acid substitutions in the S6 gate of the regulatory subunit Kv6.4 restrict the functional stoichiometry of Kv2.1:Kv6.4 to 3:1R by limiting the formation and function of 2:2R heteromers. We propose a two-step model for the evolution of the asymmetric 3:1R stoichiometry, which begins with evolution of self-incompatibility to establish the regulatory phenotype, followed by drift of the activation gate consensus sequence under relaxed selection to limit stoichiometry to 3:1R.
Collapse
Affiliation(s)
- Aditya Pisupati
- Department of Biology, Pennsylvania State University, University Park, PA.,Medical Scientist Training Program, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - William Horton
- Department of Animal Science, Pennsylvania State University, University Park, PA
| | - Damian B van Rossum
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA.,Division of Experimental Pathology, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Xiaofan Li
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Jose Chu-Luo
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Gregory Busey
- Department of Biology, Pennsylvania State University, University Park, PA
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA
| | - Timothy Jegla
- Department of Biology, Pennsylvania State University, University Park, PA .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
23
|
Kalyaanamoorthy S, Barakat KH. Binding modes of hERG blockers: an unsolved mystery in the drug design arena. Expert Opin Drug Discov 2017; 13:207-210. [DOI: 10.1080/17460441.2018.1418319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Subha Kalyaanamoorthy
- Faculty Of Pharmacy And Pharmaceutical Sciences, University Of Alberta, Edmonton, AB, Canada
| | - Khaled H. Barakat
- Faculty Of Pharmacy And Pharmaceutical Sciences, University Of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute Of Virology, University Of Alberta, Edmonton, AB,Canada
- Li Ka Shing Applied Virology Institute, University Of Alberta, Edmonton, AB,Canada
| |
Collapse
|
24
|
Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, Doutch J, Bullock AN. Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Biochem J 2017; 474:3747-3761. [PMID: 28963344 PMCID: PMC5664961 DOI: 10.1042/bcj20170527] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
Abstract
Members of the potassium channel tetramerization domain (KCTD) family are soluble non-channel proteins that commonly function as Cullin3 (Cul3)-dependent E3 ligases. Solution studies of the N-terminal BTB domain have suggested that some KCTD family members may tetramerize similarly to the homologous tetramerization domain (T1) of the voltage-gated potassium (Kv) channels. However, available structures of KCTD1, KCTD5 and KCTD9 have demonstrated instead pentameric assemblies. To explore other phylogenetic clades within the KCTD family, we determined the crystal structures of the BTB domains of a further five human KCTD proteins revealing a rich variety of oligomerization architectures, including monomer (SHKBP1), a novel two-fold symmetric tetramer (KCTD10 and KCTD13), open pentamer (KCTD16) and closed pentamer (KCTD17). While these diverse geometries were confirmed by small-angle X-ray scattering (SAXS), only the pentameric forms were stable upon size-exclusion chromatography. With the exception of KCTD16, all proteins bound to Cul3 and were observed to reassemble in solution as 5 : 5 heterodecamers. SAXS data and structural modelling indicate that Cul3 may stabilize closed BTB pentamers by binding across their BTB-BTB interfaces. These extra interactions likely also allow KCTD proteins to bind Cul3 without the expected 3-box motif. Overall, these studies reveal the KCTD family BTB domain to be a highly versatile scaffold compatible with a range of oligomeric assemblies and geometries. This observed interface plasticity may support functional changes in regulation of this unusual E3 ligase family.
Collapse
Affiliation(s)
- Daniel M Pinkas
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Caroline E Sanvitale
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Joshua C Bufton
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Fiona J Sorrell
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Nicolae Solcan
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, STFC, Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| |
Collapse
|
25
|
Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:665-674. [PMID: 28825121 PMCID: PMC5599482 DOI: 10.1007/s00249-017-1246-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation.
Collapse
|
26
|
Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology 2017; 127:124-138. [PMID: 28689025 DOI: 10.1016/j.neuropharm.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
27
|
Kalyaanamoorthy S, Barakat KH. Development of Safe Drugs: The hERG Challenge. Med Res Rev 2017; 38:525-555. [DOI: 10.1002/med.21445] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/04/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Subha Kalyaanamoorthy
- Faculty of Pharmacy and Pharmaceutical Sciences; University Of Alberta; Edmonton Alberta Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences; University Of Alberta; Edmonton Alberta Canada
- Li Ka Shing Institute of Virology; University of Alberta; Edmonton Alberta Canada
- Li Ka Shing Applied Virology Institute; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
28
|
Liu Y, Wang X, Wang L, Shen J, Feng Y, Cui X. Easy access to 3-indolyl 1,1,2,2-ethanetetracarboxylates from malonates and indoles catalyzed by Pd(OAc)2. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Moen MN, Fjær R, Hamdani EH, Laerdahl JK, Menchini RJ, Vigeland MD, Sheng Y, Undlien DE, Hassel B, Salih MA, El Khashab HY, Selmer KK, Chaudhry FA. Pathogenic variants in KCTD7 perturb neuronal K+ fluxes and glutamine transport. Brain 2016; 139:3109-3120. [PMID: 27742667 DOI: 10.1093/brain/aww244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/11/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022] Open
Abstract
Progressive myoclonus epilepsy is a heterogeneous group of disorders characterized by myoclonic and tonic-clonic seizures, ataxia and cognitive decline. We here present two affected brothers. At 9 months of age the elder brother developed ataxia and myoclonic jerks. In his second year he lost the ability to walk and talk, and he developed drug-resistant progressive myoclonus epilepsy. The cerebrospinal fluid level of glutamate was decreased while glutamine was increased. His younger brother manifested similar symptoms from 6 months of age. By exome sequencing of the proband we identified a novel homozygous frameshift variant in the potassium channel tetramerization domain 7 (KCTD7) gene (NM_153033.1:c.696delT: p.F232fs), which results in a truncated protein. The identified F232fs variant is inherited in an autosomal recessive manner, and the healthy consanguineous parents carry the variant in a heterozygous state. Bioinformatic analyses and structure modelling showed that KCTD7 is a highly conserved protein, structurally similar to KCTD5 and several voltage-gated potassium channels, and that it may form homo- or heteromultimers. By heterologous expression in Xenopus laevis oocytes, we demonstrate that wild-type KCTD7 hyperpolarizes cells in a K+ dependent manner and regulates activity of the neuronal glutamine transporter SAT2 (Slc38a2), while the F232fs variant impairs K+ fluxes and obliterates SAT2-dependent glutamine transport. Characterization of four additional disease-causing variants (R94W, R184C, N273I, Y276C) bolster these results and reveal the molecular mechanisms involved in the pathophysiology of KCTD7-related progressive myoclonus epilepsy. Thus, our data demonstrate that KCTD7 has an impact on K+ fluxes, neurotransmitter synthesis and neuronal function, and that malfunction of the encoded protein may lead to progressive myoclonus epilepsy.
Collapse
Affiliation(s)
- Marivi Nabong Moen
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Roar Fjær
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - El Hassan Hamdani
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway.,3 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jon K Laerdahl
- 4 Department of Microbiology, Oslo University Hospital, Oslo, Norway.,5 Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway
| | - Robin Johansen Menchini
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Magnus Dehli Vigeland
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Ying Sheng
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Dag Erik Undlien
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Bjørnar Hassel
- 6 Department of Complex Neurology and Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Mustafa A Salih
- 7 Division of Paediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Heba Y El Khashab
- 7 Division of Paediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,8 Department of Paediatrics, Ain Shams University, Cairo, Egypt
| | - Kaja Kristine Selmer
- 2 Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway.,9 National Centre for Rare Epilepsy-related Disorders, Oslo University Hospital, Oslo, Norway
| | - Farrukh Abbas Chaudhry
- 1 The Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway .,3 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
30
|
Zhao J, Blunck R. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. eLife 2016; 5. [PMID: 27710769 PMCID: PMC5092046 DOI: 10.7554/elife.18130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/30/2016] [Indexed: 01/28/2023] Open
Abstract
Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| |
Collapse
|
31
|
Jansen C, Sahni J, Suzuki S, Horgen FD, Penner R, Fleig A. The coiled-coil domain of zebrafish TRPM7 regulates Mg·nucleotide sensitivity. Sci Rep 2016; 6:33459. [PMID: 27628598 PMCID: PMC5024298 DOI: 10.1038/srep33459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023] Open
Abstract
TRPM7 is a member of the Transient-Receptor-Potential Melastatin ion channel family. TRPM7 is a unique fusion protein of an ion channel and an α-kinase. Although mammalian TRPM7 is well characterized biophysically and its pivotal role in cancer, ischemia and cardiovascular disease is becoming increasingly evident, the study of TRPM7 in mouse models has been hampered by embryonic lethality of transgenic ablations. In zebrafish, functional loss of TRPM7 (drTRPM7) manifests itself in an array of non-lethal physiological malfunctions. Here, we investigate the regulation of wild type drTRPM7 and multiple C-terminal truncation mutants. We find that the biophysical properties of drTRPM7 are very similar to mammalian TRPM7. However, pharmacological profiling reveals that drTRPM7 is facilitated rather than inhibited by 2-APB, and that the TRPM7 inhibitor waixenicin A has no effect. This is reminiscent of the pharmacological profile of human TRPM6, the sister channel kinase of TRPM7. Furthermore, using truncation mutations, we show that the coiled-coil domain of drTRPM7 is involved in the channel's regulation by magnesium (Mg) and Mg·adenosine triphosphate (Mg·ATP). We propose that drTRPM7 has two protein domains that regulate inhibition by intracellular magnesium and nucleotides, and one domain that is concerned with sensing magnesium only.
Collapse
Affiliation(s)
- Chad Jansen
- Center for Biomedical Research, The Queen’s Medical Center and University of Hawaii, Honolulu, HI-96813, USA
- University of Hawaii Cancer Center and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI-96813, USA
| | - Jaya Sahni
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98101, USA
| | - Sayuri Suzuki
- Center for Biomedical Research, The Queen’s Medical Center and University of Hawaii, Honolulu, HI-96813, USA
| | - F. David Horgen
- Laboratory of Marine Biological Chemistry, Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen’s Medical Center and University of Hawaii, Honolulu, HI-96813, USA
- University of Hawaii Cancer Center and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI-96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen’s Medical Center and University of Hawaii, Honolulu, HI-96813, USA
- University of Hawaii Cancer Center and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI-96813, USA
| |
Collapse
|
32
|
Wu K, Hoy MA. Cloning and Functional Characterization of Two BTB Genes in the Predatory Mite Metaseiulus occidentalis. PLoS One 2015; 10:e0144291. [PMID: 26640898 PMCID: PMC4671623 DOI: 10.1371/journal.pone.0144291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Proteins containing the BTB (Bric-à-brac, tramtrack, and Broad Complex) domain typically share low sequence similarities and are involved in a wide range of cellular functions. We previously identified two putative and closely related BTB genes, BTB1 and BTB2, in the genome of the predatory mite Metaseiulus occidentalis. In the current study, full-length BTB1 and BTB2 cDNAs were cloned and sequenced. BTB1 and BTB2 encode proteins of 380 and 401 amino acids, respectively. BTB1 and BTB2 proteins each contain an N-terminal BTB domain and no other identifiable domains. Thus, they belong to a large category of BTB-domain proteins that are widely distributed in eukaryotes, yet with largely unknown function(s). BTB1 and BTB2 gene knockdowns in M. occidentalis females using RNAi reduced their fecundity by approximately 40% and 73%, respectively, whereas knockdown had no impact on their survival or the development of their offspring. These findings suggest these two proteins may be involved in processes related to egg production in this predatory mite, expanding the list of functions attributed to these diverse proteins.
Collapse
Affiliation(s)
- Ke Wu
- Department of Entomology and Nematology, PO Box 11620, University of Florida, Gainesville, Florida, 32611, United States of America
- * E-mail:
| | - Marjorie A. Hoy
- Department of Entomology and Nematology, PO Box 11620, University of Florida, Gainesville, Florida, 32611, United States of America
| |
Collapse
|
33
|
Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans. Proc Natl Acad Sci U S A 2015; 112:E1010-9. [PMID: 25691740 DOI: 10.1073/pnas.1422941112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K(+) channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K(+) channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K(+) channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.
Collapse
|
34
|
|
35
|
Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Ionic mechanisms in pancreatic β cell signaling. Cell Mol Life Sci 2014; 71:4149-77. [PMID: 25052376 PMCID: PMC11113777 DOI: 10.1007/s00018-014-1680-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
36
|
Domain Structure and Conformational Changes in rat KV2.1 ion Channel. J Neuroimmune Pharmacol 2014; 9:727-39. [DOI: 10.1007/s11481-014-9565-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/03/2014] [Indexed: 01/26/2023]
|
37
|
Bocksteins E, Mayeur E, Van Tilborg A, Regnier G, Timmermans JP, Snyders DJ. The subfamily-specific interaction between Kv2.1 and Kv6.4 subunits is determined by interactions between the N- and C-termini. PLoS One 2014; 9:e98960. [PMID: 24901643 PMCID: PMC4047056 DOI: 10.1371/journal.pone.0098960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022] Open
Abstract
The "silent" voltage-gated potassium (KvS) channel subunit Kv6.4 does not form electrically functional homotetramers at the plasma membrane but assembles with Kv2.1 subunits, generating functional Kv2.1/Kv6.4 heterotetramers. The N-terminal T1 domain determines the subfamily-specific assembly of Kv1-4 subunits by preventing interactions between subunits that belong to different subfamilies. For Kv6.4, yeast-two-hybrid experiments showed an interaction of the Kv6.4 N-terminus with the Kv2.1 N-terminus, but unexpectedly also with the Kv3.1 N-terminus. We confirmed this interaction by Fluorescence Resonance Energy Transfer (FRET) and co-immunoprecipitation (co-IP) using N-terminal Kv3.1 and Kv6.4 fragments. However, full-length Kv3.1 and Kv6.4 subunits do not form heterotetramers at the plasma membrane. Therefore, additional interactions between the Kv6.4 and Kv2.1 subunits should be important in the Kv2.1/Kv6.4 subfamily-specificity. Using FRET and co-IP approaches with N- and C-terminal fragments we observed that the Kv6.4 C-terminus physically interacts with the Kv2.1 N-terminus but not with the Kv3.1 N-terminus. The N-terminal amino acid sequence CDD which is conserved between Kv2 and KvS subunits appeared to be a key determinant since charge reversals with arginine substitutions abolished the interaction between the N-terminus of Kv2.1 and the C-terminus of both Kv2.1 and Kv6.4. In addition, the Kv6.4(CKv3.1) chimera in which the C-terminus of Kv6.4 was replaced by the corresponding domain of Kv3.1, disrupted the assembly with Kv2.1. These results indicate that the subfamily-specific Kv2.1/Kv6.4 heterotetramerization is determined by interactions between Kv2.1 and Kv6.4 that involve both the N- and C-termini in which the conserved N-terminal CDD sequence plays a key role.
Collapse
Affiliation(s)
- Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Evy Mayeur
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Abbi Van Tilborg
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Glenn Regnier
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk J. Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
38
|
Abstract
Here we present the structure of the T1 domain derived from the voltage-dependent potassium channel K(v)1.3 of Homo sapiens sapiens at 1.2 Å resolution crystallized under near-physiological conditions. The crystals were grown without precipitant in 150 mM KP(i), pH 6.25. The crystals show I4 symmetry typical of the natural occurring tetrameric assembly of the single subunits. The obtained structural model is based on the highest resolution currently achieved for tetramerization domains of voltage-gated potassium channels. We identified an identical fold of the monomer but inside the tetramer the single monomers show a significant rotation which leads to a different orientation of the tetramer compared to other known structures. Such a rotational movement inside the tetrameric assembly might influence the gating properties of the channel. In addition we see two distinct side chain configurations for amino acids located in the top layer proximal to the membrane (Tyr109, Arg116, Ser129, Glu140, Met142, Arg146), and amino acids in the bottom layer of the T1-domain distal from the membrane (Val55, Ile56, Leu77, Arg86). The relative populations of these two states are ranging from 50:50 for Val55, Tyr109, Arg116, Ser129, Glu140, 60:40 for Met142, 65:35 for Arg86, 70:30 for Arg146, and 80:20 for Ile56 and Leu77. The data suggest that in solution these amino acids are involved in an equilibrium of conformational states that may be coupled to the functional states of the whole potassium channel.
Collapse
|
39
|
Isacoff EY, Jan LY, Minor DL. Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Neuron 2013; 80:658-74. [PMID: 24183018 DOI: 10.1016/j.neuron.2013.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heartbeats, muscle twitches, and lightning-fast thoughts are all manifestations of bioelectricity and rely on the activity of a class of membrane proteins known as ion channels. The basic function of an ion channel can be distilled into, "The hole opens. Ions go through. The hole closes." Studies of the fundamental mechanisms by which this process happens and the consequences of such activity in the setting of excitable cells remains the central focus of much of the field. One might wonder after so many years of detailed poking at such a seemingly simple process, is there anything left to learn?
Collapse
Affiliation(s)
- Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
40
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2013; 2:1981-2035. [PMID: 23723031 DOI: 10.1002/cphy.c110051] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.
Collapse
Affiliation(s)
- Morten Schak Nielsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
42
|
Liu Z, Xiang Y, Sun G. The KCTD family of proteins: structure, function, disease relevance. Cell Biosci 2013; 3:45. [PMID: 24268103 PMCID: PMC3882106 DOI: 10.1186/2045-3701-3-45] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023] Open
Abstract
The family of potassium channel tetramerizationdomain (KCTD) proteins consists of 26 members with mostly unknown functions. The name of the protein family is due to the sequence similarity between the conserved N-terminal region of KCTD proteins and the tetramerization domain in some voltage-gated potassium channels. Dozens of publications suggest that KCTD proteins have roles in various biological processes and diseases. In this review, we summarize the character of Bric-a-brack,Tram-track, Broad complex(BTB) of KCTD proteins, their roles in the ubiquitination pathway, and the roles of KCTD mutants in diseases. Furthermore, we review potential downstream signaling pathways and discuss future studies that should be performed.
Collapse
Affiliation(s)
- Zhepeng Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yaqian Xiang
- Jinchu University of Technology, No.33 xiangshan avenue, Jingmen 448000, People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
43
|
Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC). Proc Natl Acad Sci U S A 2013; 110:6352-7. [PMID: 23576756 DOI: 10.1073/pnas.1303672110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transmembrane proteins with unknown function 16 (TMEM16A) is a calcium-activated chloride channel (CaCC) important for neuronal, exocrine, and smooth muscle functions. TMEM16A belongs to a family of integral membrane proteins that includes another CaCC, TMEM16B, responsible for controlling action potential waveform and synaptic efficacy, and a small-conductance calcium-activated nonselective cation channel, TMEM16F, linked to Scott syndrome. We find that these channels in the TMEM16 family share a homodimeric architecture facilitated by their cytoplasmic N termini. This dimerization domain is important for channel assembly in eukaryotic cells, and the in vitro association of peptides containing the dimerization domain is consistent with a homotypic protein-protein interaction. Amino acid substitutions in the dimerization domain affect functional TMEM16A-CaCC channel expression, as expected from its critical role in channel subunit assembly.
Collapse
|
44
|
Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1831-41. [PMID: 23274885 DOI: 10.1016/j.bbadis.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
45
|
Fan Z, Zhang Z, Fu M, Qi Z, Xiao Z. Effect of inserting charged peptide at NH(2)-terminal on N-type inactivation of Kv1.4 channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23196347 DOI: 10.1016/j.bbamem.2012.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid inactivation of voltage-gated potassium channel plays an important role in shaping the electrical signaling in neurons and other excitable cells. N-type ("ball and chain") inactivation, as the most extensively studied inactivation model, is assumed to be the inactivation mechanism of Kv1.4 channel. The inactivation ball inactivates the channel by interacting with the hydrophobic wall of inner pore and occluding it. Recently, we have proved that the electrostatic interaction between two charged segments in the NH(2)-termainal plays an important role through promoting the inactivation process of the Kv1.4 channel. This study investigates the effect of inserting negatively or positively charged short peptides at NH(2)-terminal on the inactivation of Kv1.4 channel. The results that inserting negatively-charged peptide (either myc or D-peptide) at different sites of NH(2)-terminal, deceleraes inactivation process of Kv1.4 channel to a different extent with inserting site changing and that the mutant Kv1.4-D50 exhibits a more slower inactivation rate than Kv1.4-K50 further identified the role of electrostatic interactions in the "ball and chain" inactivation mechanism.
Collapse
Affiliation(s)
- Zhuo Fan
- Department of Physiology, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
46
|
Scofield MD, Korutla L, Jackson TG, Kalivas PW, Mackler SA. Nucleus Accumbens 1, a Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad protein binds to TAR DNA-binding protein 43 and has a potential role in Amyotrophic Lateral Sclerosis. Neuroscience 2012; 227:44-54. [PMID: 23022214 DOI: 10.1016/j.neuroscience.2012.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
Protein degradation is a critical component of cellular maintenance. The intracellular translocation and targeting of the Ubiquitin Proteasome System (UPS) differentially coordinates a protein's half-life and thereby its function. Nucleus Accumbens 1 (NAC1), a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex (POZ/BTB) family of proteins, participates in the coordinated proteolysis of synaptic proteins by mediating recruitment of the UPS to dendritic spines. Here we report a novel interaction between NAC1 and TAR DNA-binding protein 43 (TDP-43), a protein identified as the primary component of ubiquitinated protein aggregates found in patients with Amyotrophic Lateral Sclerosis (ALS). In vitro translated full-length TDP-43 associated with both the POZ/BTB domain and the non-POZ/BTB domain of NAC1 in GST pulldown assays. Other POZ/BTB proteins (including zinc finger POZ/BTB proteins and atypical POZ/BTB proteins) showed weak interactions with TDP-43. In addition, NAC1 and TDP-43 were present in the same immunocomplexes in different regions of mouse brain and spinal cord. In primary spinal cord cultures, TDP-43 expression was mainly nuclear, whereas NAC1 was both nuclear and cytoplasmic. In order to mimic ALS-like toxicity in the spinal cord culture system, we elevated extracellular glutamate levels resulting in the selective loss of motor neurons. Using this model, it was found that glutamate toxicity elicited a dose-dependent translocation of TDP-43 out of the nucleus of cholinergic neurons and increased the co-localization of NAC1 and TDP-43. These findings suggest that NAC1 may function to link TDP-43 to the proteasome; thereby, facilitating the post-translational modifications of TDP-43 that lead to the development of ALS.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | |
Collapse
|
47
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
48
|
The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H(+) channel Hv1. Nat Commun 2012; 3:816. [PMID: 22569364 DOI: 10.1038/ncomms1823] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 04/05/2012] [Indexed: 11/09/2022] Open
Abstract
Hv1/VSOP is a dimeric voltage-gated H(+) channel in which the gating of one subunit is reportedly coupled to that of the other subunit within the dimer. The molecular basis for dimer formation and intersubunit coupling, however, remains unknown. Here we show that the carboxy terminus ends downstream of the S4 voltage-sensor helix twist in a dimer coiled-coil architecture, which mediates cooperative gating. We also show that the temperature-dependent activation of H(+) current through Hv1/VSOP is regulated by thermostability of the coiled-coil domain, and that this regulation is altered by mutation of the linker between S4 and the coiled-coil. Cooperative gating within the dimer is also dependent on the linker structure, which circular dichroism spectrum analysis suggests is α-helical. Our results indicate that the cytoplasmic coiled-coil strands form continuous α-helices with S4 and mediate cooperative gating to adjust the range of temperatures over which Hv1/VSOP operates.
Collapse
|
49
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
50
|
Abstract
To operate in the extreme cold, ion channels from psychrophiles must have evolved structural changes to compensate for their thermal environment. A reasonable assumption would be that the underlying adaptations lie within the encoding genes. Here, we show that delayed rectifier K(+) channel genes from an Antarctic and a tropical octopus encode channels that differ at only four positions and display very similar behavior when expressed in Xenopus oocytes. However, the transcribed messenger RNAs are extensively edited, creating functional diversity. One editing site, which recodes an isoleucine to a valine in the channel's pore, greatly accelerates gating kinetics by destabilizing the open state. This site is extensively edited in both Antarctic and Arctic species, but mostly unedited in tropical species. Thus adenosine-to-inosine RNA editing can respond to the physical environment.
Collapse
Affiliation(s)
- Sandra Garrett
- Institute of Neurobiology, University of Puerto Rico–Medical Sciences Campus, San Juan 00901, Puerto Rico
| | - Joshua J.C. Rosenthal
- Institute of Neurobiology, University of Puerto Rico–Medical Sciences Campus, San Juan 00901, Puerto Rico
- Department of Biochemistry, University of Puerto Rico–Medical Sciences Campus, San Juan 00936, Puerto Rico
| |
Collapse
|