1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Wu R, Jia Q, Guo Y, Lin Y, Liu J, Chen J, Yan Q, Yuan N, Xue C, Chen X, Yuan X. Characterization of TBP and TAFs in Mungbean ( Vigna radiata L.) and Their Potential Involvement in Abiotic Stress Response. Int J Mol Sci 2024; 25:9558. [PMID: 39273505 PMCID: PMC11394781 DOI: 10.3390/ijms25179558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The TATA-box binding protein (TBP) and TBP-associated factors (TAFs) constitute the transcription factor IID (TFIID), a crucial component of RNA polymerase II, essential for transcription initiation and regulation. Several TFIID subunits are shared with the Spt-Ada-Gcn5-acetyltransferase (SAGA) coactivator complex. Recent research has revealed the roles of TBP and TAFs in organogenesis and stress adaptation. In this study, we identified 1 TBP and 21 putative TAFs in the mungbean genome, among which VrTAF5, VrTAF6, VrTAF8, VrTAF9, VrTAF14, and VrTAF15 have paralogous genes. Their potential involvement in abiotic stress responses was also investigated here, including high salinity, water deficit, heat, and cold. The findings indicated that distinct genes exerted predominant influences in the response to different abiotic stresses through potentially unique mechanisms. Specifically, under salt stress, VrTBP, VrTAF2, and VrTAF15-1 were strongly induced, while VrTAF10, VrTAF11, and VrTAF13 acted as negative regulators. In the case of water-deficit stress, it was likely that VrTAF1, VrTAF2, VrTAF5-2, VrTAF9, and VrTAF15-1 were primarily involved. Additionally, in response to changes in ambient temperature, it was possible that genes such as VrTAF5-1, VrTAF6-1, VrTAF9-2, VrTAF10, VrTAF13, VrTAF14b-2, and VrTAF15-1 might play a dominant role. This comprehensive exploration of VrTBP and VrTAFs can offer a new perspective on understanding plant stress responses and provide valuable insights into breeding improvement.
Collapse
Affiliation(s)
- Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiyuan Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjian Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Na Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
3
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
4
|
Kiseleva AA, Bragina MK, Muterko AF, Salina EA. Functional characterization of genes with daily expression patterns in common wheat. PLANT MOLECULAR BIOLOGY 2022; 109:135-146. [PMID: 35316425 DOI: 10.1007/s11103-022-01262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Our findings suggest most wheat biological processes are under the control of the daily expressed genes. Plant circadian rhythms represent daily changes in the activity of various processes, which are based on changes in the levels of gene expression and protein synthesis. In wheat, some key components of plant circadian clock have been identified, but there is little data on the daily expression and interactions of these genes. To study the common wheat daily transcriptome, RNA sequencing was performed. Using these data, genes expressed in daily pattern and the metabolic pathways controlled by them were identified: responses to stimuli and nutrients, transport, photoperiodism, photomorphogenesis, synthesis and degradation of different metabolites, and regulation of the processes of RNA synthesis. It was shown that a significant part of the transcriptome can vary greatly daily. Five expression patterns were identified. They were characterized by peaks at different time points and described the genes underlying these patterns. The analysis of the enrichment of gene ontology terms with various patterns allowed us to describe the main metabolic pathways in each group. Wheat homologs of the genes related to circadian clock in Arabidopsis were identified. Most of them were represented by three homoeologous genes expressed uniformly. Comparison of their expression patterns demonstrated a shift in the expression peaks for some core and accessory genes; the majority of wheat circadian genes were expressed in accordance with Arabidopsis homologs. This may indicate a similar functional role of these genes in wheat.
Collapse
Affiliation(s)
- Antonina A Kiseleva
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
| | - Mariya K Bragina
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Aleksandr F Muterko
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Elena A Salina
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| |
Collapse
|
5
|
CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper. PLoS Genet 2022; 18:e1010023. [PMID: 35226664 PMCID: PMC8884482 DOI: 10.1371/journal.pgen.1010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Pepper (Capsicum annuum) responds differently to high temperature stress (HTS) and Ralstonia solanacearum infection (RSI) but employs some shared transcription factors (TFs), such as CabZIP63 and CaWRKY40, in both cases. How the plant activates and balances these distinct responses, however, was unclear. Here, we show that the protein CaSWC4 interacts with CaRUVBL2 and CaTAF14b and they all act positively in pepper response to RSI and thermotolerance. CaSWC4 activates chromatin of immunity or thermotolerance related target genes of CaWRKY40 or CabZIP63 by promoting deposition of H2A.Z, H3K9ac and H4K5ac, simultaneously recruits CabZIP63 and CaWRKY40 through physical interaction and brings them to their targets (immunity- or thermotolerance-related genes) via binding AT-rich DNA element. The above process relies on the recruitment of CaRUVBL2 and TAF14 by CaSWC4 via physical interaction, which occurs at loci of immunity related target genes only when the plants are challenged with RSI, and at loci of thermotolerance related target genes only upon HTS. Collectively, our data suggest that CaSWC4 regulates rapid, accurate responses to both RSI and HTS by modulating chromatin of specific target genes opening and recruiting the TFs, CaRUVBL2 and CaTAF14b to the specific target genes, thereby helping achieve the balance between immunity and thermotolerance.
Collapse
|
6
|
Abstract
Transcriptional regulation is pivotal for development and differentiation of organisms. Transcription of eukaryotic protein-coding genes by RNA polymerase II (Pol II) initiates at the core promoter. Core promoters, which encompass the transcription start site, may contain functional core promoter elements, such as the TATA box, initiator, TCT and downstream core promoter element. TRF2 (TATA-box-binding protein-related factor 2) does not bind TATA box-containing promoters. Rather, it is recruited to core promoters via sequences other than the TATA box. We review the recent findings implicating TRF2 as a basal transcription factor in the regulation of diverse biological processes and specialized transcriptional programs.
Collapse
Key Words
- BREd, downstream TFIIB recognition element
- BREu, upstream TFIIB recognition element
- ChIP, Chromatin immunoprecipitation
- DPE
- DPE, downstream core promoter element
- Inr, initiator
- MTE, motif ten element
- PIC, preinitiation complex
- Pol II, RNA polymerase II
- RNA Pol II transcription
- TAF, TBP-associated factor
- TBP, TATA-box binding protein
- TBP-related factors
- TCT
- TFIIA (transcription factor, RNA polymerase II A)
- TFIIB (transcription factor, RNA polymerase II B)
- TFIID (transcription factor, RNA polymerase II D)
- TRF, TATA-box-binding protein-related factor
- TRF2
- TSS, transcription start site
- core promoter elements/motifs
- embryonic development
- histone gene cluster
- ribosomal protein genes
- spermiogenesis
Collapse
Affiliation(s)
- Yonathan Zehavi
- a The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat Gan , 5290002 , Israel
| | | | | | | |
Collapse
|
7
|
Gentile A, Da Cruz P, Tavares RG, Krug-Baldacin MG, Menossi M. Molecular characterization of ScTFIIAgamma, encoding the putative TFIIA small subunit from sugarcane. PLANT CELL REPORTS 2010; 29:857-864. [PMID: 20480367 DOI: 10.1007/s00299-010-0871-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/27/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
Transcription mediated by RNA polymerase II depends on a set of different transcription factors to form the pre-initiation complex. TFIIA is involved in the construction of this complex and increases the affinity of TBP for the DNA union region in vitro. In this study, we characterized the ScTFIIAgamma gene, which encodes a homolog of the smaller subunit (gamma) of transcription factor TFIIA in sugarcane. RNA blot analysis showed that ScTFIIAgamma transcripts accumulate in all tissues evaluated, with higher levels in leaf roll and flowers. In situ hybridization showed that ScTFIIAgamma was expressed in different cells of the reproductive meristem. In sugarcane plantlets, methyl jasmonate and absicic acid treatments as well as phosphate starvation had no influence on ScTFIIAgamma transcript accumulation. The subcelullar localization assay demonstrates that ScTFIIAgamma protein is directed to the cell nucleus. The phylogenetic analysis, the expression in several tissues and under different treatments and the nuclear localization are in line with the putative role of ScTFIIAgamma as a subunit of basal transcription factor.
Collapse
Affiliation(s)
- Agustina Gentile
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-875 Campinas, São Paulo 6109, Brazil
| | | | | | | | | |
Collapse
|
8
|
Lawit SJ, O'Grady K, Gurley WB, Czarnecka-Verner E. Yeast two-hybrid map of Arabidopsis TFIID. PLANT MOLECULAR BIOLOGY 2007; 64:73-87. [PMID: 17340043 DOI: 10.1007/s11103-007-9135-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/05/2007] [Indexed: 05/11/2023]
Abstract
General transcription factor IID (TFIID) is a multisubunit protein complex involved in promoter recognition and is fundamental to the nucleation of the RNA polymerase II transcriptional preinitiation complex. TFIID is comprised of the TATA binding protein (TBP) and 12-15 TBP-associated factors (TAFs). While general transcription factors have been extensively studied in metazoans and yeast, little is known about the details of their structure and function in the plant kingdom. This work represents the first attempt to compare the structure of a plant TFIID complex with that determined for other organisms. While no TAF3 homolog has been observed in plants, at least one homolog has been identified for each of the remaining 14 TFIID subunits, including both TAF14 and TAF15 which have previously been shown to be unique to either yeast or humans. The presence of both TAFs 14 and 15 in plants suggests ancient roles for these proteins that were lost in metazoans and fungi, respectively. Yeast two-hybrid interaction assays resulted in a total of 65 binary interactions between putative subunits of Arabidopsis TFIID, including 26 contacts unique to plants. The interaction matrix of Arabidopsis TAFs is largely consistent with the three-lobed topological map for yeast TFIID, which suggests that the structure and composition of TFIID have been highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Shai J Lawit
- Pioneer Hi-Bred International, Inc., a DuPont Company, 7300 N.W. 62nd Ave, PO Box 1004, Johnston, IA 50131-1004, USA
| | | | | | | |
Collapse
|
9
|
Dieci G, Yukawa Y, Alzapiedi M, Guffanti E, Ferrari R, Sugiura M, Ottonello S. Distinct modes of TATA box utilization by the RNA polymerase III transcription machineries from budding yeast and higher plants. Gene 2006; 379:12-25. [PMID: 16839711 DOI: 10.1016/j.gene.2006.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
The TATA box is a key upstream control element for basal tRNA gene transcription by RNA polymerase III in some eukaryotes, such as the fission yeast (Schizosaccharomyces pombe) and higher plants, but not in others such as the budding yeast (Saccharomyces cerevisiae). To gain information on this differential TATA box requirement, we examined side-by-side the in vitro transcription properties of TATA-containing and TATA-mutated plant and S. cerevisiae tDNAs in homologous in vitro transcription systems from both organisms and in a hybrid system in which yeast TBP was replaced by its plant homologue. The data support the general conclusion that specific features of the plant transcription machinery, rather than upstream region architecture per se, are responsible for the much stronger TATA box dependence of the plant system. In both systems, however, a strong influence of the TATA box on transcription start site selection was observed. This was particularly striking in the case of plant tDNAs, where TATA-rich upstream regions were found to favour the use of alternative initiation sites. Replacement of yeast TBP with its plant counterpart did not confer any general TATA box responsiveness to the yeast transcription machinery. Interactions involving components other than TBP are thus responsible for the strong TATA box requirement of plant tDNA transcription.
Collapse
Affiliation(s)
- Giorgio Dieci
- Department of Biochemistry and Molecular Biology, University of Parma, Parco Area delle Scienze 23A, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Callebaut I, Prat K, Meurice E, Mornon JP, Tomavo S. Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes. BMC Genomics 2005; 6:100. [PMID: 16042788 PMCID: PMC1199594 DOI: 10.1186/1471-2164-6-100] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 07/23/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, only a few transcription factors have been identified in the genome of the parasite Plasmodium falciparum, the causative agent of malaria. Moreover, no detailed molecular analysis of its basal transcription machinery, which is otherwise well-conserved in the crown group of eukaryotes, has yet been reported. In this study, we have used a combination of sensitive sequence analysis methods to predict the existence of several parasite encoded general transcription factors associated with RNA polymerase II. RESULTS Several orthologs of general transcription factors associated with RNA polymerase II can be predicted among the hypothetical proteins of the P. falciparum genome using the two-dimensional Hydrophobic Cluster Analysis (HCA) together with profile-based search methods (PSI-BLAST). These predicted orthologous genes encoding putative transcription factors include the large subunit of TFIIA and two candidates for its small subunit, the TFIIE beta-subunit, which would associate with the previously known TFIIE alpha-subunit, the TFIIF beta-subunit, as well as the p62/TFB1 subunit of the TFIIH core. Within TFIID, the putative orthologs of TAF1, TAF2, TAF7 and TAF10 were also predicted. However, no candidates for TAFs with classical histone fold domain (HFD) were found, suggesting an unusual architecture of TFIID complex of RNA polymerase II in the parasite. CONCLUSION Taken together, these results suggest that more general transcription factors may be present in the P. falciparum proteome than initially thought. The prediction of these orthologous general transcription factors opens the way for further studies dealing with transcriptional regulation in P. falciparum. These alternative and sensitive sequence analysis methods can help to identify candidates for other transcriptional regulatory factors in P. falciparum. They will also facilitate the prediction of biological functions for several orphan proteins from other apicomplexan parasites such as Toxoplasma gondii, Cryptosporidium parvum and Eimeria.
Collapse
Affiliation(s)
- Isabelle Callebaut
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Karine Prat
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Edwige Meurice
- Centre National de la Recherche Scientifique CNRS UMR 8576, Université des Sciences et Technologies de Lille, Equipe de Parasitologie Moléculaire, Laboratoire de Chimie Biologique, UGSF, Bâtiment C9, 59655 Villeneuve d'Ascq, France
| | - Jean-Paul Mornon
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Stanislas Tomavo
- Centre National de la Recherche Scientifique CNRS UMR 8576, Université des Sciences et Technologies de Lille, Equipe de Parasitologie Moléculaire, Laboratoire de Chimie Biologique, UGSF, Bâtiment C9, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
11
|
Oda T, Fukuda A, Hagiwara H, Masuho Y, Muramatsu MA, Hisatake K, Yamashita T. ABT1-associated protein (ABTAP), a novel nuclear protein conserved from yeast to mammals, represses transcriptional activation by ABT1. J Cell Biochem 2004; 93:788-806. [PMID: 15660422 DOI: 10.1002/jcb.20114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various TATA-binding protein (TBP)-associated proteins are involved in the regulation of gene expression through control of basal transcription directed by RNA polymerase (Pol) II. We recently identified a novel nuclear protein, activator of basal transcription 1 (ABT1), which binds TBP and DNA, and enhances Pol II-directed basal transcription. To better understand regulatory mechanisms for ABT1, we searched for ABT1-binding proteins using a yeast two-hybrid screening and isolated a cDNA clone encoding a novel protein termed ABT1-associated protein (ABTAP). ABTAP formed a complex with ABT1 and suppressed the ABT1-induced activation of Pol II-directed transcription in mammalian cells. Furthermore, ABTAP directly bound to ABT1, disrupted the interaction between ABT1 and TBP, and suppressed the ABT1-induced activation of Pol II-directed basal transcription in vitro. These two proteins colocalized in the nucleolus and nucleoplasm and were concomitantly relocalized into discrete nuclear bodies at higher expression of ABTAP. Taken together, these results suggest that ABTAP binds and negatively regulates ABT1. The ABT1/ABTAP complex is evolutionarily conserved and may constitute a novel regulatory system for basal transcription.
Collapse
Affiliation(s)
- Tsukasa Oda
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:98-112. [PMID: 15200645 DOI: 10.1111/j.1365-313x.2004.02111.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heat stress transcription factors (Hsfs) are the major regulators of the plant heat stress (hs) response. Sequencing of the Arabidopsis genome revealed the existence of 21 open-reading frames (ORFs) encoding putative Hsfs assigned to classes A-C. Here we present results of a functional genomics approach to the Arabidopsis Hsf family focused on the analysis of their C-terminal domains (CTDs) harboring conserved modules for their function as transcription factors and their intracellular localization. Using reporter assays in tobacco protoplasts and yeast as well as glutathione-S-transferase (GST) pull-down assays, we demonstrate that short peptide motifs enriched with aromatic and large hydrophobic amino acid (aa) residues embedded in an acidic surrounding (AHA motifs) are essential for transcriptional activity of class A Hsfs. In contrast to this, class B and C Hsfs lack AHA motifs and have no activator function on their own. We also provide evidence for the function of a leucine (Leu)-rich region centered around a conserved QMGPhiL motif at the very C-terminus as a nuclear export signal (NES) of class A Hsfs. Sequence comparison indicates that the combination of a C-terminal AHA motif with the consensus sequence FWxxF/L,F/I/L as well as the adjacent NES represents a signature domain for plant class A Hsfs, which allowed to identify more than 60 new Hsfs from the expressed sequence tag (EST) database.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
13
|
Grace ML, Chandrasekharan MB, Hall TC, Crowe AJ. Sequence and Spacing of TATA Box Elements Are Critical for Accurate Initiation from the β-Phaseolin Promoter. J Biol Chem 2004; 279:8102-10. [PMID: 14660650 DOI: 10.1074/jbc.m309376200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-phaseolin (phas) gene, which encodes one of the major seed storage proteins of P. vulgaris, is tightly regulated at the transcription level resulting in strict tissue-specific and spatial expression during embryonic development. The phas proximal promoter contains a complex arrangement of core promoter elements including three TATA boxes as well as several putative initiator elements. To delineate the respective contributions of the core promoter elements to transcription initiation we have performed site-directed mutagenesis of the phas promoter. In vivo expression studies were performed on transgenic Arabidopsis harboring phas promoter mutants driving expression of the beta-glucuronidase (gus) reporter gene. Quantitative assessment of GUS activity in seeds bearing the promoter mutants indicated that both sequence and spacing of the TATA elements influenced the efficiency of transcription. Substitution, insertion or deletion mutations had no effect on histochemical staining patterns indicating that strict spacing requirements are not essential for correct spatial expression of phas during embryogenesis. Further evaluation of the phas promoter by in vitro transcription analysis revealed the presence of multiple TATA-dependent transcription initiation start sites. The distance between TATA elements and transcription start sites was maintained in insertion and deletion mutants through the creation of novel initiation sites, indicating that positioning of the TATA elements rather than DNA sequence was the primary determinant of start site location. We conclude that, while dispensable for proper spatial distribution, the complex architecture of the phas promoter is required to ensure high levels of accurate phas transcription initiation in the developing embryo.
Collapse
Affiliation(s)
- Margaret L Grace
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
14
|
Shimada M, Nakadai T, Tamura TA. TATA-binding protein-like protein (TLP/TRF2/TLF) negatively regulates cell cycle progression and is required for the stress-mediated G(2) checkpoint. Mol Cell Biol 2003; 23:4107-20. [PMID: 12773555 PMCID: PMC156134 DOI: 10.1128/mcb.23.12.4107-4120.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Revised: 11/13/2002] [Accepted: 03/19/2003] [Indexed: 11/20/2022] Open
Abstract
The TATA-binding protein (TBP) is a universal transcription factor required for all of the eukaryotic RNA polymerases. In addition to TBP, metazoans commonly express a distantly TBP-related protein referred to as TBP-like protein (TLP/TRF2/TLF). Although the function of TLP in transcriptional regulation is not clear, it is known that TLP is required for embryogenesis and spermiogenesis. In the present study, we investigated the cellular functions of TLP by using TLP knockout chicken DT40 cells. TLP was found to be dispensable for cell growth. Unexpectedly, TLP-null cells exhibited a 20% elevated cell cycle progression rate that was attributed to shortening of the G(2) phase. This indicates that TLP functions as a negative regulator of cell growth. Moreover, we found that TLP mainly existed in the cytoplasm and was translocated to the nucleus restrictedly at the G(2) phase. Ectopic expression of nuclear localization signal-carrying TLP resulted in an increase (1.5-fold) in the proportion of cells remaining in the G(2)/M phase and apoptotic state. Notably, TLP-null cells showed an insufficient G(2) checkpoint when the cells were exposed to stresses such as UV light and methyl methanesulfonate, and the population of apoptotic cells after stresses decreased to 40%. These phenomena in G(2) checkpoint regulation are suggested to be p53 independent because p53 does not function in DT40 cells. Moreover, TLP was transiently translocated to the nucleus shortly (15 min) after stress treatment. The expression of several stress response and cell cycle regulatory genes drifted in a both TLP- and stress-dependent manner. Nucleus-translocating TLP is therefore thought to work by checking cell integrity through its transcription regulatory ability. TLP is considered to be a signal-transducing transcription factor in cell cycle regulation and stress response.
Collapse
Affiliation(s)
- Miho Shimada
- Faculty of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | | | | |
Collapse
|
15
|
Lagrange T, Hakimi MA, Pontier D, Courtois F, Alcaraz JP, Grunwald D, Lam E, Lerbs-Mache S. Transcription factor IIB (TFIIB)-related protein (pBrp), a plant-specific member of the TFIIB-related protein family. Mol Cell Biol 2003; 23:3274-86. [PMID: 12697827 PMCID: PMC153204 DOI: 10.1128/mcb.23.9.3274-3286.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although it is now well documented that metazoans have evolved general transcription factor (GTF) variants to regulate their complex patterns of gene expression, there is so far no information regarding the existence of specific GTFs in plants. Here we report the characterization of a ubiquitously expressed gene that encodes a bona fide novel transcription factor IIB (TFIIB)-related protein in Arabidopsis thaliana. We have shown that this protein is the founding member of a plant-specific TFIIB-related protein family named pBrp (for plant-specific TFIIB-related protein). Surprisingly, in contrast to common GTFs that are localized in the nucleus, the bulk of pBrp proteins are bound to the cytoplasmic face of the plastid envelope, suggesting an organelle-specific function for this novel class of TFIIB-related protein. We show that pBrp proteins harbor conditional proteolytic signals that can target these proteins for rapid turnover by the proteasome-mediated protein degradation pathway. Interestingly, under conditions of proteasome inhibition, pBrp proteins accumulate in the nucleus. Together, our results suggest a possible involvement of these proteins in an intracellular signaling pathway between plastids and the nucleus. Our data provide the first evidence for an organelle-related evolution of the eukaryotic general transcription machinery.
Collapse
Affiliation(s)
- Thierry Lagrange
- Laboratoire de Génétique Moléculaire des Plantes, UMR5575, 38041 Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Li YF, Dubois F, Zhou DX. Ectopic expression of TATA box-binding protein induces shoot proliferation in Arabidopsis. FEBS Lett 2001; 489:187-91. [PMID: 11165247 DOI: 10.1016/s0014-5793(01)02101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TATA box-binding protein (TBP) is an essential component of transcription initiation complexes of all three eukaryotic RNA polymerases. Increasing evidence suggests that the TBP activity and availability may be regulated to precisely control gene transcription and play an important role in cell type-specific regulation. Arabidopsis TBP-2 is up-regulated in apical shoot tissues. Overexpression of TBP-2 in transgenic Arabidopsis induces apical shoot proliferation. The expression of some shoot meristem regulatory genes is altered. These data suggest that the TBP gene dosage and/or expression level may play an important role in controlling shoot production and plant morphology.
Collapse
Affiliation(s)
- Y F Li
- Institut de Biotechnologie de Plante, Université Paris XI, Orsay, France
| | | | | |
Collapse
|
17
|
Oda T, Kayukawa K, Hagiwara H, Yudate HT, Masuho Y, Murakami Y, Tamura TA, Muramatsu MA. A novel TATA-binding protein-binding protein, ABT1, activates basal transcription and has a yeast homolog that is essential for growth. Mol Cell Biol 2000; 20:1407-18. [PMID: 10648625 PMCID: PMC85296 DOI: 10.1128/mcb.20.4.1407-1418.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Identification of a novel mouse nuclear protein termed activator of basal transcription 1 (mABT1) that associates with the TATA-binding protein (TBP) and enhances basal transcription activity of class II promoters is described. We also identify mABT1 homologous counterparts in Caenorhabditis elegans and Saccharomyces cerevisiae and show the homologous yeast gene to be essential for growth. The mABT1 associated with TBP in HeLa nuclear extracts and with purified mouse TBP in vitro. In addition, ectopically expressed mABT1 was coimmunoprecipitated with endogenous TBP in transfected cells. More importantly, mABT1 significantly enhanced transcription from an adenovirus major late promoter in a reconstituted cell-free system. We furthermore demonstrate that mABT1 consistently enhanced transcription from a reporter gene with a minimal core promoter as well as from reporter genes with various enhancer elements in a cotransfection assay. Taken together, these results suggest that mABT1 is a novel TBP-binding protein which can function as a basal transcription activator.
Collapse
Affiliation(s)
- T Oda
- Helix Research Institute, Inc., Kisarazu-shi, Chiba 292-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Moore PA, Ozer J, Salunek M, Jan G, Zerby D, Campbell S, Lieberman PM. A human TATA binding protein-related protein with altered DNA binding specificity inhibits transcription from multiple promoters and activators. Mol Cell Biol 1999; 19:7610-20. [PMID: 10523649 PMCID: PMC84787 DOI: 10.1128/mcb.19.11.7610] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1999] [Accepted: 07/28/1999] [Indexed: 11/20/2022] Open
Abstract
The TATA binding protein (TBP) plays a central role in eukaryotic and archael transcription initiation. We describe the isolation of a novel 23-kDa human protein that displays 41% identity to TBP and is expressed in most human tissue. Recombinant TBP-related protein (TRP) displayed barely detectable binding to consensus TATA box sequences but bound with slightly higher affinities to nonconsensus TATA sequences. TRP did not substitute for TBP in transcription reactions in vitro. However, addition of TRP potently inhibited basal and activated transcription from multiple promoters in vitro and in vivo. General transcription factors TFIIA and TFIIB bound glutathione S-transferase-TRP in solution but failed to stimulate TRP binding to DNA. Preincubation of TRP with TFIIA inhibited TBP-TFIIA-DNA complex formation and addition of TFIIA overcame TRP-mediated transcription repression. TRP transcriptional repression activity was specifically reduced by mutations in TRP that disrupt the TFIIA binding surface but not by mutations that disrupt the TFIIB or DNA binding surface of TRP. These results suggest that TFIIA is a primary target of TRP transcription inhibition and that TRP may modulate transcription by a novel mechanism involving the partial mimicry of TBP functions.
Collapse
Affiliation(s)
- P A Moore
- Human Genome Sciences, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Thompson DK, Palmer JR, Daniels CJ. Expression and heat-responsive regulation of a TFIIB homologue from the archaeon Haloferax volcanii. Mol Microbiol 1999; 33:1081-92. [PMID: 10476041 DOI: 10.1046/j.1365-2958.1999.01551.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple divergent genes encoding the eukaryal-like TFIIB (TFB) transcription initiation factor have been identified in the archaeon Haloferax volcanii. Expression of one of these TFB-encoding genes, referred to here as tfb2, was induced specifically in response to heat shock at the transcription level. A time course for tfb2 induction demonstrated that mRNA levels increased as much as eightfold after 15 min at 60 degrees C. A transcription fusion of the tfb2 promoter region with a stable RNA reporter gene confirmed the heat responsiveness of the tfb2 core promoter, and immunoblot analysis using antibodies generated against a recombinant His-tagged TFB2 showed that the protein levels of one TFB increased slightly in response to elevated temperatures. An archaeal consensus TATA element (5'-TTTATA-3') was located 110 bp upstream of the translation start site and appeared to be used for both basal and heat shock-induced expression. The long DNA leader region (79 bp) preceding the predicted AUG translation start codon for TFB2 contained a T-rich sequence element located 22 bp downstream of the transcription start site. Using an in vivo transcription termination assay, we demonstrated that this T-rich element can function as a sequence-dependent transcription terminator, which may serve to downregulate expression of the tfb2 gene under both non-heat shock and heat shock conditions.
Collapse
Affiliation(s)
- D K Thompson
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
20
|
Shimada M, Ohbayashi T, Ishida M, Nakadai T, Makino Y, Aoki T, Kawata T, Suzuki T, Matsuda Y, Tamura T. Analysis of the chicken TBP-like protein(tlp) gene: evidence for a striking conservation of vertebrate TLPs and for a close relationship between vertebrate tbp and tlp genes. Nucleic Acids Res 1999; 27:3146-52. [PMID: 10454611 PMCID: PMC148541 DOI: 10.1093/nar/27.15.3146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TLP (TBP-like protein), which is a new protein dis-covered by us, has a structure similar to that of the C-terminal conserved domain (CCD) of TBP, although its function has not yet been elucidated. We isolated cDNA and genomic DNA that encode chicken TLP (cTLP) and determined their structures. The predicted amino acid sequence of cTLP was 98 and 91% identical to that of its mammalian and Xenopus counterparts, respectively, and its translation product was ubiquitously observed in chicken tissues. FISH detection showed that chicken tlp and tbp genes were mapped at 3q2.6-2.8 and 3q2.4-2.6 of the same chromosome, respectively. Genome analysis revealed that the chicken tlp gene was spliced with five introns. Interestingly, the vertebrate tbp genes were also found to be split by five introns when we focused on the CCDs, and their splicing points were similar to those of tlp. On the contrary, another TBP-resembling gene of Drosophila, trf1, is split by only one intron, as is the Drosophila 's tbp gene. These results support our earlier assumption that vertebrate TLPs did not directly descend from Drosophila TRF1. On the basis of these results together with phylogenetical exam-ination, we speculate that tlp diverged from an ancestral tbp gene through a process of gene duplication and point mutations.
Collapse
Affiliation(s)
- M Shimada
- Department of Biology, Faculty of Science, Chiba University, CREST Japan Science and Technology Corporation, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Upadhyaya AB, Lee SH, DeJong J. Identification of a general transcription factor TFIIAalpha/beta homolog selectively expressed in testis. J Biol Chem 1999; 274:18040-8. [PMID: 10364255 DOI: 10.1074/jbc.274.25.18040] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this paper we describe the isolation of a cDNA that encodes a human TFIIAalpha/beta-like factor (ALF). The open reading frame of ALF predicts a protein of 478 amino acids that contains characteristic N- and C-terminal conserved domains separated by an internal nonconserved domain. In addition, a rare ALF-containing cDNA, which possesses an extended N terminus (Stoned B/TFIIAalpha/beta-like factor; SALF) has also been identified. The results of Northern and dot blot analyses show that ALF is expressed almost exclusively in testis; in contrast, TFIIAalpha/beta and TFIIAgamma are enriched in testis but are also widely expressed in other human tissues. Recombinant ALF (69 kDa) and TFIIAgamma (12 kDa) polypeptides produced in Escherichia coli form an ALF/gamma complex that can stabilize TBP-TATA interactions in an electrophoretic mobility shift assay. The ALF/gamma complex is also able to restore transcription from the adenovirus major late promoter using HeLa cell nuclear extracts that have been depleted of TFIIA. Overall, the data show that ALF is a functional homolog of human general transcription factor TFIIAalpha/beta that may be uniquely important to testis biology.
Collapse
Affiliation(s)
- A B Upadhyaya
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | | |
Collapse
|
22
|
Sastre L. Isolation and characterization of the gene coding for Artemia franciscana TATA-binding protein: expression in cryptobiotic and developing embryos. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:271-82. [PMID: 10366711 DOI: 10.1016/s0167-4781(99)00052-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genomic and cDNA clones coding for the Artemia franciscana homolog of the TATA box-binding protein (TBP) were isolated. The C-terminal region of the predicted protein displays up to 92% sequence identity with the conserved C-terminal regions of TBPs from other species. The gene is divided in seven exons that expand over a region of 33 kb. The position of the four introns located in the conserved C-terminal region has been compared with those of other species. Two of these introns have been generally conserved during evolution, another is an arthropod specific intron, present in Drosophila melanogaster and A. franciscana, and the other is only conserved between vertebrates and A. franciscana. Primer extension experiments detected several transcription initiation sites. Northern blot analyses showed the presence of four mRNAs of estimated sizes of 6.8, 2.6, 1.6 and 1.1 kb. Except for the low expression of the 6.8 and 2. 6 kb RNAs in encysted embryos, steady-state levels showed little variation during the activation of the encysted embryo and the first steps of embryonic and larval development. The amount of TBP protein expressed in encysted embryos and developing larvae has been analyzed by Western blot. Cryptobiotic embryos contain significant amounts of TBP although the level of expression increased almost twice during the first 20 h of development. The presence of TBP protein in cryptobiotic embryos suggests that TBP does not play, by itself, a critical role in the arrest of transcription characteristic of these resistance forms.
Collapse
Affiliation(s)
- L Sastre
- Instituto de Investigaciones Biomédicas, CSIC/UAM, C. Arturo Duperier, 4, 28029, Madrid, Spain.
| |
Collapse
|
23
|
Ohbayashi T, Kishimoto T, Makino Y, Shimada M, Nakadai T, Aoki T, Kawata T, Niwa S, Tamura T. Isolation of cDNA, chromosome mapping, and expression of the human TBP-like protein. Biochem Biophys Res Commun 1999; 255:137-42. [PMID: 10082669 DOI: 10.1006/bbrc.1999.0159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TBP is an essential factor for eukaryotic transcription. In this study, we identified a human cDNA encoding 21-kDa TBP-like protein (TLP). The TLP ORF, carrying 186 amino acids, covered the entire 180 amino acids of the C-terminal conserved domain of human TBP with 39% identity and 76% similarity. FISH determined that human tlp gene was located at chromosome 6 region q22.1-22.3. Northern blot analysis demonstrated that TLP mRNAs were expressed in various human tissues ubiquitously. We found that the TLP proteins exist in multiple mammalian cells and chicken cells. Although the Drosophila TBP-related factor (TRF) is a neurogenesis-related transcription factor, expression of TLP was nearly constant throughout the neural differentiation of P19 cells. Unlike TRF, TLP did not bind to the TATA-box nor direct transcription initiation in vitro. Similarity between TRF and TLP was considerably lower (35 in alignment score) than that between Drosophila TBP and human TBP (88 in alignment score). Multiple amino acids critical for the TBP function were deleted or substituted in TLP. We suggest that TLP is not a bona fide vertebrate counterpart nor a direct descendant of TRF.
Collapse
Affiliation(s)
- T Ohbayashi
- Faculty of Science, Chiba University, 1-33 Yayoi-cho, Chiba, Inage-ku, 263-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Edelmann L, Zheng L, Wang ZF, Marzluff W, Wessel GM, Childs G. The TATA binding protein in the sea urchin embryo is maternally derived. Dev Biol 1998; 204:293-304. [PMID: 9851860 DOI: 10.1006/dbio.1998.9052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA encoding the TATA binding protein was isolated from 8- to 16-cell and morula-stage embryonic libraries of two distantly related species of sea urchin, Strongylocentrotus purpuratus and Lytechinus variegatus, respectively. The two proteins are 96% identical over both the N- and C-terminal domains, suggesting a conservation of transcriptional processes between the two species. The prevalence of SpTBP transcripts at several developmental time points was determined using the tracer excess titration method, and the corresponding number of TBP protein molecules was determined by quantitative Western blot analysis. Our results indicate that the amount of TBP mRNA and protein per embryo remains relatively constant throughout development. An initial large pool of TBP protein (>10(9)) molecules in the egg becomes diluted as a consequence of cell division and decreases to about 2 x 10(6) molecules per cell by the gastrula stage. We found by in situ RNA hybridization that the oocyte contains a large amount of TBP mRNA which is depleted late in oogenesis so that the eggs and early embryos have extremely low levels of TBP mRNA. We conclude that the oocyte manufactures nearly all of the TBP protein necessary for embryogenesis.
Collapse
Affiliation(s)
- L Edelmann
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | | | | | | | | | | |
Collapse
|
25
|
Reindl A, Schöffl F. Interaction between the Arabidopsis thaliana heat shock transcription factor HSF1 and the TATA binding protein TBP. FEBS Lett 1998; 436:318-22. [PMID: 9801140 DOI: 10.1016/s0014-5793(98)01152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heat shock factor (HSF1) is the central regulator of the heat stress (hs) response and is required for stimulating the transcription of the hs genes and consequently the expression of heat shock proteins. To promote the polymerase II-dependent transcription of the hs genes, HSF has to communicate with the basal transcription machinery. Here, we report that the Arabidopsis thaliana HSF1 interacts directly with TBP, the general TATA box binding transcription factor, as shown by affinity chromatography and electrophoretic mobility shift analyses in vitro. An in vivo interaction between AtHSF1 and AtTBP1 was suggested by results employing the yeast two-hybrid system.
Collapse
Affiliation(s)
- A Reindl
- Universität Tübingen, Biologisches Institut, Lehrstuhl für Allgemeine Genetik, Germany
| | | |
Collapse
|
26
|
Leng P, Carter PE, Brown AJ. The TATA-binding protein (TBP) from the human fungal pathogen Candida albicans can complement defects in human and yeast TBPs. J Bacteriol 1998; 180:1771-6. [PMID: 9537374 PMCID: PMC107089 DOI: 10.1128/jb.180.7.1771-1776.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1997] [Accepted: 02/02/1998] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is the major fungal pathogen in humans, yet little is known about transcriptional regulation in this organism. Therefore, we have isolated, characterized, and expressed the C. albicans TATA-binding protein (TBP) gene (TBP1), because this general transcription initiation factor plays a key role in the activation and regulation of eukaryotic promoters. Southern and Northern blot analyses suggest that a single C. albicans TBP1 locus is expressed at similar levels in the yeast and hyphal forms of this fungus. The TBP1 open reading frame is 716 bp long and encodes a functional TBP of 27 kDa. C. albicans TBP is capable of binding specifically to a TATA box in vitro, substituting for the human TBP to activate basal transcription in vitro, and suppressing the lethal delta spt15 mutation in Saccharomyces cerevisiae. The predicted amino acid sequences of TBPs from C. albicans and other organisms reveal a striking pattern of C-terminal conservation and N-terminal variability: the C-terminal DNA-binding domain displays at least 80% amino acid sequence identity to TBPs from fungi, flies, nematodes, slime molds, plants, and humans. Sequence differences between human and fungal TPBs in the DNA-binding domain may represent potential targets for antifungal therapy.
Collapse
Affiliation(s)
- P Leng
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, United Kingdom
| | | | | |
Collapse
|
27
|
Affiliation(s)
- S Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Soppa J, Link TA. The TATA-box-binding protein (TBP) of Halobacterium salinarum. Cloning of the tbp gene, heterologous production of TBP and folding of TBP into a native conformation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:318-24. [PMID: 9363785 DOI: 10.1111/j.1432-1033.1997.t01-1-00318.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The TATA-box binding protein (TBP) is a basal transcription factor involved in transcription initiation in Eucarya and Archaea. Using a tbp-specific probe, a 4.5-kbp genomic fragment from Halobacterium salinarum was cloned and sequenced. It contained the tbp gene and the 5'-ends of two additional open reading frames, but surprisingly, 70% of the cloned fragment (3.2 kbp) was devoid of coding capacity or similarity to database sequences. The deduced halobacterial TBP exhibits sequence similarities to other archaeal (41-43%) as well as to eucaryal (27-38%) TBP. A comparative analysis showed that the archaeal and eucaryal TBP form two related monophylic protein families, and the archaeal TBP possess features which separate them from eucaryal TBP. Compared with the other TBP, the halobacterial TBP is unique in having a high excess of negatively charged residues. A histidine-tagged version of the halobacterial TBP was produced in Escherichia coli in a denatured conformation and purified by means of Ni-chelating chromatography. CD spectroscopy was used to monitor TBP secondary structure and the conditions necessary for folding it into a native conformation. In the absence of denaturating agents, the folded as well as the unfolded state were found to be stable over a wide range of salt concentrations. Properly folded TBP was shown to bind to a halobacterial TATA-box-containing DNA fragment, indicating that the fusion protein can be used to characterize DNA recognition by the halobacterial TBP.
Collapse
Affiliation(s)
- J Soppa
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| | | |
Collapse
|
29
|
Tanese N. Small-scale density gradient sedimentation to separate and analyze multiprotein complexes. Methods 1997; 12:224-34. [PMID: 9237167 DOI: 10.1006/meth.1997.0475] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factor TFIID is a multisubunit complex that is required for promoter recognition and accurate initiation of transcription by RNA polymerase II. To dissect the molecular architecture and the biochemical properties of TFIID, a small-scale density gradient sedimentation method is employed to separate related complexes through differences in their sedimentation properties. A small amount of starting material is sufficient to obtain readily assayable amounts of separated proteins after centrifugation for 8 to 12 h in a benchtop ultracentrifuge. Gradient fractions are analyzed by immunoblotting for the presence of specific components of TFIID. Sucrose gradient sedimentation is performed to separate a mixture of multiprotein complexes from a crude nuclear extract immunoprecipitation of the proteins present in each fraction with an anti-TBP antibody reveals multiple TBP-containing complexes of different sizes. Density gradient sedimentation permits separation of specific components in a complex mixture and preserves activity, allowing functional assays.
Collapse
Affiliation(s)
- N Tanese
- Department of Microbiology, New York University Medical Center, New York 10016, USA.
| |
Collapse
|
30
|
Goddemeier ML, Feix G. Genomic structure of the maize TATA-box binding protein 1 (TBP-1): conserved exon/intron structure in eukaryotic TBP genes. Gene X 1996; 174:111-4. [PMID: 8863736 DOI: 10.1016/0378-1119(96)00437-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The gene system of the TATA-box binding protein (TBP) is well suited for the study of the evolutionary conservation of essential components of eukaryotic transcription initiation. In this context we have isolated and sequenced the maize TBP gene for a comparison with TBP genes from other organisms. In particular, a molecular phylogenetic analysis of the exon/intron structure of these genes including the archaeal TBP homolog (Thermococcus celer) was performed, revealing that the intron insertion probably occurred after the early appearance of the characteristic tandem repeat within the highly conserved C-terminal domain of all known TBPs, but before separation of the eukaryotic progenitor into the different kingdoms.
Collapse
Affiliation(s)
- M L Goddemeier
- Institute for Biology III, University of Freiburg, Germany
| | | |
Collapse
|
31
|
Griffith JD, Makhov A, Zawel L, Reinberg D. Visualization of TBP oligomers binding and bending the HIV-1 and adeno promoters. J Mol Biol 1995; 246:576-84. [PMID: 7533216 DOI: 10.1016/s0022-2836(05)80107-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The binding of the 28 kDa yeast TATA binding protein (yTBP) to the HIV and adeno major late promoters has been examined by electron microscopy (EM). Three different EM preparative methods were employed: direct mounting and shadowcasting of fixed samples, cryofixation and freeze-drying followed by shadowcasting, and negative staining of unfixed samples. Excellent agreement among the three methods was obtained. With ten yTBP monomers/DNA fragment, up to 25% of the DNA molecules contained easily distinguished protein particles at the TATA box and, less frequently, smaller particles were observed. Non-specific binding to DNA ends was common. The mass of the easily distinguished particles measured 63(+/- 5) kDa (cryofixation and shadowcasting) and 48(+/- 6) kDa (negative staining) indicating TBP dimerization. With 22 and 44 yTBP monomers/DNA, yTBP polymerization produced DNA-protein rods 9 nm wide and 20 to 30 nm long, frequently with two DNA strands exiting one end. Bending analysis revealed that yTBP dimers bend the DNA about the TATA box by 80 to 90 degrees. Although these protein ratios are relatively high, the structures formed demonstrate the propensity of yTBP to engage in protein-protein interactions.
Collapse
Affiliation(s)
- J D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295
| | | | | | | |
Collapse
|
32
|
Qadri I, Maguire HF, Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc Natl Acad Sci U S A 1995; 92:1003-7. [PMID: 7862623 PMCID: PMC42625 DOI: 10.1073/pnas.92.4.1003] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several viral transcriptional activators have been shown to interact with the basal transcription factor TATA-binding protein (TBP). These associations have been implicated in facilitating the assembly of the transcriptional preinitiation complex. We report here that the hepatitis B virus protein X (pX) specifically binds to TBP in vitro. While truncations of the highly conserved carboxyl terminus of TBP abolished this binding, amino-terminal deletions had no effect. Deletion analysis suggests that a domain consisting of 71 aa in the highly conserved carboxyl-terminal region of TBP is necessary for its interaction with pX. The minimal region in pX sufficient for its interaction with TBP includes aa 110-143. Furthermore, TBP from phylogenetically distinct species including Arabidopsis thaliana, Saccharomyces cerevisiae, Drosophila melanogaster, and Solanum tuberosum (potato) bound to pX. The pX-TBP interaction was inhibited in the presence of nonhydrolyzable analogs of ATP, suggesting a requirement for ATP. These results provide an explanation for the promiscuous behavior of pX in the transactivation of a large repertoire of cellular promoters. This study further implicates a fundamental role for pX in modulating transcriptional regulatory pathways by interacting with the basal transcription factor TBP.
Collapse
Affiliation(s)
- I Qadri
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
33
|
Nakashima K, Nobuhisa I, Deshimaru M, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori M, Sakaki Y, Hattori S, Ohno M. Structures of genes encoding TATA box-binding proteins from Trimeresurus gramineus and T. flavoviridis snakes. Gene 1995; 152:209-13. [PMID: 7835702 DOI: 10.1016/0378-1119(94)00681-h] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cDNA encoding the Trimeresurus gramineus (Tg; green habu snake) TATA-box-binding protein (TgTBP) was cloned and sequenced. The cDNA encodes a 33-kDa protein with an extensive sequence similarity to those derived from other organisms, except for the N-terminal domain. Genes encoding TgTBP and Trimeresurus flavoviridis (Tf; habu snake) TBP (TfTBP) were isolated using a TgTBP cDNA and their nt sequences were determined. They are the first TBP genes entirely sequenced in higher animals. Both genes span over 15 kb and are constructed from eight exons and seven introns. Comparison of the loci of introns on the aligned amino-acid sequences of TBP from six organisms (Tg, Tf, mouse, Arabidopsis thaliana, Schizosaccharomyces pombe and Acanthamoeba castellanii) indicated that there are three highly conserved loci in the C-terminal domain.
Collapse
Affiliation(s)
- K Nakashima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Takahashi T, Gasch A, Nishizawa N, Chua NH. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev 1995; 9:97-107. [PMID: 7828854 DOI: 10.1101/gad.9.1.97] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated a recessive mutation named diminuto (dim) from T-DNA transformed lines of Arabidopsis thaliana. Under normal growth conditions, the dim mutant has very short hypocotyls, petioles, stems, and roots because of the reduced size of cells along the longitudinal axes of these organs. In addition, dim results in the development of open cotyledons and primary leaves in dark-grown seedlings. The gene for DIM was cloned by T-DNA tagging. DIM encodes a novel protein of 561 amino acids that possesses bipartite sequence domains characteristic of nuclear localization signals. Molecular and physiological studies indicate that the loss-of-function mutant allele does not abolish the response of seedlings to light or phytohormones, although the inhibitory effect of light on hypocotyl elongation is greater in the mutant than in wild type. Moreover, the dim mutation affects the expression of a beta-tubulin gene, TUB1, which is thought to be important for plant cell growth. Our results suggest that the DIM gene product plays a critical role in the general process of plant cell elongation.
Collapse
Affiliation(s)
- T Takahashi
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021-6399
| | | | | | | |
Collapse
|
35
|
Abstract
Genes encoding the TFIID TATA-box binding protein (TBP) from two probable species of rat Pneumocystis carinii (prototype and variant) were sequenced. The two P. carinii TBP gene sequences were 91% identical to each other, and 65-77% identical to TBP genes from other species. A cDNA from one of the two P. carinii TBP genes was sequenced, which showed that four small introns resided in identical positions within the TBP genes from the prototype and variant rat P. carinii. Conservation of the 180 amino acids that constitute the conserved core of TBP was 97% between the P. carinii TBP, which were 95% and 97% identical to conserved core sequences of TBP from Saccharomyces cerevisiae and Schizosaccharomyces pombe respectively.
Collapse
Affiliation(s)
- S M Sunkin
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, Ohio 45267-0524
| | | |
Collapse
|
36
|
Kuromori T, Yamamoto M. Cloning of cDNAs from Arabidopsis thaliana that encode putative protein phosphatase 2C and a human Dr1-like protein by transformation of a fission yeast mutant. Nucleic Acids Res 1994; 22:5296-301. [PMID: 7816619 PMCID: PMC332074 DOI: 10.1093/nar/22.24.5296] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We characterized three Arabidopsis thaliana cDNA clones that could rescue the sterile phenotype of the Schizosaccharomyces pombe pde1 mutant, which is defective in cAMP phosphodiesterase. The first clone had a coding capacity of 399 amino acids that is 35% identical with rat protein phosphatase 2C (PP2C). The second had a coding capacity of 159 amino acids that is 41% identical with human Dr1. Dr1 has been shown to interact with TATA-binding protein (TBP) and block its ability to activate transcription. The third encoded Arabidopsis TBP itself. Saccharomyces cerevisiae TBP also could suppress the sterile phenotype if expressed in S.pombe pde1 cells, but overexpression of S.pombe TBP could do so very poorly. These observations suggest preliminarily that PP2C may counteract cAMP-dependent protein kinase in fission yeast cells, and that the heterologous TBPs and Dr1 may interfere with the general transcription factors of S.pombe so that the gene expression in the host cell becomes affirmative of sexual development. Furthermore, the identification of a Dr1-like protein in A.thaliana strongly argues for the ubiquity of this protein among eukaryotic genera and for a conserved mechanism to regulate transcription initiation that involves Dr1.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- Amino Acid Sequence
- Arabidopsis/chemistry
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Base Sequence
- Cloning, Molecular
- Cyclic Nucleotide Phosphodiesterases, Type 1
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Gene Library
- Genes, Fungal/genetics
- Genes, Plant/genetics
- Genes, Suppressor/genetics
- Genetic Complementation Test
- Humans
- Molecular Sequence Data
- Mutation
- Phosphoprotein Phosphatases/genetics
- Phosphoproteins/genetics
- Phosphoric Diester Hydrolases
- Protein Phosphatase 2
- Protein Phosphatase 2C
- Saccharomyces cerevisiae Proteins
- Schizosaccharomyces/genetics
- Schizosaccharomyces pombe Proteins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- TATA Box
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- T Kuromori
- Department of Biophysics and Biochemistry, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
37
|
Nikolov DB, Burley SK. 2.1 A resolution refined structure of a TATA box-binding protein (TBP). NATURE STRUCTURAL BIOLOGY 1994; 1:621-37. [PMID: 7634102 DOI: 10.1038/nsb0994-621] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of a TATA box-binding protein (TBP2) from Arabidopsis thaliana has been refined at 2.1 A resolution. TBPs are general eukaryotic transcription factors that participate in initiation of RNA synthesis by all three eukaryotic RNA polymerases. The carboxy-terminal portion of TBP is a unique DNA-binding motif/protein fold, adopting a highly symmetric alpha/beta structure that resembles a molecular saddle with two stirrup-like loops. A ten-stranded, antiparallel beta-sheet provides a concave surface for recognizing class II nuclear gene promoters, while the four amphipathic alpha-helices on the convex surface are available for interaction with other transcription factors. The myriad interactions of TBP2 with components of the transcription machinery are discussed.
Collapse
Affiliation(s)
- D B Nikolov
- Laboratory of Molecular Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Rasmussen C, Rohrmann GF. Characterization of the Spodoptera frugiperda TATA-binding protein: nucleotide sequence and response to baculovirus infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:699-708. [PMID: 7520800 DOI: 10.1016/0965-1748(94)90057-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A cDNA clone containing a 921 bp open-reading frame (307 amino acids; 34 kDa) homologous to the TATA-binding protein (TBP) was isolated and sequenced from a Spodoptera frugiperda cell line that is commonly used in the baculovirus expression system. Analysis of the S. frugiperda TBP (SfTBP) sequence showed that the amino-terminal portion of SfTBP diverged significantly from that of other TBP sequences including Drosophila melanogaster whereas the carboxy-terminal sequence was highly conserved. Southern blot analysis indicated that SfTBP was encoded by a single gene in the S. frugiperda genome. Northern blot analysis indicated that steady-state levels of the 1.3 kb SfTBP transcript declined by 24 h post-infection corresponding to the time of virus-induced inhibition of host-cell transcription. Corresponding western blot analysis showed that TBP protein levels remain constant up to 72 h post-infection.
Collapse
Affiliation(s)
- C Rasmussen
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-7301
| | | |
Collapse
|
39
|
Kato K, Makino Y, Kishimoto T, Yamauchi J, Kato S, Muramatsu M, Tamura T. Multimerization of the mouse TATA-binding protein (TBP) driven by its C-terminal conserved domain. Nucleic Acids Res 1994; 22:1179-85. [PMID: 8165131 PMCID: PMC523640 DOI: 10.1093/nar/22.7.1179] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The conformational states of the mouse TATA-binding protein (TBP) in solution were studied. A histidine tag and a factor Xa recognition site-carrying mouse TBP was expressed in E. coli, highly purified, and its fundamental functions as a TBP were demonstrated. We analyzed the molecular states of mouse TBP by gel filtration and glycerol gradient sedimentation, and found that TBP forms heterogeneous multimers in solution. Direct binding of TBP molecules to each other was proven by the far-Western procedure. Analyses using TBPs truncated at the N- and C-termini demonstrated that the functionally important C-terminal domain was responsible for homomultimer formation, and the N-terminal domain enhances multimerization. Furthermore, it was found that the TATA sequence dissociates homomultimers, and only monomeric TBP binds to the TATA-box. We suggest that TBP shares structural motifs in the C-terminal conserved domain for intermolecular interaction and TATA-binding.
Collapse
Affiliation(s)
- K Kato
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Schweizer P, Mösinger E. Initiator-dependent transcription in vitro by a wheat germ chromatin extract. PLANT MOLECULAR BIOLOGY 1994; 25:115-130. [PMID: 8003692 DOI: 10.1007/bf00024203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of plant in vitro transcription systems transcribing faithfully and efficiently from a broad range of plant nuclear promoters has remained a challenge. We examined the nucleotide sequence requirements for faithful and efficient transcription in a wheat germ chromatin extract (Yamazaki et al., Plant Mol Biol Rep 8: 114-123). The wheat germ chromatin extract was tested with a series of chimeric promoter constructs containing plant promoter sequences upstream from the TATA box, TATA boxes, and cap-site sequences (from -10 to +14, relative to the major in vivo initiation site) in different combinations. The plant extract transcribed faithfully from several chimeric promoters containing the capsite sequence of the parsley chalcone synthase promoter. The transcription was sensitive to the RNA polymerase II-specific inhibitor alpha-amanitin and was only dependent on the chalcone synthase cap-site sequence which therefore fulfils the operational criteria for a plant initiator element. Mutations of the putative chalcone synthase initiator element defined a core sequence '5'TAACAAC' around the initiation site that was necessary for efficient transcription in vitro. In contrast to the extract, purified wheat germ RNA polymerase II showed no preference for transcription from the major chalcone synthase in vivo initiation site.
Collapse
Affiliation(s)
- P Schweizer
- Sandoz Agro Ltd., Agrobiological Research Station, Witterswil, Switzerland
| | | |
Collapse
|
41
|
Kokubo T, Gong DW, Wootton JC, Horikoshi M, Roeder RG, Nakatani Y. Molecular cloning of Drosophila TFIID subunits. Nature 1994; 367:484-7. [PMID: 7545910 DOI: 10.1038/367484a0] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcription initiation factor TFIID is a multisubunit complex containing a TATA-box-binding factor (TFIID tau/TBP) and associated polypeptide factors (TAFs) with sizes ranging from M(r) approximately 20,000 to > 200,000. As a result of direct promoter interactions, TFIID nucleates the assembly of RNA polymerase II and other initiation factors into a functional preinitiation complex. Although the native TFIID complex mediates both basal and activator-dependent transcription in reconstituted systems, TBP itself is competent for only basal transcription. Thus, TAFs are essential cofactors for regulated transcription. The complementary DNAs encoding the p230 (M(r) 230,000), p110 and p85 subunits of TFIID have recently been cloned. Here we report the molecular cloning and characterization of the p62, p42, p28 and p22 subunits. These participate in a network of heterogeneous protein-protein interactions within TFIID. Sequence similarities between p62/p42 and the histones H4/H3, respectively, suggest that these subunits have a functional relationship with chromatin.
Collapse
Affiliation(s)
- T Kokubo
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Unambiguous TATA boxes have not been identified in upstream sequences of Tetrahymena thermophila genes analyzed to date. To begin a characterization of the promoter requirements for RNA polymerase II, the gene encoding TATA-binding protein (TBP) was cloned from this species. The derived amino acid sequence for the conserved C-terminal domain of Tetrahymena TBP is one of the most divergent described and includes a unique 20-amino-acid C-terminal extension. Polyclonal antibodies generated against a fragment of Tetrahymena TBP recognize a 36-kDa protein in macronuclear preparations and also cross-react with yeast and human TBPs. Immunocytochemistry was used to examine the nuclear localization of TBP during growth, starvation, and conjugation (the sexual phase of the life cycle). The transcriptionally active macronuclei stained at all stages of the life cycle. The transcriptionally inert micronuclei did not stain during growth or starvation but surprisingly stained with anti-TBP throughout early stages of conjugation. Anti-TBP staining disappeared from developing micronuclei late in conjugation, corresponding to the onset of transcription in developing macronuclei. Since micronuclei do not enlarge or divide at this time, loss of TBP appears to be an active process. Thus, the transcriptional differences between macro- and micronuclei that arise during conjugation are associated with the loss of a major component of the basal transcription apparatus from developing micronuclei rather than its appearance in developing macronuclei.
Collapse
|
43
|
Stargell LA, Gorovsky MA. TATA-binding protein and nuclear differentiation in Tetrahymena thermophila. Mol Cell Biol 1994; 14:723-34. [PMID: 8264641 PMCID: PMC358421 DOI: 10.1128/mcb.14.1.723-734.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Unambiguous TATA boxes have not been identified in upstream sequences of Tetrahymena thermophila genes analyzed to date. To begin a characterization of the promoter requirements for RNA polymerase II, the gene encoding TATA-binding protein (TBP) was cloned from this species. The derived amino acid sequence for the conserved C-terminal domain of Tetrahymena TBP is one of the most divergent described and includes a unique 20-amino-acid C-terminal extension. Polyclonal antibodies generated against a fragment of Tetrahymena TBP recognize a 36-kDa protein in macronuclear preparations and also cross-react with yeast and human TBPs. Immunocytochemistry was used to examine the nuclear localization of TBP during growth, starvation, and conjugation (the sexual phase of the life cycle). The transcriptionally active macronuclei stained at all stages of the life cycle. The transcriptionally inert micronuclei did not stain during growth or starvation but surprisingly stained with anti-TBP throughout early stages of conjugation. Anti-TBP staining disappeared from developing micronuclei late in conjugation, corresponding to the onset of transcription in developing macronuclei. Since micronuclei do not enlarge or divide at this time, loss of TBP appears to be an active process. Thus, the transcriptional differences between macro- and micronuclei that arise during conjugation are associated with the loss of a major component of the basal transcription apparatus from developing micronuclei rather than its appearance in developing macronuclei.
Collapse
Affiliation(s)
- L A Stargell
- Biology Department, University of Rochester, New York 14627
| | | |
Collapse
|
44
|
Bakó L, Nuotio S, Dudits D, Schell J, Koncz C. RNAPII: a specific target for the cell cycle kinase complex. Results Probl Cell Differ 1994; 20:25-64. [PMID: 8036318 DOI: 10.1007/978-3-540-48037-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- L Bakó
- Institute of Plant Physiology, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- P Schweizer
- Institute de Biologie Végétale, Université de Fribourg, Switzerland
| |
Collapse
|
46
|
Mukumoto F, Hirose S, Imaseki H, Yamazaki K. DNA sequence requirement of a TATA element-binding protein from Arabidopsis for transcription in vitro. PLANT MOLECULAR BIOLOGY 1993; 23:995-1003. [PMID: 8260636 DOI: 10.1007/bf00021814] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have analyzed the DNA sequence requirements for the functioning of TATA elements by examining the transcriptional activities associated with 24 promoters, including representatives of each of the 21 point mutations in the consensus sequence from plants, TATATATA, in a HeLa in vitro system and in a chimeric in vitro system in which human TATA-binding protein (hTBP) was replaced by purified TBP of Arabidopsis (aTBP-1). Although the relative transcriptional activities varied among these promoters, both systems gave virtually identical results. Among the mutant TATA elements, those with the sequences TAGAGATA and GAGAGAGA had undetectable activity. The rest had activities that ranged from 7% to 130% of the activity associated with the consensus element. These results suggest the functional conservation of TBP between plants and animals.
Collapse
Affiliation(s)
- F Mukumoto
- School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- S Li
- Department of Biochemistry, University of Iowa, Iowa City 52242
| | | |
Collapse
|
48
|
Sadowski CL, Henry RW, Lobo SM, Hernandez N. Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE. Genes Dev 1993; 7:1535-48. [PMID: 8339931 DOI: 10.1101/gad.7.8.1535] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the human small nuclear RNA (snRNA) promoters, the presence of a TATA box recognized by the TATA box-binding protein (TBP) determines the selection of RNA polymerase III over RNA polymerase II. The RNA polymerase II snRNA promoters are, therefore, good candidates for TBP-independent promoters. We show here, however, that TBP activates transcription from RNA polymerase II snRNA promoters through a non-TATA box element, the snRNA proximal sequence element (PSE), as part of a new snRNA-activating protein complex (SNAPc). In contrast to the previously identified TBP-containing complexes SL1, TFIID, and TFIIIB, which appear dedicated to transcription by a single RNA polymerase, SNAPc is also essential for RNA polymerase III transcription from the U6 snRNA promoter. The U6 initiation complex appears to contain two forms of TBP, one bound to the TATA box and one bound to the PSE as a part of SNAPc, suggesting that multiple TBP molecules can have different functions within a single promoter.
Collapse
|
49
|
Hancock JM. Evolution of sequence repetition and gene duplications in the TATA-binding protein TBP (TFIID). Nucleic Acids Res 1993; 21:2823-30. [PMID: 8332491 PMCID: PMC309661 DOI: 10.1093/nar/21.12.2823] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Analysis of TBP gene sequences from a variety of species for clustering of short sequence motifs and for over- and underrepresentation of short sequence motifs suggests involvement of slippage in the recent evolution of the TBP N-terminal domains in metazoans, Acanthamoeba and wheat. AGC, GCA and CAG are overrepresented in TBP genes of other species, suggesting that opa arrays were amplified from motifs overrepresented in ancestral species. The phylogenetic distribution of recently slippage-derived sequences in TBP is similar to that observed in the large subunit ribosomal RNAs, suggesting a propensity for certain evolutionary lineages to incorporate slippage-generated motifs into protein-coding as well as ribosomal RNA genes. Because length increase appears to have taken place independently in lineages leading to vertebrates, insects and nematodes, TBP N-terminal domains in these lineages are not homologous. All gene duplications in the TBP gene family appear to have been recent events despite strong protein sequence similarity between TRF and P. falciparum TBP. The enlargement of the TBP N-terminal domain may have coincided with acquisition of new functions and may have accompanied molecular coevolution with domains of other proteins, resulting in the acquisition of new or more complex mechanisms of transcription regulation.
Collapse
Affiliation(s)
- J M Hancock
- Molecular Evolution and Systematics Group and Bioinformatics Facility, Research School of Biological Sciences, Australian National University, Canberra, ACT
| |
Collapse
|
50
|
Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein. Mol Cell Biol 1993. [PMID: 8497275 DOI: 10.1128/mcb.13.6.3650] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TATA-binding protein (TBP) is an essential component of the transcriptional machinery of all three nuclear RNA polymerase enzymes. Comparison of the amino acid sequence of TBPs from a number of species reveals a highly conserved 180-residue C-terminal domain. In contrast, the N terminus is variable in both size and amino acid sequence. Overexpression of a TBP protein with a deletion of the nonconserved N terminus (TBP delta 57) in Saccharomyces cerevisiae results in a dominant negative phenotype of extremely slow growth. Associated with the slow-growth phenotype are defects in RNA polymerase II transcription in vivo. We have screened a high-copy-number yeast genomic library for suppression of the slow-growth phenotype and have isolated plasmids which encode suppressors of TBP delta 57 overexpression. Here we report the sequence and initial characterization of one suppressor, designated STD1 for suppressor of TBP deletion. The STD1 gene contains a single continuous open reading frame with the potential to encode a 50.2-kDa protein. Disruption of the STD1 gene indicates that it is not essential for vegetative growth, mating, or sporulation. High-copy-number suppression by the STD1 gene is not the result of a decrease in TBP delta 57 protein accumulation or DNA-binding activity; instead, STD1 suppression is coincident with the elimination of TBP delta 57-induced RNA polymerase II defects in both uninduced and induced transcription in vivo.
Collapse
|