1
|
Yin H, Guo W, Wang R, Doutch J, Li P, Tian Q, Zheng Z, Xie L, Feng Y. Self-Assembling Anti-Freezing Lamellar Nanostructures in Subzero Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309020. [PMID: 38368272 PMCID: PMC11077679 DOI: 10.1002/advs.202309020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Indexed: 02/19/2024]
Abstract
The requirement for cryogenic supramolecular self-assembly of amphiphiles in subzero environments is a challenging topic. Here, the self-assembly of lamellar lyotropic liquid crystals (LLCs) are presented to a subzero temperature of -70 °C. These lamellar nanostructures are assembled from specifically tailored ultra-long-chain surfactant stearyl diethanolamine (SDA) in water/glycerol binary solvent. As the temperature falls below zero, LLCs with a liquid-crystalline Lα phase, a tilted Lβ phase, and a new folded configuration are obtained consecutively. A comprehensive experimental and computational study is performed to uncover the precise microstructure and formation mechanism. Both the ultra-long alkyl chain and head group of SDA play a crucial role in the formation of lamellar nanostructures. SDA head group is prone to forming hydrogen bonds with water, rather than glycerol. Glycerol cannot penetrate the lipid layer, which mixes with water arranging outside of the lipid bilayer, providing an ideal anti-freezing environment for SDA self-assembly. Based on these nanostructures and the ultra-low freezing point of the system, a series of novel cryogenic materials are created with potential applications in extremely cold environments. These findings would contribute to enriching the theory and research methodology of supramolecular self-assembly in extreme conditions and to developing novel anti-freezing materials.
Collapse
Affiliation(s)
- Hongyao Yin
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Weiluo Guo
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Runxi Wang
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengdu610065P. R. China
| | - James Doutch
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell CampusOXONDidcotOX11 0QXUK
| | - Peixun Li
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell CampusOXONDidcotOX11 0QXUK
| | - Qiang Tian
- State Key laboratory of Environment‐Friendly Energy Materials, School of Materials and ChemistrySouthwest University of Science and TechnologyMianyang621010P. R. China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Lingzhi Xie
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengdu610065P. R. China
| | - Yujun Feng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
2
|
Cui F, Han M, Zhou W, Lai C, Chen Y, Su J, Wang J, Li H, Hu Y. Superlattice-Stabilized WSe 2 Cathode for Rechargeable Aluminum Batteries. SMALL METHODS 2022; 6:e2201281. [PMID: 36351768 DOI: 10.1002/smtd.202201281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Rechargeable aluminum batteries (RABs), with abundant aluminum reserves, low cost, and high safety, give them outstanding advantages in the postlithium batteries era. However, the high charge density (364 C mm-3 ) and large binding energy of three-electron-charge aluminum ions (Al3+ ) de-intercalation usually lead to irreversible structural deterioration and decayed battery performance. Herein, to mitigate these inherent defects from Al3+ , an unexplored family of superlattice-type tungsten selenide-sodium dodecylbenzene sulfonate (SDBS) (S-WSe2 ) cathode in RABs with a stably crystal structure, expanded interlayer, and enhanced Al-ion diffusion kinetic process is proposed. Benefiting from the unique advantage of superlattice-type structure, the anionic surfactant SDBS in S-WSe2 can effectively tune the interlayer spacing of WSe2 with released crystal strain from high-charge-density Al3+ and achieve impressively long-term cycle stability (110 mAh g-1 over 1500 cycles at 2.0 A g-1 ). Meanwhile, the optimized S-WSe2 cathode with intrinsic negative attraction of SDBS significantly accelerates the Al3+ diffusion process with one of the best rate performances (165 mAh g-1 at 2.0 A g-1 ) in RABs. The findings of this study pave a new direction toward durable and high-performance electrode materials for RABs.
Collapse
Affiliation(s)
- Fangyan Cui
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingshan Han
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Wenyuan Zhou
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chen Lai
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanhui Chen
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jingwen Su
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
3
|
Synthesis, surface properties, aggregation behavior of oleyl ether sulfates and their application to liquid crystal emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Auvray L, Ayral A, Dabadie T, Cot L, Guizard C, Ramsay JDF. Sol–gel systems with controlled structure formed in surfactant media. Faraday Discuss 1995. [DOI: 10.1039/fd9950100235] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|