1
|
Ma C, Wang J, Gao Y, Dong X, Feng H, Yang M, Yu Y, Liu C, Wu X, Qi Z, Mur LAJ, Magne K, Zou J, Hu Z, Tian Z, Su C, Ratet P, Chen Q, Xin D. The type III effector NopL interacts with GmREM1a and GmNFR5 to promote symbiosis in soybean. Nat Commun 2024; 15:5852. [PMID: 38992018 PMCID: PMC11239682 DOI: 10.1038/s41467-024-50228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean. NopL physically interacts with the Glycine max Remorin 1a (GmREM1a) and the NFs receptor NFR5 (GmNFR5) and promotes GmNFR5 recruitment by GmREM1a. Furthermore, NopL and NF influence the expression of GmRINRK1, a receptor-like kinase (LRR-RLK) ortholog of the Lotus RINRK1, that mediates NF signaling. Taken together, our work indicates that S. fredii NopL can interact with the NF signaling cascade components to promote the symbiotic interaction in soybean.
Collapse
Affiliation(s)
- Chao Ma
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jinhui Wang
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yongkang Gao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xulun Dong
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haojie Feng
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingliang Yang
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yanyu Yu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chunyan Liu
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.
| | - Xiaoxia Wu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhaoming Qi
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Luis A J Mur
- Department of Life Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth, UK
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Jianan Zou
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China
| | - Zhenbang Hu
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chao Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France.
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France.
| | - Qingshan Chen
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.
| | - Dawei Xin
- College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.
- Department of Life Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth, UK.
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France.
| |
Collapse
|
2
|
Wang H, Ren L, Liang Y, Zheng K, Guo R, Liu Y, Wang Z, Han Y, Zhang X, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Psychrobacter Phage Encoding an Antibiotics Resistance Gene Represents a Novel Caudoviral Family. Microbiol Spectr 2023; 11:e0533522. [PMID: 37272818 PMCID: PMC10434257 DOI: 10.1128/spectrum.05335-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/07/2023] [Indexed: 06/06/2023] Open
Abstract
Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.
Collapse
Affiliation(s)
- Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
4
|
Wang D, Couderc F, Tian CF, Gu W, Liu LX, Poinsot V. Conserved Composition of Nod Factors and Exopolysaccharides Produced by Different Phylogenetic Lineage Sinorhizobium Strains Nodulating Soybean. Front Microbiol 2018; 9:2852. [PMID: 30534119 PMCID: PMC6275314 DOI: 10.3389/fmicb.2018.02852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022] Open
Abstract
The structural variation of symbiotic signals released by rhizobia determines the specificity of their interaction with legume plants. Previous studies showed that Sinorhizobium strains from different phylogenetic lineages had different symbiotic performance on certain cultivated soybeans. Whether they released similar or different symbiotic signals remained unclear. In this study, we compared their nod and exo gene clusters and made a detailed structural analysis of Nod factors and EPS by ESI-MS/MS and two dimensions NMR. Even if there are some differences among nod or exo gene clusters; they produced much conserved Nod factor and EPS compositions. The Nod factors consist of a cocktail of β-(1, 4)-linked tri-, tetra-, and pentamers of N-acetyl-D-glucosamine (GlcNAc). The C2 position on the non-reducing terminal end is modified by a lipid chain that contains 16 or 18 atoms of carbon–with or without unsaturations-, and the C6 position on the reducing residue is decorated by a fucose or a 2-O-methylfucose. Their EPS are composed of glucose, galactose, glucuronic acid, pyruvic acid in the ratios 5:1:2:1 or 6:1:2:1. These findings indicate that soybean cultivar compatibility of Sinorhizobium strains does not result from Nod factor or EPS structure variations. The structure comparison of the soybean microbionts with other Sinorhizobium strains showed that Nod factor structures of soybean microbionts are much conserved, although there are no specific genes shared by the soybean microsymbionts. EPS produced by Sinorhizobium strains are different from those of Bradyrhizobium. All above is consistent with the previous deduction that Nod factor structures are related to host range, while those of EPS are connected with phylogeny.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, China.,Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France.,State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - François Couderc
- Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Verena Poinsot
- Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France
| |
Collapse
|
5
|
Gisselmann G, Niehaus A, Schwenn JD. Homologies in the Structural Genes Coding for Sulphate Reducing Enzymes from Higher Plants and Prokaryotes*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1992.tb00289.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Prioretti L, Gontero B, Hell R, Giordano M. Diversity and regulation of ATP sulfurylase in photosynthetic organisms. FRONTIERS IN PLANT SCIENCE 2014; 5:597. [PMID: 25414712 PMCID: PMC4220642 DOI: 10.3389/fpls.2014.00597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/13/2014] [Indexed: 05/20/2023]
Abstract
ATP sulfurylase (ATPS) catalyzes the first committed step in the sulfate assimilation pathway, the activation of sulfate prior to its reduction. ATPS has been studied in only a few model organisms and even in these cases to a much smaller extent than the sulfate reduction and cysteine synthesis enzymes. This is possibly because the latter were considered of greater regulatory importance for sulfate assimilation. Recent evidences (reported in this paper) challenge this view and suggest that ATPS may have a crucial regulatory role in sulfate assimilation, at least in algae. In the ensuing text, we summarize the current knowledge on ATPS, with special attention to the processes that control its activity and gene(s) expression in algae. Special attention is given to algae ATPS proteins. The focus on algae is the consequence of the fact that a comprehensive investigation of ATPS revealed that the algal enzymes, especially those that are most likely involved in the pathway of sulfate reduction to cysteine, possess features that are not present in other organisms. Remarkably, algal ATPS proteins show a great diversity of isoforms and a high content of cysteine residues, whose positions are often conserved. According to the occurrence of cysteine residues, the ATPS of eukaryotic algae is closer to that of marine cyanobacteria of the genera Synechococcus and Prochlorococcus and is more distant from that of freshwater cyanobacteria. These characteristics might have evolved in parallel with the radiation of algae in the oceans and the increase of sulfate concentration in seawater.
Collapse
Affiliation(s)
- Laura Prioretti
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle MarcheAncona, Italy
| | - Brigitte Gontero
- Aix-Marseille Université Centre National de la Recherche Scientifique, BL' Unité de Bioénergétique et Ingénierie des Protéines UMR 7281Marseille, France
| | - Ruediger Hell
- Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Mario Giordano
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle MarcheAncona, Italy
- Institute of Microbiology Academy of Sciences of the Czech RepublicTrebon, Czech Republic
- *Correspondence: Mario Giordano, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy e-mail:
| |
Collapse
|
7
|
Op den Camp RHM, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJM, Bisseling T, Geurts R. Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:954-63. [PMID: 22668002 DOI: 10.1094/mpmi-11-11-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The non-legume genus Parasponia has evolved the rhizobium symbiosis independent from legumes and has done so only recently. We aim to study the promiscuity of such newly evolved symbiotic engagement and determine the symbiotic effectiveness of infecting rhizobium species. It was found that Parasponia andersonii can be nodulated by a broad range of rhizobia belonging to four different genera, and therefore, we conclude that this non-legume is highly promiscuous for rhizobial engagement. A possible drawback of this high promiscuity is that low-efficient strains can infect nodules as well. The strains identified displayed a range in nitrogen-fixation effectiveness, including a very inefficient rhizobium species, Rhizobium tropici WUR1. Because this species is able to make effective nodules on two different legume species, it suggests that the ineffectiveness of P. andersonii nodules is the result of the incompatibility between both partners. In P. andersonii nodules, rhizobia of this strain become embedded in a dense matrix but remain vital. This suggests that sanctions or genetic control against underperforming microsymbionts may not be effective in Parasponia spp. Therefore, we argue that the Parasponia-rhizobium symbiosis is a delicate balance between mutual benefits and parasitic colonization.
Collapse
MESH Headings
- Base Sequence
- Cannabaceae/microbiology
- Cannabaceae/ultrastructure
- Cell Death
- Fabaceae/microbiology
- Fabaceae/ultrastructure
- Genes, Bacterial/genetics
- Genome, Bacterial/genetics
- Host Specificity/physiology
- Molecular Sequence Data
- Nitrogen Fixation
- Phylogeny
- Plant Root Nodulation/physiology
- Proteobacteria/genetics
- Proteobacteria/isolation & purification
- Proteobacteria/physiology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Rhizobium tropici/genetics
- Rhizobium tropici/isolation & purification
- Rhizobium tropici/physiology
- Root Nodules, Plant/ultrastructure
- Sequence Analysis, DNA
- Sinorhizobium/genetics
- Sinorhizobium/isolation & purification
- Sinorhizobium/physiology
- Symbiosis/physiology
Collapse
Affiliation(s)
- Rik H M Op den Camp
- Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
|
10
|
Townsend GE, Keating DH. Identification and characterization of KpsS, a novel polysaccharide sulphotransferase in Mesorhizobium loti. Mol Microbiol 2008; 68:1149-64. [PMID: 18430142 DOI: 10.1111/j.1365-2958.2008.06215.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants enter into symbiotic relationships with bacteria that allow survival in nutrient-limiting environments. The bacterium Mesorhizobium loti enters into a symbiosis with the legume host, Lotus japonicus, which results in the formation of novel plant structures called root nodules. The bacteria colonize the nodules, and are internalized into the cytoplasm of the plant cells, where they reduce molecular dinitrogen for the plant. Symbiosis between M. loti and L. japonicus requires bacterial synthesis of secreted and cell-surface polysaccharides. We previously reported the identification of an unusual sulphate-modified form of capsular polysaccharide (KPS) in M. loti. To better understand the physiological function of sulphated KPS, we isolated the sulphotransferase responsible for KPS sulphation from M. loti extracts, determined its amino acid sequence and identified the corresponding M. loti open reading frame, mll7563 (which we have named kpsS). We demonstrated that partially purified KpsS functions as a fucosyl sulphotransferase in vitro. Furthermore, mutants deficient for this gene exhibit a lack of KPS sulphation and a decreased rate of nodule formation on L. japonicus. Interestingly, the kpsS gene product shares no significant amino acid similarity with previously identified sulphotransferases, but exhibited sequence identity to open reading frames of unknown function in diverse bacteria that interact with eukaryotes.
Collapse
Affiliation(s)
- Guy E Townsend
- Department of Microbiology and Immunology, Loyola University, Chicago, IL, USA
| | | |
Collapse
|
11
|
Keating DH. Sinorhizobium meliloti SyrA mediates the transcriptional regulation of genes involved in lipopolysaccharide sulfation and exopolysaccharide biosynthesis. J Bacteriol 2007; 189:2510-20. [PMID: 17209018 PMCID: PMC1899389 DOI: 10.1128/jb.01803-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 12/26/2006] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a gram-negative soil bacterium found either in free-living form or as a nitrogen-fixing endosymbiont of leguminous plants such as Medicago sativa (alfalfa). S. meliloti synthesizes an unusual sulfate-modified form of lipopolysaccharide (LPS). A recent study reported the identification of a gene, lpsS, which encodes an LPS sulfotransferase activity in S. meliloti. Mutants bearing a disrupted version of lpsS exhibit an altered symbiosis, in that they elicit more nodules than wild type. However, under free-living conditions, the lpsS mutant displayed no change in LPS sulfation. These data suggest that the expression of lpsS is differentially regulated, such that it is transcriptionally repressed during free-living conditions but upregulated during symbiosis. Here, I show that the expression of lpsS is upregulated in strains that constitutively express the symbiotic regulator SyrA. SyrA is a small protein that lacks an apparent DNA binding domain and is predicted to be located in the cytoplasmic membrane yet is sufficient to upregulate lpsS transcription. Furthermore, SyrA can mediate the transcriptional upregulation of exo genes involved in the biosynthesis of the symbiotic exopolysaccharide succinoglycan. The SyrA-mediated transcriptional upregulation of lpsS and exo transcription is blocked in mutants harboring a mutation in chvI, which encodes the response regulator of a conserved two-component system. Thus, SyrA likely acts indirectly to promote transcriptional upregulation of lpsS and exo genes through a mechanism that requires the ExoS/ChvI two-component system.
Collapse
Affiliation(s)
- David H Keating
- Department of Microbiology and Immunology, Loyola University Chicago, Building 105, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
12
|
Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 2007; 8:15. [PMID: 17214893 PMCID: PMC1780047 DOI: 10.1186/1471-2164-8-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 01/10/2007] [Indexed: 12/04/2022] Open
Abstract
Background Translational GTPases are a family of proteins in which GTPase activity is stimulated by the large ribosomal subunit. Conserved sequence features allow members of this family to be identified. Results To achieve accurate protein identification and grouping we have developed a method combining searches with Hidden Markov Model profiles and tree based grouping. We found all the genes for translational GTPases in 191 fully sequenced bacterial genomes. The protein sequences were grouped into nine subfamilies. Analysis of the results shows that three translational GTPases, the translation factors EF-Tu, EF-G and IF2, are present in all organisms examined. In addition, several copies of the genes encoding EF-Tu and EF-G are present in some genomes. In the case of multiple genes for EF-Tu, the gene copies are nearly identical; in the case of multiple EF-G genes, the gene copies have been considerably diverged. The fourth translational GTPase, LepA, the function of which is currently unknown, is also nearly universally conserved in bacteria, being absent from only one organism out of the 191 analyzed. The translation regulator, TypA, is also present in most of the organisms examined, being absent only from bacteria with small genomes. Surprisingly, some of the well studied translational GTPases are present only in a very small number of bacteria. The translation termination factor RF3 is absent from many groups of bacteria with both small and large genomes. The specialized translation factor for selenocysteine incorporation – SelB – was found in only 39 organisms. Similarly, the tetracycline resistance proteins (Tet) are present only in a small number of species. Proteins of the CysN/NodQ subfamily have acquired functions in sulfur metabolism and production of signaling molecules. The genes coding for CysN/NodQ proteins were found in 74 genomes. This protein subfamily is not confined to Proteobacteria, as suggested previously but present also in many other groups of bacteria. Conclusion Four of the translational GTPase subfamilies (IF2, EF-Tu, EF-G and LepA) are represented by at least one member in each bacterium studied, with one exception in LepA. This defines the set of translational GTPases essential for basic cell functions.
Collapse
|
13
|
Townsend GE, Forsberg LS, Keating DH. Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides. J Bacteriol 2006; 188:8560-72. [PMID: 17028279 PMCID: PMC1698228 DOI: 10.1128/jb.01035-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 09/27/2006] [Indexed: 11/20/2022] Open
Abstract
Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a beta-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces sulfated cell surface polysaccharides, such as lipopolysaccharide (LPS). The physiological function of sulfated cell surface polysaccharides is unclear, although mutants of S. meliloti with reduced LPS sulfation exhibit symbiotic abnormalities. Using a bioinformatic approach, we identified a homolog of the S. meliloti carbohydrate sulfotransferase, LpsS, in Mesorhizobium loti. M. loti participates in a determinate symbiosis with the legume Lotus japonicus. We showed that M. loti produces sulfated forms of LPS and capsular polysaccharide (KPS). To investigate the physiological function of sulfated polysaccharides in M. loti, we identified and disabled an M. loti homolog of the sulfate-activating genes, nodPQ, which resulted in undetectable amounts of sulfated cell surface polysaccharides and a cysteine auxotrophy. We concomitantly disabled an M. loti cysH homolog, which disrupted cysteine biosynthesis without reducing cell surface polysaccharide sulfation. Our experiments demonstrated that the nodPQ mutant, but not the cysH mutant, showed an altered KPS structure and a diminished ability to elicit nodules on its host legume, Lotus japonicus. Interestingly, the nodPQ mutant also exhibited a more rapid growth rate and appeared to outcompete wild-type M. loti for nodule colonization. These results suggest that sulfated cell surface polysaccharides are required for optimum nodule formation but limit growth rate and nodule colonization in M. loti.
Collapse
Affiliation(s)
- Guy E Townsend
- Department of Microbiology and Immunology, Loyola University Chicago, Building 105, 2160 S. First Ave., Maywood, IL 60153, USA
| | | | | |
Collapse
|
14
|
Carroll KS, Gao H, Chen H, Stout CD, Leary JA, Bertozzi CR. A conserved mechanism for sulfonucleotide reduction. PLoS Biol 2005; 3:e250. [PMID: 16008502 PMCID: PMC1175818 DOI: 10.1371/journal.pbio.0030250] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 05/12/2005] [Indexed: 12/02/2022] Open
Abstract
Sulfonucleotide reductases are a diverse family of enzymes that catalyze the first committed step of reductive sulfur assimilation. In this reaction, activated sulfate in the context of adenosine-5′-phosphosulfate (APS) or 3′-phosphoadenosine 5′-phosphosulfate (PAPS) is converted to sulfite with reducing equivalents from thioredoxin. The sulfite generated in this reaction is utilized in bacteria and plants for the eventual production of essential biomolecules such as cysteine and coenzyme A. Humans do not possess a homologous metabolic pathway, and thus, these enzymes represent attractive targets for therapeutic intervention. Here we studied the mechanism of sulfonucleotide reduction by APS reductase from the human pathogen Mycobacterium tuberculosis, using a combination of mass spectrometry and biochemical approaches. The results support the hypothesis of a two-step mechanism in which the sulfonucleotide first undergoes rapid nucleophilic attack to form an enzyme-thiosulfonate (E-Cys-S-SO3−) intermediate. Sulfite is then released in a thioredoxin-dependent manner. Other sulfonucleotide reductases from structurally divergent subclasses appear to use the same mechanism, suggesting that this family of enzymes has evolved from a common ancestor. A diverse family of enzymes that catalyze the first step in sulfur assimilation share the same mechanism.
Collapse
Affiliation(s)
- Kate S Carroll
- 1Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Hong Gao
- 1Department of Chemistry, University of California, Berkeley, California, United States of America
- 2Departments of Chemistry and Molecular Cell Biology, Genome Center, University of California, Davis, California, United States of America
| | - Huiyi Chen
- 3Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - C. David Stout
- 4Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julie A Leary
- 2Departments of Chemistry and Molecular Cell Biology, Genome Center, University of California, Davis, California, United States of America
| | - Carolyn R Bertozzi
- 1Department of Chemistry, University of California, Berkeley, California, United States of America
- 2Departments of Chemistry and Molecular Cell Biology, Genome Center, University of California, Davis, California, United States of America
- 5Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
15
|
Janga SC, Collado-Vides J, Moreno-Hagelsieb G. Nebulon: a system for the inference of functional relationships of gene products from the rearrangement of predicted operons. Nucleic Acids Res 2005; 33:2521-30. [PMID: 15867197 PMCID: PMC1088069 DOI: 10.1093/nar/gki545] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since operons are unstable across Prokaryotes, it has been suggested that perhaps they re-combine in a conservative manner. Thus, genes belonging to a given operon in one genome might re-associate in other genomes revealing functional relationships among gene products. We developed a system to build networks of functional relationships of gene products based on their organization into operons in any available genome. The operon predictions are based on inter-genic distances. Our system can use different kinds of thresholds to accept a functional relationship, either related to the prediction of operons, or to the number of non-redundant genomes that support the associations. We also work by shells, meaning that we decide on the number of linking iterations to allow for the complementation of related gene sets. The method shows high reliability benchmarked against knowledge-bases of functional interactions. We also illustrate the use of Nebulon in finding new members of regulons, and of other functional groups of genes. Operon rearrangements produce thousands of high-quality new interactions per prokaryotic genome, and thousands of confirmations per genome to other predictions, making it another important tool for the inference of functional interactions from genomic context.
Collapse
Affiliation(s)
| | | | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University75 University Avenue West, Waterloo, ON, N2L 3C5 Canada
- To whom correspondence should be addressed. Tel: (519) 884-0710 ext 2364; Fax: (519) 746-0677;
| |
Collapse
|
16
|
Cronan GE, Keating DH. Sinorhizobium meliloti sulfotransferase that modifies lipopolysaccharide. J Bacteriol 2004; 186:4168-76. [PMID: 15205418 PMCID: PMC421623 DOI: 10.1128/jb.186.13.4168-4176.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 04/05/2004] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a gram-negative soil bacterium found either in free-living form or as a nitrogen-fixing endosymbiont of a plant structure called the nodule. Symbiosis between S. meliloti and its plant host alfalfa is dependent on bacterial transcription of nod genes, which encode the enzymes responsible for synthesis of Nod factor. S. meliloti Nod factor is a lipochitooligosaccharide that undergoes a sulfate modification essential for its biological activity. Sulfate also modifies the carbohydrate substituents of the bacterial cell surface, including lipopolysaccharide (LPS) and capsular polysaccharide (K-antigen) (R. A. Cedergren, J. Lee, K. L. Ross, and R. I. Hollingsworth, Biochemistry 34:4467-4477, 1995). We utilized the genomic sequence of S. meliloti to identify an open reading frame, SMc04267 (which we now propose to name lpsS), which encodes an LPS sulfotransferase activity. We expressed LpsS in Escherichia coli and demonstrated that the purified protein functions as an LPS sulfotransferase. Mutants lacking LpsS displayed an 89% reduction in LPS sulfotransferase activity in vitro. However, lpsS mutants retain approximately wild-type levels of sulfated LPS when assayed in vivo, indicating the presence of an additional LPS sulfotransferase activity(ies) in S. meliloti that can compensate for the loss of LpsS. The lpsS mutant did show reduced LPS sulfation, compared to that of the wild type, under conditions that promote nod gene expression, and it elicited a greater number of nodules than did the wild type during symbiosis with alfalfa. These results suggest that sulfation of cell surface polysaccharides and Nod factor may compete for a limiting pool of intracellular sulfate and that LpsS is required for optimal LPS sulfation under these conditions.
Collapse
Affiliation(s)
- Glen E Cronan
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
17
|
Gressent F, Cullimore JV, Ranjeva R, Bono JJ. Radiolabeling of lipo-chitooligosaccharides using the NodH sulfotransferase: a two-step enzymatic procedure. BMC BIOCHEMISTRY 2004; 5:4. [PMID: 15084228 PMCID: PMC404373 DOI: 10.1186/1471-2091-5-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 04/13/2004] [Indexed: 11/16/2022]
Abstract
Background The NodH sulfotransferase from Sinorhizobium meliloti has been used to radiolabel lipochitooligosaccharidic (LCO) Nod factor signals with 35S from inorganic sulfate in a two-step enzymatic procedure. The first step involved the production of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), a sulphate donor, using enzymes contained in a yeast extract, and the second step used the NodH enzyme. However with this established procedure, only a low incorporation of the initial inorganic sulfate into the Nod factors was obtained (about 7% after purification of the labeled compounds). The aim of this work was to optimize the radiolabelling of Nod factors with 35S. Results The limiting step has been shown to be the sulfation of ATP and its subsequent conversion into PAPS (first step), the sulfate donor for the NodH sulfotransferase activity (second step). By the addition of GTP to the reaction mixture and by manipulating the [ATP]/[Mg2+] ratio the yield of PAPS has been increased from 13% to 80%. Using the radiolabeled PAPS we have shown that the efficiency of sulfate transfer to LCOs, by the recombinant S. meliloti NodH sulfotransferase is strongly influenced by the length of the oligosaccharide chain. Variations in the substitutions on the non-reducing sugar, including the structure of the fatty acyl chain, had little effect and Nod factors from the heterologous bacterium Rhizobium tropici could be sulfated by NodH from S. meliloti. Conclusions By characterizing the two steps we have optimized the procedure to radiolabel biologically-important, lipo-chitooligosaccharide (LCO) Nod factors to a specific radioactivity of about 800 Ci.mmol-1 with an incorporation of 60% of the initial inorganic sulfate. The two-step sulfation procedure may be used to radiolabel a variety of related LCO molecules.
Collapse
Affiliation(s)
- Frédéric Gressent
- Signaux et Messages Cellulaires chez les Végétaux, UMR CNRS-UPS 5546, Pôle de Biotechnologie Végétale, 24 chemin de Borde Rouge, BP 17 Auzeville, 31326 Castanet-Tolosan, France
- Current address: Biologie Fonctionnelle, Insectes et Interactions, UMR INRA-INSA de Lyon, INSA Bat L. Pasteur, 69621 Villeurbanne Cedex, France
| | - Julie V Cullimore
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA-CNRS 215, 24 chemin de Borde Rouge, BP 27 Auzeville, 31326 Castanet-Tolosan, France
| | - Raoul Ranjeva
- Signaux et Messages Cellulaires chez les Végétaux, UMR CNRS-UPS 5546, Pôle de Biotechnologie Végétale, 24 chemin de Borde Rouge, BP 17 Auzeville, 31326 Castanet-Tolosan, France
| | - Jean-Jacques Bono
- Signaux et Messages Cellulaires chez les Végétaux, UMR CNRS-UPS 5546, Pôle de Biotechnologie Végétale, 24 chemin de Borde Rouge, BP 17 Auzeville, 31326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA-CNRS 215, 24 chemin de Borde Rouge, BP 27 Auzeville, 31326 Castanet-Tolosan, France
| |
Collapse
|
18
|
Snoeck C, Verreth C, Hernández-Lucas I, Martínez-Romero E, Vanderleyden J. Identification of a third sulfate activation system in Sinorhizobium sp. strain BR816: the CysDN sulfate activation complex. Appl Environ Microbiol 2003; 69:2006-14. [PMID: 12676676 PMCID: PMC154821 DOI: 10.1128/aem.69.4.2006-2014.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 01/15/2003] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium sp. strain BR816 possesses two nodPQ copies, providing activated sulfate (3'-phosphoadenosine-5'-phosphosulfate [PAPS]) needed for the biosynthesis of sulfated Nod factors. It was previously shown that the Nod factors synthesized by a nodPQ double mutant are not structurally different from those of the wild-type strain. In this study, we describe the characterization of a third sulfate activation locus. Two open reading frames were fully characterized and displayed the highest similarity with the Sinorhizobium meliloti housekeeping ATP sulfurylase subunits, encoded by the cysDN genes. The growth characteristics as well as the levels of Nod factor sulfation of a cysD mutant (FAJ1600) and a nodP1 nodQ2 cysD triple mutant (FAJ1604) were determined. FAJ1600 shows a prolonged lag phase only with inorganic sulfate as the sole sulfur source, compared to the wild-type parent. On the other hand, FAJ1604 requires cysteine for growth and produces sulfate-free Nod factors. Apigenin-induced nod gene expression for Nod factor synthesis does not influence the growth characteristics of any of the strains studied in the presence of different sulfur sources. In this way, it could be demonstrated that the "household" CysDN sulfate activation complex of Sinorhizobium sp. strain BR816 can additionally ensure Nod factor sulfation, whereas the symbiotic PAPS pool, generated by the nodPQ sulfate activation loci, can be engaged for sulfation of amino acids. Finally, our results show that rhizobial growth defects are likely the reason for a decreased nitrogen fixation capacity of bean plants inoculated with cysD mutant strains, which can be restored by adding methionine to the plant nutrient solution.
Collapse
Affiliation(s)
- Carla Snoeck
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | | | |
Collapse
|
19
|
Keating DH, Willits MG, Long SR. A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation. J Bacteriol 2002; 184:6681-9. [PMID: 12426356 PMCID: PMC135449 DOI: 10.1128/jb.184.23.6681-6689.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Accepted: 08/09/2002] [Indexed: 11/20/2022] Open
Abstract
The Rhizobium-legume symbiosis involves the formation of a novel plant organ, the nodule, in which intracellular bacteria reduce molecular dinitrogen in exchange for plant photosynthates. Nodule development requires a bacterial signal referred to as Nod factor, which in Sinorhizobium meliloti is a beta-(1,4)-linked tetramer of N-acetylglucosamine containing N-acyl and O-acetyl modifications at the nonreducing end and a critical 6-O-sulfate at the reducing end. This sulfate modification requires the action of three gene products: nodH, which catalyzes the sulfonyl transfer, and nodPQ, which produce the activated form of sulfate, 3'-phosphoadenosine-5'-phosphosulfate. It was previously reported that S. meliloti cell surface polysaccharides are also covalently modified by sulfate in a reaction dependent on NodPQ. We have further characterized this unique form of bacterial carbohydrate modification. Our studies have determined that one of the nodPQ mutant strains used in the initial study of sulfation of cell surface harbored a second unlinked mutation. We cloned the gene affected by this mutation (referred to as lps-212) and found it to be an allele of lpsL, a gene previously predicted to encode a UDP-glucuronic acid epimerase. We demonstrated that lpsL encoded a UDP-glucuronic acid epimerase activity that was reduced in the lps-212 mutant. The lps-212 mutation resulted in an altered lipopolysaccharide structure that was reduced in sulfate modification in vitro and in vivo. Finally, we determined that the lps-212 mutation resulted in a reduced ability to elicit the formation of plant nodules and by altered infection thread structures that aborted prematurely.
Collapse
Affiliation(s)
- David H Keating
- Howard Hughes Medical Institute. Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
20
|
Shen Y, Sharma P, da Silva FG, Ronald P. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5'-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol Microbiol 2002; 44:37-48. [PMID: 11967067 DOI: 10.1046/j.1365-2958.2002.02862.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) Philippine race 6 (PR6) is unable to cause bacterial blight disease on rice lines containing the rice resistance gene Xa21 but is virulent on non-Xa21 rice lines, indicating that PR6 carries avirulence (avrXa21) determinants required for recognition by XA21. Here we show that two Xoo genes, raxP and raxQ, are required for AvrXa21 activity. raxP and raxQ, which reside in a genomic cluster of sulphur assimilation genes, encode an ATP sulphurylase and APS (adenosine-5'-phosphosulphate) kinase. These enzymes function together to produce activated forms of sulphate, APS and PAPS (3'-phosphoadenosine-5'-phosphosulphate). Xoo PR6 strains carrying disruptions in either gene, PR6DeltaraxP or PR6DeltaraxQ, are unable to produce APS and PAPS and are virulent on Xa21-containing rice lines. RaxP and RaxQ are similar to the bacterial symbiont Sinorhizobium meliloti host specificity proteins, NodP and NodQ and the Escherichia coli cysteine synthesis proteins CysD, CysN and CysC. The APS and PAPS produced by RaxP and RaxQ are used for both cysteine synthesis and sulphation of other molecules. Mutation in Xoo xcysI, a homologue of Escherichia coli cysI that is required for cysteine synthesis, blocked APS- or PAPS-dependent cysteine synthesis but did not affect AvrXa21 activity, suggesting that AvrXa21 activity is related to sulphation rather than cysteine synthesis. Taken together, these results demonstrate that APS and PAPS production plays a critical role in determining avirulence of a phytopathogen and reveal a commonality between symbiotic and phytopathogenic bacteria.
Collapse
Affiliation(s)
- Yuwei Shen
- Department of Plant Pathology, University of California Davis, CA 95616, USA
| | | | | | | |
Collapse
|
21
|
Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 2002; 317:41-72. [PMID: 11916378 DOI: 10.1006/jmbi.2001.5378] [Citation(s) in RCA: 860] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequences and available structures were compared for all the widely distributed representatives of the P-loop GTPases and GTPase-related proteins with the aim of constructing an evolutionary classification for this superclass of proteins and reconstructing the principal events in their evolution. The GTPase superclass can be divided into two large classes, each of which has a unique set of sequence and structural signatures (synapomorphies). The first class, designated TRAFAC (after translation factors) includes enzymes involved in translation (initiation, elongation, and release factors), signal transduction (in particular, the extended Ras-like family), cell motility, and intracellular transport. The second class, designated SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. These two classes together contain over 20 distinct families that are further subdivided into 57 subfamilies (ancient lineages) on the basis of conserved sequence motifs, shared structural features, and domain architectures. Ten subfamilies show a universal phyletic distribution compatible with presence in the last universal common ancestor of the extant life forms (LUCA). These include four translation factors, two OBG-like GTPases, the YawG/YlqF-like GTPases (these two subfamilies also consist of predicted translation factors), the two signal-recognition-associated GTPases, and the MRP subfamily of MinD-like ATPases. The distribution of nucleotide specificity among the proteins of the GTPase superclass indicates that the common ancestor of the entire superclass was a GTPase and that a secondary switch to ATPase activity has occurred on several independent occasions during evolution. The functions of most GTPases that are traceable to LUCA are associated with translation. However, in contrast to other superclasses of P-loop NTPases (RecA-F1/F0, AAA+, helicases, ABC), GTPases do not participate in NTP-dependent nucleic acid unwinding and reorganizing activities. Hence, we hypothesize that the ancestral GTPase was an enzyme with a generic regulatory role in translation, with subsequent diversification resulting in acquisition of diverse functions in transport, protein trafficking, and signaling. In addition to the classification of previously known families of GTPases and related ATPases, we introduce several previously undetected families and describe new functional predictions.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
22
|
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 2001; 98:9883-8. [PMID: 11481432 PMCID: PMC55547 DOI: 10.1073/pnas.161294798] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti contains three replicons: pSymA, pSymB, and the chromosome. We report here the complete 1,354,226-nt sequence of pSymA. In addition to a large fraction of the genes known to be specifically involved in symbiosis, pSymA contains genes likely to be involved in nitrogen and carbon metabolism, transport, stress, and resistance responses, and other functions that give S. meliloti an advantage in its specialized niche.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, and Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Eukaryotes often form symbioses with microorganisms. Among these, associations between plants and nitrogen-fixing bacteria are responsible for the nitrogen input into various ecological niches. Plants of many different families have evolved the capacity to develop root or stem nodules with diverse genera of soil bacteria. Of these, symbioses between legumes and rhizobia (Azorhizobium, Bradyrhizobium, Mesorhizobium, and Rhizobium) are the most important from an agricultural perspective. Nitrogen-fixing nodules arise when symbiotic rhizobia penetrate their hosts in a strictly controlled and coordinated manner. Molecular codes are exchanged between the symbionts in the rhizosphere to select compatible rhizobia from pathogens. Entry into the plant is restricted to bacteria that have the "keys" to a succession of legume "doors". Some symbionts intimately associate with many different partners (and are thus promiscuous), while others are more selective and have a narrow host range. For historical reasons, narrow host range has been more intensively investigated than promiscuity. In our view, this has given a false impression of specificity in legume-Rhizobium associations. Rather, we suggest that restricted host ranges are limited to specific niches and represent specialization of widespread and more ancestral promiscuous symbioses. Here we analyze the molecular mechanisms governing symbiotic promiscuity in rhizobia and show that it is controlled by a number of molecular keys.
Collapse
Affiliation(s)
- X Perret
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1292 Chambésy/Geneva, Switzerland
| | | | | |
Collapse
|
24
|
Suzuki K, Hattori Y, Uraji M, Ohta N, Iwata K, Murata K, Kato A, Yoshida K. Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 2000; 242:331-6. [PMID: 10721727 DOI: 10.1016/s0378-1119(99)00502-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Crown gall tumor disease in dicot plants is caused by Agrobacterium tumefaciens harboring a giant tumor-inducing (Ti) plasmid. Here, for the first time among agrobacterial plasmids, the nucleotide sequence of a typical nopaline-type Ti plasmid (pTi-SAKURA) was determined completely. In total, 195 open reading frames (ORFs) were estimated in the 206479 bp long sequence. 20 genes for conjugation, three for replication, 22 for pathogenesis and 37 for genetic colonization of host plants were found within two-thirds of the plasmid. These genes formed seven functional gene clusters with narrow inter-cluster spaces. In the remaining one-third of the plasmid, novel genes including homologs of mutT, Rhizobium nodQ and Sphingomonas ligE genes were found, which are likely to be responsible for the broad host range. Restriction fragment length variation indicates extreme plasticity of the part required for conjugational gene transfer and the above-mentioned one-third of the plasmid, even among closely related Ti plasmids.
Collapse
Affiliation(s)
- K Suzuki
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abola AP, Willits MG, Wang RC, Long SR. Reduction of adenosine-5'-phosphosulfate instead of 3'-phosphoadenosine-5'-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. J Bacteriol 1999; 181:5280-7. [PMID: 10464198 PMCID: PMC94033 DOI: 10.1128/jb.181.17.5280-5287.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and sequenced three genes from Rhizobium meliloti (Sinorhizobium meliloti) that are involved in sulfate activation for cysteine biosynthesis. Two of the genes display homology to the Escherichia coli cysDN genes, which code for an ATP sulfurylase (EC 2.7.7.4). The third gene has homology to the E. coli cysH gene, a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase (EC 1.8.99.4), but has greater homology to a set of genes found in Arabidopsis thaliana that encode an adenosine-5'-phosphosulfate (APS) reductase. In order to determine the specificity of the R. meliloti reductase, the R. meliloti cysH homolog was histidine tagged and purified, and its specificity was assayed in vitro. Like the A. thaliana reductases, the histidine-tagged R. meliloti cysH gene product appears to favor APS over PAPS as a substrate, with a Km for APS of 3 to 4 microM but a Km for PAPS of >100 microM. In order to determine whether this preference for APS is unique to R. meliloti among members of the family Rhizobiaceae or is more widespread, cell extracts from R. leguminosarum, Rhizobium sp. strain NGR234, Rhizobium fredii (Sinorhizobium fredii), and Agrobacterium tumefaciens were assayed for APS or PAPS reductase activity. Cell extracts from all four species also preferentially reduce APS over PAPS.
Collapse
Affiliation(s)
- A P Abola
- Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
26
|
Samain E, Chazalet V, Geremia RA. Production of O-acetylated and sulfated chitooligosaccharides by recombinant Escherichia coli strains harboring different combinations of nod genes. J Biotechnol 1999; 72:33-47. [PMID: 10406097 DOI: 10.1016/s0168-1656(99)00048-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High cell density cultivation of recombinant Escherichia coli strains harboring the nodBC genes (encoding chitooligosaccharide synthase and chitooligosaccharide N-deacetylase, respectively) from Azorhizobium caulinodans has been previously described as a practical method for the preparation of gram-scale quantities of penta-N-acetyl-chitopentaose and tetra-N-acetylchitopentaose (Samain, E., Drouillard, S., Heyraud, A., Driguez, H., Geremia, R.A., 1997. Carbohydr. Res. 30, 235-242). We have now extended this method to the production of sulfated and O-acetylated derivatives of these two compounds by coexpressing nodC or nodBC with nodH and/or nodL that encode chitooligosaccharide sulfotransferase and chitooligosaccharide O-acetyltransferase, respectively. In addition, these substituted chitooligosaccharides were also obtained as tetramers by using nodC from Rhizobium meliloti instead of nodC from A. caulinodans. These compounds should be useful precursors for the preparation of Nod factor analogues by chemical modification.
Collapse
Affiliation(s)
- E Samain
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-CNRS), Grenoble, France.
| | | | | |
Collapse
|
27
|
Abstract
Rhizobium is a genus of symbiotic nitrogen-fixing soil bacteria that induces the formation of root nodules on leguminous plants and, as such, has been the subject of considerable research attention. Much of this work was initiated in response to the question 'how does recognition occur between free living rhizobial bacteria in the soil and potential host legumes?' The answer to this question has been shown to involve both cell-surface carbohydrates on the external face of the bacteria and secreted extracellular signal oligosaccharides. This review will focus on the structure, function, and biosynthesis of two of these components--the host-specific nodule-promoting signals known as Nod(ulation) factors and the rhizobial lipopolysaccharides.
Collapse
Affiliation(s)
- N P Price
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse 13210, USA.
| |
Collapse
|
28
|
Flores M, Mavingui P, Girard L, Perret X, Broughton WJ, Martínez-Romero E, Dávila G, Palacios R. Three replicons of Rhizobium sp. Strain NGR234 harbor symbiotic gene sequences. J Bacteriol 1998; 180:6052-3. [PMID: 9811668 PMCID: PMC107684 DOI: 10.1128/jb.180.22.6052-6053.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 contains three replicons: the symbiotic plasmid or pNGR234a, a megaplasmid (pNGR234b), and the chromosome. Symbiotic gene sequences not present in pNGR234a were analyzed by hybridization. DNA sequences homologous to the genes fixLJKNOPQGHIS were found on the chromosome, while sequences homologous to nodPQ and exoBDFLK were found on pNGR234b.
Collapse
Affiliation(s)
- M Flores
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mavingui P, Laeremans T, Flores M, Romero D, Martínez-Romero E, Palacios R. Genes essential for nod factor production and nodulation are located on a symbiotic amplicon (AMPRtrCFN299pc60) in Rhizobium tropici. J Bacteriol 1998; 180:2866-74. [PMID: 9603874 PMCID: PMC107251 DOI: 10.1128/jb.180.11.2866-2874.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amplifiable DNA regions (amplicons) have been identified in the genome of Rhizobium etli. Here we report the isolation and molecular characterization of a symbiotic amplicon of Rhizobium tropici. To search for symbiotic amplicons, a cartridge containing a kanamycin resistance marker that responds to gene dosage and conditional origins of replication and transfer was inserted in the nodulation region of the symbiotic plasmid (pSym) of R. tropici CFN299. Derivatives harboring amplifications were selected by increasing the concentration of kanamycin in the cell culture. The amplified DNA region was mobilized into Escherichia coli and then into Agrobacterium tumefaciens. The 60-kb symbiotic amplicon, which we termed AMPRtrCFN299pc60, contains several nodulation and nitrogen fixation genes and is flanked by a novel insertion sequence ISRtr1. Amplification of AMPRtrCFN299pc60 through homologous recombination between ISRtr1 repeats increased the amount of Nod factors. Strikingly, the conjugal transfer of the amplicon into a plasmidless A. tumefaciens strain confers on the transconjugant the ability to produce R. tropici Nod factors and to nodulate Phaseolus vulgaris, indicating that R. tropici genes essential for the nodulation process are confined to an ampliable DNA region of the pSym.
Collapse
Affiliation(s)
- P Mavingui
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | | | | | | | |
Collapse
|
30
|
Verma DP. Developmental and metabolic adaptations during symbiosis between legume hosts and rhizobia. Subcell Biochem 1998; 29:1-28. [PMID: 9594643 DOI: 10.1007/978-1-4899-1707-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D P Verma
- Department of Molecular Genetics and Plant Biotechnology Center, Ohio State University, Columbus 43210, USA
| |
Collapse
|
31
|
Laeremans T, Martínez-Romero E, Vanderleyden J. Isolation and sequencing of a second Rhizobium tropici CFN299 genetic locus that contains genes homologous to amino acid sulphate activation genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1998; 9:65-70. [PMID: 9773278 DOI: 10.3109/10425179809050027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A Rhizobium tropici CFN299 DNA region, homologous to genes involved in Nod factor synthesis and amino acid sulphate activation, was isolated from a genome library. DNA sequence analysis revealed two open reading frames, orf1 and orf2. orf1 showed highest sequence similarity to the Escherichia coli cysD gene while orf2 is closely related to Rhizobium sp. N33 nodQ. However, the orf2 deduced peptide is 152 amino acids shorter than Rhizobium sp. N33 NodQ, and lacks the 3'-phosphoadenosine 5'-phosphosulphate-binding motif. A dendrogram based on the alignment of the deduced amino acid sequences of orf2/nodQ/cysN genes separated Escherichia coli cysN and orf2 from the nodQ cluster. Upstream of orf1, partial sequence analysis revealed the 3' part of an orf that is highly similar to E. coli cysH. The G + C content of orf1 and orf2 differs significantly from the G + C content of R. tropici symbiotic sulphate activation nodPQ genes. This data suggests that the isolated R. tropici CFN299 locus contains housekeeping genes for amino acid sulphate activation.
Collapse
Affiliation(s)
- T Laeremans
- F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | | | |
Collapse
|
32
|
Kamst E, Spaink HP, Kafetzopoulos D. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. Subcell Biochem 1998; 29:29-71. [PMID: 9594644 DOI: 10.1007/978-1-4899-1707-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- E Kamst
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands
| | | | | |
Collapse
|
33
|
Tate R, Riccio A, Iaccarino M, Patriarca EJ. A cysG mutant strain of Rhizobium etli pleiotropically defective in sulfate and nitrate assimilation. J Bacteriol 1997; 179:7343-50. [PMID: 9393698 PMCID: PMC179684 DOI: 10.1128/jb.179.23.7343-7350.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By its inability to grow on sulfate as the sole sulfur source, a mutant strain (CTNUX8) of Rhizobium etli carrying Tn5 was isolated and characterized. Sequence analysis showed that Tn5 is inserted into a cysG (siroheme synthetase)-homologous gene. By RNase protection assays, it was established that the cysG-like gene had a basal level of expression in thiosulfate- or cysteine-grown cells, which was induced when sulfate or methionine was used. Unlike its wild-type parent (strain CE3), the mutant strain, CTNUX8, was also unable to grow on nitrate as the sole nitrogen source and was unable to induce a high level of nitrite reductase. Despite its pleiotropic phenotype, strain CTNUX8 was able to induce pink, effective (N2-fixing) nodules on the roots of Phaseolus vulgaris plants. However, mixed inoculation experiments showed that strain CTNUX8 is significantly different from the wild type in its ability to nodulate. Our data support the notion that sulfate (or sulfite) is the sulfur source of R. etli in the rhizosphere, while cysteine, methionine, or glutathione is supplied by the root cells to bacteria growing inside the plant.
Collapse
Affiliation(s)
- R Tate
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
34
|
Laeremans T, Coolsaet N, Verreth C, Snoeck C, Hellings N, Vanderleyden J, Martínez-Romero E. Functional redundancy of genes for sulphate activation enzymes in Rhizobium sp. BR816. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 12):3933-3942. [PMID: 9421916 DOI: 10.1099/00221287-143-12-3933] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The broad-host-range, heat-tolerant Rhizobium strain BR816 produces sulphated Nod metabolites. Two ORFs highly homologous to the Sinorhizobium meliloti nodPQ genes were isolated and sequenced. It was found that Rhizobium sp. BR816 contained two copies of these genes; one copy was localized on the symbiotic plasmid, the other on the megaplasmid. Both nodP genes were interrupted by insertion of antibiotic resistance cassettes, thus constructing a double nodP1P2 mutant strain. However, no detectable differences in Nod factor TLC profile from this mutant were observed as compared to the wild-type strain. Additionally, plant inoculation experiments did not reveal differences between the mutant strain and the wild-type. It is proposed that a third, functionally homologous locus complements mutations in the Nod factor sulphation genes. Southern blot analysis suggested that this locus contains genes necessary for the sulphation of amino acids.
Collapse
Affiliation(s)
- T Laeremans
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. 565-A Cuernavaca, Morelos, Mexico
| | - N Coolsaet
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - C Verreth
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - C Snoeck
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - N Hellings
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - J Vanderleyden
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - E Martínez-Romero
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. 565-A Cuernavaca, Morelos, Mexico
| |
Collapse
|
35
|
Abstract
Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases, the transcription activation function of Met4 is prevented by Met30p, which binds to the Met4 inhibitory region. In addition to the Cbf1p-Met4p-Met28p complex, transcriptional regulation involves two zinc finger-containing proteins, Met31p and Met32p. The AdoMet-mediated control of the sulfur amino acid pathway illustrates the molecular strategies used by eucaryotic cells to couple gene expression to metabolic changes.
Collapse
Affiliation(s)
- D Thomas
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
36
|
Roche P, Maillet F, Plazanet C, Debellé F, Ferro M, Truchet G, Promé JC, Dénarié J. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci U S A 1996; 93:15305-10. [PMID: 8986807 PMCID: PMC26400 DOI: 10.1073/pnas.93.26.15305] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Symbiotic bacteria of the genus Rhizobium synthesize lipo-chitooligosaccharides, called Nod factors (NFs), which act as morphogenic signal molecules on legume hosts. The common nodABC genes, present in all Rhizobium species, are required for the synthesis of the core structure of NFs. NodC is an N-acetylglucosaminyltransferase, and NodB is a chitooligosaccharide deacetylase; NodA is involved in N-acylation of the aminosugar backbone. Specific nod genes are involved in diverse NF substitutions that confer plant specificity. We transferred to R. tropici, a broad host-range tropical symbiont, the ability to nodulate alfalfa, by introducing nod genes of R. meliloti. In addition to the specific nodL and nodFE genes, the common nodABC genes of R. meliloti were required for infection and nodulation of alfalfa. Purified NFs of the R. tropici hybrid strain, which contained chitin tetramers and were partly N-acylated with unsaturated C16 fatty acids, were able to elicit nodule formation on alfalfa. Inactivation of the R. meliloti nodABC genes suppressed the ability of the NFs to nodulate alfalfa. Studies of NFs from nodA, nodB, nodC, and nodI mutants indicate that (i) NodA of R. meliloti, in contrast to NodA of R. tropici, is able to transfer unsaturated C16 fatty acids onto the chitin backbone and (ii) NodC of R. meliloti specifies the synthesis of chitin tetramers. These results show that allelic variation of the common nodABC genes is a genetic mechanism that plays an important role in signaling variation and in the control of host range.
Collapse
Affiliation(s)
- P Roche
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schultze M, Kondorosi A. The role of Nod signal structures in the determination of host specificity in the Rhizobium-legume symbiosis. World J Microbiol Biotechnol 1996; 12:137-49. [DOI: 10.1007/bf00364678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
39
|
Ehrhardt DW, Atkinson EM, Faull KF, Freedberg DI, Sutherlin DP, Armstrong R, Long SR. In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J Bacteriol 1995; 177:6237-45. [PMID: 7592390 PMCID: PMC177465 DOI: 10.1128/jb.177.21.6237-6245.1995] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Early stages of nodulation involve the exchange of signals between the bacterium and the host plant. Bacterial nodulation (nod) genes are required for Rhizobium spp. to synthesize lipooligosaccharide morphogens, termed Nod factors. The common nod genes encode enzymes that synthesize the factor core structure, which is modified by host-specific gene products. Here we show direct in vitro evidence that Rhizobium meliloti NodH, a host-specific nodulation gene, catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to the terminal 6-O position of Nod factors, and we show substrate requirements for the reaction. Our results indicate that polymerization of the chitooligosaccharide backbone likely precedes sulfation and that sulfation is not absolutely dependent on the presence or the particular structure of the N-acyl modification. NodH sulfation provides a tool for the enzymatic in vitro synthesis of novel Nod factors, or putative Nod factors intermediates, with high specific activity.
Collapse
Affiliation(s)
- D W Ehrhardt
- Gilbert Laboratory, Howard Hughes Medical Institute, Stanford University, California 94305-5020, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Hernández-Lucas I, Pardo MA, Segovia L, Miranda J, Martínez-Romero E. Rhizobium tropici chromosomal citrate synthase gene. Appl Environ Microbiol 1995; 61:3992-7. [PMID: 8526514 PMCID: PMC167707 DOI: 10.1128/aem.61.11.3992-3997.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two genes encoding citrate synthase, a key enzyme in the Krebs cycle, have been found in Rhizobium tropici. One of them is in the bacterial chromosome, while the other is in the symbiotic plasmid. We sequenced the chromosomal gene and found that it is very similar to the previously reported plasmidic gene sequence in its structural region but not in its regulatory region. The chromosomal gene is able to complement an Escherichia coli citrate synthase mutant. In R. tropici, a mutant in the chromosomal citrate synthase gene has a diminished citrate synthase activity (in free-living bacteria), a diminished nodulation capacity, and forms nitrogen-fixing nodules. In contrast, the citrate synthase double mutant forms ineffective nodules devoid of bacteroids and forms less nodules than the single chromosomal mutant. It is inferred that both genes are functional and required during the nodulation process in R. tropici.
Collapse
Affiliation(s)
- I Hernández-Lucas
- Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
41
|
Poupot R, Martinez-Romero E, Maillet F, Prome JC. Rhizobium tropici nodulation factor sulfation is limited by the quantity of activated form of sulfate. FEBS Lett 1995; 368:536-40. [PMID: 7635216 DOI: 10.1016/0014-5793(95)00737-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rhizobium tropici is a broad host-range symbiont of Phaseolus vulgaris. This bacterium produces a mixture of sulfated and non-sulfated N-methylated pentameric nodulation (Nod) factors. To understand the genetic bases of the partial sulfation of R. tropici Nod factors, which might be involved in the broad host-range of this species, we introduced in R. tropici CFN299 the recombinant plasmid pGMI515 carrying a set of nodulation (nod) genes of R. meliloti, including those involved in the sulfation of R. meliloti Nod factors. The CFN299 (pGMI515) transconjugant produced only sulfated Nod factors, but approximately half of them were no more N-methylated. Mutations in R. meliloti nodH gene did not decrease the Nod factor sulfation whereas inactivation of the nodPQ genes restored the production of a mixture of sulfated and non-sulfated molecules. These results suggest that the limiting step in R. tropici Nod factor sulfation is the production of activated sulfate donors. Mutations in the R. meliloti nodFEG and nodH genes did not change the N-methylation pattern, whereas mutations in nodPQ increased the degree of N-methylation, suggesting a metabolic link between sulfation and methylation of R. tropici Nod factors.
Collapse
Affiliation(s)
- R Poupot
- Laboratoire de Pharmacologie et Toxicologie Fondamentales, CNRS, Toulouse, France
| | | | | | | |
Collapse
|
42
|
Borges-Walmsley MI, Turner G, Bailey AM, Brown J, Lehmbeck J, Clausen IG. Isolation and characterisation of genes for sulphate activation and reduction in Aspergillus nidulans: implications for evolution of an allosteric control region by gene duplication. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:423-9. [PMID: 7770049 DOI: 10.1007/bf00293143] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A region of the Aspergillus nidulans genome carrying the sA and sC genes, encoding PAPS reductase and ATP sulphurylase, respectively, was isolated by transformation of an sA mutant with a cosmid library. The genes were subcloned and their functions confirmed by retransformation and complementation of A. nidulans strains carrying sA and sC mutations. The physical distance of 2 kb between the genes corresponds to a genetic distance of 1 cM. While the deduced amino acid sequence of the sA gene product shows homology with the equivalent MET16 gene product of Saccharomyces cerevisiae, the sC gene product resembles the equivalent MET3 yeast gene product at the N-terminal end, but differs markedly from it at the C-terminal end, showing homology to the APS kinases of several microorganisms. It is proposed that this C-terminal region does not encode a functional APS kinase, but is responsible for allosteric regulation by PAPS of the sulphate assimilation pathway in A. nidulans, and that the ATP sulphurylase encoding-gene (sC) of filamentous ascomycetes may have evolved from a bifunctional gene similar to the nodQ gene of Rhizobium meliloti.
Collapse
Affiliation(s)
- M I Borges-Walmsley
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|
43
|
Fellay R, Perret X, Viprey V, Broughton WJ, Brenner S. Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 1995; 16:657-67. [PMID: 7476161 DOI: 10.1111/j.1365-2958.1995.tb02428.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In a systematic approach to identify genes involved in the early steps of the legume-Rhizobium symbiosis, we studied transcription patterns of symbiotic plasmid-borne loci. A competitive hybridization procedure was used to identify DNA restriction fragments carrying genes whose expression is enhanced by plant root exudates or by purified flavonoids. Fragments containing induced genes were then located on the physical map of the 500 kb pNGR234a. New inducible loci as well as previously described genes were identified and their time course of induction determined. After initial induction, transcription of loci such as nodABC and the host-specificity genes nodSU decreased to undetectable levels 24 h after incubation with purified flavonoids. In contrast, expression of other loci is detectable only after several hours of induction. Surprisingly, many genes remained transcribed in the nodD1- mutant suggesting the presence of other flavonoid-dependent activators in NGR234. The hsnl region, which is involved in host specificity, was shown to carry several inducible but independently regulated transcripts. Sequencing analysis revealed several open reading frames whose products, based on sequence similarities, may be involved in L-fucose metabolism and its adjunction to the Nod factors.
Collapse
Affiliation(s)
- R Fellay
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Schultze M, Staehelin C, Röhrig H, John M, Schmidt J, Kondorosi E, Schell J, Kondorosi A. In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure. Proc Natl Acad Sci U S A 1995; 92:2706-9. [PMID: 7708710 PMCID: PMC42287 DOI: 10.1073/pnas.92.7.2706] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Rhizobium common nod gene products NodABC are involved in the synthesis of the core lipochitooligosaccharide (Nod factor) structure, whereas the products of the host-specific nod genes are necessary for diverse structural modifications, which vary in different Rhizobium species. The sulfate group attached to the Rhizobium meliloti Nod signal is necessary for activity on the host plant alfalfa, while its absence renders the Nod factor active on the non-host plant vetch. This substituent is therefore a major determinant of host specificity. The exact biosynthetic pathway of Nod factors has not been fully elucidated. In particular, it is not known why some chemical modifications are introduced with high fidelity whereas others are inaccurate, giving rise to a family of different Nod factor structures produced by a single Rhizobium strain. Using protein extracts and partially purified recombinant NodH protein obtained from Escherichia coli expressing the R. meliloti nodH gene, we demonstrate here NodH-dependent in vitro sulfotransferase activity. Kinetic analyses with Nod factors, chitooligosaccharides, and their deacetylated derivatives revealed that Nod factors are the preferred substrate for the sulfate transfer. Moreover, the tetrameric Nod factor, NodRm-IV, was a better substrate than the trimer, NodRm-III, or the pentamer, NodRm-V. These data suggest that the core lipochitooligosaccharide structure must be synthesized prior to its host-specific modification with a sulfate group. Since in R. meliloti tetrameric Nod factors are the most abundant and the most active ones, high affinity of NodH for the appropriate tetrameric substrate guarantees its modification and thus contributes to the fidelity of host-specific behavior.
Collapse
Affiliation(s)
- M Schultze
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Rhizobium, Bradyrhizobium, and Azorhizobium species are able to elicit the formation of unique structures, called nodules, on the roots or stems of the leguminous host. In these nodules, the rhizobia convert atmospheric N2 into ammonia for the plant. To establish this symbiosis, signals are produced early in the interaction between plant and rhizobia and they elicit discrete responses by the two symbiotic partners. First, transcription of the bacterial nodulation (nod) genes is under control of the NodD regulatory protein, which is activated by specific plant signals, flavonoids, present in the root exudates. In return, the nod-encoded enzymes are involved in the synthesis and excretion of specific lipooligosaccharides, which are able to trigger on the host plant the organogenic program leading to the formation of nodules. An overview of the organization, regulation, and function of the nod genes and their participation in the determination of the host specificity is presented.
Collapse
Affiliation(s)
- P van Rhijn
- F.A. Janssens Laboratory of Genetics, KU Leuven, Heverlee, Belgium
| | | |
Collapse
|
46
|
Bourdineaud JP, Bono JJ, Ranjeva R, Cullimore JV. Enzymatic radiolabelling to a high specific activity of legume lipo-oligosaccharidic nodulation factors from Rhizobium meliloti. Biochem J 1995; 306 ( Pt 1):259-64. [PMID: 7864819 PMCID: PMC1136510 DOI: 10.1042/bj3060259] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this paper we describe the two-step coupled 35S-radiolabelling of the lipo-oligosaccharidic nodulation (Nod) factors of the bacterium Rhizobium meliloti to a specific radioactivity of 800 Ci/mmol. These radiolabelled Nod factors bind to a particulate fraction from roots of the bacterium's symbiotic host, Medicago truncatula, with an equilibrium dissociation constant (KD) of 117 nM, similar to that observed with a synthetic tritiated ligand. The first step of the 35S-labelling involves the synthesis of 3'-phosphoadenosine 5'-phospho[35S]sulphate ([35S]PAPS) from ATP and [35S]sulphate using yeast enzymes. The second step exploits the sulphotransferase activity of the R. meliloti NodH protein, which has been expressed in Escherichia coli, to transfer the labelled sulphate group from PAPS to non-sulphated Nod factors. This enzyme was found to be active in E. coli cultured at 18 degrees C but not 37 degrees C. NodH could also transfer the sulphate group from PAPS to a model substrate, tetra-N-acetyl chitotetraose, with apparent Km values of 56 and 70 microM respectively, and exhibited an apparent Km value for non-sulphated Nod factors of 28 microM. Coupling the two steps of the radiolabelling resulted in an efficiency of 35S incorporation from inorganic sulphate to the Nod factors of approximately 10%. These labelled factors will be a valuable tool in the search for high-affinity receptors for the lipo-oligosaccharidic nodulation factors.
Collapse
Affiliation(s)
- J P Bourdineaud
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
47
|
Cren M, Kondorosi A, Kondorosi E. NolR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol Microbiol 1995; 15:733-47. [PMID: 7783644 DOI: 10.1111/j.1365-2958.1995.tb02381.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis of Rhizobium meliloti Nod signal molecules, encoded by the nod gene products, is finely regulated. A negative control of plasmid-borne nod gene expression is provided by the NolR repressor encoded by the chromosomal nolR gene. NolR was previously shown to downregulate the expression of the activator nodD1 gene and the common nodABC operon by binding to an overlapping region of the two promoters adjacent to the n1 nod-box (Kondorosi et al., 1989). We demonstrate here that NolR also controls the expression of two additional genes, nodD2 and nodM, but does not directly regulate the expression of the host-specific nod genes located downstream of the n2, n3 and n5 nod-boxes. Thus, the nod genes are differentially regulated by NolR and only those providing common nodulation functions, by determining the synthesis of the core Nod factor structure, are subjected to this negative regulation. Furthermore, NolR has a strong negative effect on the production of Nod metabolites, the level of which may serve as a fine-tuning mechanism for optimal nodulation, specific to host-plant genotypes. In addition, it elicits preferential synthesis of Nod factors carrying unsaturated C16 fatty acids. Expression of nolR was high both in the free-living bacterium and in the bacteroid and it was downregulated by its own product and by the nod gene inducer luteolin.
Collapse
Affiliation(s)
- M Cren
- Institut des Sciences Végétales, CNRS, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
48
|
|
49
|
Spaink HP, Lugtenberg BJ. Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis. PLANT MOLECULAR BIOLOGY 1994; 26:1413-1422. [PMID: 7858197 DOI: 10.1007/bf00016482] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The role of oligosaccharide molecules in plant development is discussed. In particular the role of the rhizobial lipo-chitin oligosaccharide (LCO) signal molecules in the development of the root nodule indicates that oligosaccharides play an important role in organogenesis in plants. Recent results of the analyses of structures and of the biosynthesis of the LCO molecules are summarized in this paper. The knowledge and technologies that resulted from these studies will be important tools for further studying the function of LCO signals in the plant and in the search for analogous signal molecules produced by plants.
Collapse
Affiliation(s)
- H P Spaink
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | |
Collapse
|
50
|
Bork P, Koonin EV. A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity. Proteins 1994; 20:347-55. [PMID: 7731953 DOI: 10.1002/prot.340200407] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A conserved amino acid sequence motif was identified in four distinct groups of enzymes that catalyze the hydrolysis of the alpha-beta phosphate bond of ATP, namely GMP synthetases, argininosuccinate synthetases, asparagine synthetases, and ATP sulfurylases. The motif is also present in Rhodobacter capsulata AdgA, Escherichia coli NtrL, and Bacillus subtilis OutB, for which no enzymatic activities are currently known. The observed pattern of amino acid residue conservation and predicted secondary structures suggest that this motif may be a modified version of the P-loop of nucleotide binding domains, and that it is likely to be involved in phosphate binding. We call it PP-motif, since it appears to be a part of a previously uncharacterized ATP pyrophophatase domain. ATP sulfurylases, NtrL, and OutB consist of this domain alone. In other proteins, the pyrophosphatase domain is associated with amidotransferase domains (type I or type II), a putative citrulline-aspartate ligase domain or a nitrilase/amidase domain. Unexpectedly, statistically significant overall sequence similarity was found between ATP sulfurylase and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase, another protein of the sulfate activation pathway. The PP-motif is strongly modified in PAPS reductases, but they share with ATP sulfurylases another conserved motif which might be involved in sulfate binding. We propose that PAPS reductases may have evolved from ATP sulfurylases; the evolution of the new enzymatic function appears to be accompanied by a switch of the strongest functional constraint from the PP-motif to the putative sulfate-binding motif.
Collapse
Affiliation(s)
- P Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|