1
|
Martins-Marques T, Witschas K, Ribeiro I, Zuzarte M, Catarino S, Ribeiro-Rodrigues T, Caramelo F, Aasen T, Carreira IM, Goncalves L, Leybaert L, Girao H. Cx43 can form functional channels at the nuclear envelope and modulate gene expression in cardiac cells. Open Biol 2023; 13:230258. [PMID: 37907090 PMCID: PMC10645070 DOI: 10.1098/rsob.230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
Classically associated with gap junction-mediated intercellular communication, connexin43 (Cx43) is increasingly recognized to possess non-canonical biological functions, including gene expression regulation. However, the mechanisms governing the localization and role played by Cx43 in the nucleus, namely in transcription modulation, remain unknown. Using comprehensive and complementary approaches encompassing biochemical assays, super-resolution and immunogold transmission electron microscopy, we demonstrate that Cx43 localizes to the nuclear envelope of different cell types and in cardiac tissue. We show that translocation of Cx43 to the nucleus relies on Importin-β, and that Cx43 significantly impacts the cellular transcriptome, likely by interacting with transcriptional regulators. In vitro patch-clamp recordings from HEK293 and adult primary cardiomyocytes demonstrate that Cx43 forms active channels at the nuclear envelope, providing evidence that Cx43 can participate in nucleocytoplasmic shuttling of small molecules. The accumulation of nuclear Cx43 during myogenic differentiation of cardiomyoblasts is suggested to modulate expression of genes implicated in this process. Altogether, our study provides new evidence for further defining the biological roles of nuclear Cx43, namely in cardiac pathophysiology.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Katja Witschas
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Ilda Ribeiro
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Francisco Caramelo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Isabel Marques Carreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Lino Goncalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Luc Leybaert
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
2
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
3
|
Yong MJ, Kang B, Yang U, Oh SS, Je JH. Live Streaming of a Single Cell's Life over a Local pH-Monitoring Nanowire Waveguide. NANO LETTERS 2022; 22:6375-6382. [PMID: 35877544 PMCID: PMC9372996 DOI: 10.1021/acs.nanolett.2c02185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Spatiotemporal pH monitoring of single living cells across rigid cell and organelle membranes has been challenging, despite its significance in understanding cellular heterogeneity. Here, we developed a mechanically robust yet tolerably thin nanowire waveguide that enables in situ monitoring of pH dynamics at desired cellular compartments via direct optical communication. By chemically labeling fluorescein at one end of a poly(vinylbenzyl azide) nanowire, we continuously monitored pH variations of different compartments inside a living cell, successfully observing organelle-exclusive pH homeostasis and stimuli-selective pH regulations. Importantly, it was demonstrated for the first time that, during the mammalian cell cycle, the nucleus displays pH homeostasis in interphase but a tidal pH curve in the mitotic phase, implying the existence of independent pH-regulating activities by the nuclear envelope. The rapid and accurate local pH-reporting capability of our nanowire waveguide would be highly valuable for investigating cellular behaviors under diverse biological situations in living cells.
Collapse
Affiliation(s)
- Moon-Jung Yong
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Byunghwa Kang
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Un Yang
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seung Soo Oh
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jung Ho Je
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
4
|
Chu X, Wang J. Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. PLoS Comput Biol 2021; 17:e1009596. [PMID: 34752443 PMCID: PMC8631624 DOI: 10.1371/journal.pcbi.1009596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/30/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer reflects the dysregulation of the underlying gene network, which is strongly related to the 3D genome organization. Numerous efforts have been spent on experimental characterizations of the structural alterations in cancer genomes. However, there is still a lack of genomic structural-level understanding of the temporal dynamics for cancer initiation and progression. Here, we use a landscape-switching model to investigate the chromosome structural transition during the cancerization and reversion processes. We find that the chromosome undergoes a non-monotonic structural shape-changing pathway with initial expansion followed by compaction during both of these processes. Furthermore, our analysis reveals that the chromosome with a more expanding structure than those at both the normal and cancer cell during cancerization exhibits a sparse contact pattern, which shows significant structural similarity to the one at the embryonic stem cell in many aspects, including the trend of contact probability declining with the genomic distance, the global structural shape geometry and the spatial distribution of loci on the chromosome. In light of the intimate structure-function relationship at the chromosomal level, we further describe the cell state transition processes by the chromosome structural changes, suggesting an elevated cell stemness during the formation of the cancer cells. We show that cell cancerization and reversion are highly irreversible processes in terms of the chromosome structural transition pathways, spatial repositioning of chromosomal loci and hysteresis loop of contact evolution analysis. Our model draws a molecular-scale picture of cell cancerization from the chromosome structural perspective. The process contains initial reprogramming towards the stem cell followed by the differentiation towards the cancer cell, accompanied by an initial increase and subsequent decrease of the cell stemness.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|
5
|
Park TL, Lee Y, Cho WK. Visualization of chromatin higher-order structures and dynamics in live cells. BMB Rep 2021. [PMID: 34488934 PMCID: PMC8560465 DOI: 10.5483/bmbrep.2021.54.10.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures.
Collapse
Affiliation(s)
- Tae Lim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - YigJi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
6
|
Park TL, Lee Y, Cho WK. Visualization of chromatin higher-order structures and dynamics in live cells. BMB Rep 2021; 54:489-496. [PMID: 34488934 PMCID: PMC8560465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 04/05/2024] Open
Abstract
Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures. [BMB Reports 2021; 54(10): 489-496].
Collapse
Affiliation(s)
- Tae Lim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - YigJi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
7
|
Alcaraz J, Ikemori R, Llorente A, Díaz-Valdivia N, Reguart N, Vizoso M. Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13153782. [PMID: 34359678 PMCID: PMC8345093 DOI: 10.3390/cancers13153782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death among both men and women, partly due to limited therapy responses. New avenues of knowledge are indicating that lung cancer cells do not form a tumor in isolation but rather obtain essential support from their surrounding host tissue rich in altered fibroblasts. Notably, there is growing evidence that tumor progression and even the current limited responses to therapies could be prevented by rescuing the normal behavior of fibroblasts, which are critical housekeepers of normal tissue function. For this purpose, it is key to improve our understanding of the molecular mechanisms driving the pathologic alterations of fibroblasts in cancer. This work provides a comprehensive review of the main molecular mechanisms involved in fibroblast transformation based on epigenetic reprogramming, and summarizes emerging therapeutic approaches to prevent or overcome the pathologic effects of tumor-associated fibroblasts. Abstract Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence: (J.A.); (M.V.)
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: (J.A.); (M.V.)
| |
Collapse
|
8
|
Li J, Pertsinidis A. New insights into promoter-enhancer communication mechanisms revealed by dynamic single-molecule imaging. Biochem Soc Trans 2021; 49:1299-1309. [PMID: 34060610 PMCID: PMC8325597 DOI: 10.1042/bst20200963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
Establishing cell-type-specific gene expression programs relies on the action of distal enhancers, cis-regulatory elements that can activate target genes over large genomic distances - up to Mega-bases away. How distal enhancers physically relay regulatory information to target promoters has remained a mystery. Here, we review the latest developments and insights into promoter-enhancer communication mechanisms revealed by live-cell, real-time single-molecule imaging approaches.
Collapse
Affiliation(s)
- Jieru Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, NY 10065, USA
| | | |
Collapse
|
9
|
Mihìc P, Hédouin S, Francastel C. Centromeres Transcription and Transcripts for Better and for Worse. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:169-201. [PMID: 34386876 DOI: 10.1007/978-3-030-74889-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
Collapse
Affiliation(s)
- Pia Mihìc
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France
| | - Sabrine Hédouin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France.
| |
Collapse
|
10
|
Panahi R, Ebrahimie E, Niazi A, Afsharifar A. Integration of meta-analysis and supervised machine learning for pattern recognition in breast cancer using epigenetic data. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Percástegui E, Ronson TK, Nitschke JR. Design and Applications of Water-Soluble Coordination Cages. Chem Rev 2020; 120:13480-13544. [PMID: 33238092 PMCID: PMC7760102 DOI: 10.1021/acs.chemrev.0c00672] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.
Collapse
Affiliation(s)
- Edmundo
G. Percástegui
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Química, Ciudad UniversitariaUniversidad
Nacional Autónoma de México, Ciudad de México 04510, México
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, 50200 Estado de México, México
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
12
|
DNA methylation in satellite repeats disorders. Essays Biochem 2020; 63:757-771. [PMID: 31387943 DOI: 10.1042/ebc20190028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.
Collapse
|
13
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
14
|
Murahashi Y, Emori M, Shimizu J, Anzai K, Tanaka T, Naka N, Tsuchie H, Nagasawa H, Miyakoshi N, Shimada Y, Yamashita T. The value of the black fiber sign on T1-weighted images for predicting stability of desmoid fibromatosis managed conservatively. Eur Radiol 2020; 30:5768-5776. [PMID: 32435931 DOI: 10.1007/s00330-020-06953-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES It is challenging to know at the first which patients with desmoid fibromatosis (DF) are better suited to conservative or aggressive treatment. To investigate whether the low signal intensity bundles on T1- or T2-weighted images (WI), termed the "black fiber sign (BFS)," can predict non-progressive behavior in the conservative approach. METHODS This retrospective study included 59 patients with primary DF managed with wait-and-see approach from 2005 to 2018 and serial MR images were analyzed. Three observers blinded to the patient information verified the presence or absence of BFS on baseline T1 or T2WI. The likelihood of progression-free survival (PFS) after ascertaining the presence or absence of the BFS was estimated using the Kaplan-Meier method and analyzed with the log-rank test. RESULTS PFS was significantly higher in cases with BFS than without BFS on T1WI (p < 0.01), but there was no significant difference in PFS between cases with and without BFS on T2WI. Multivariable Cox proportional hazards analysis revealed that the absence of BFS on T1WI was a high-risk factor for progression (hazard ratio, 14.9; p < 0.01). Drastic tumor regression was apparent with significantly increased low-signal area in cases with BFS on T1WI. Intra- and interobserver reliabilities of BFS on T1WI were in almost-perfect agreement (κ > 0.8). CONCLUSION Our retrospective observational data support that presence of BFS in baseline MRI may be a predictor for progression-free survival of DF. BFS on T1WI is easily identifiable and can be utilized clinically in patients with DF. KEY POINTS • We proposed a new imaging marker for prediction of desmoid fibromatosis progression. • The absence of black fiber sign predicted a high risk of disease progression.
Collapse
Affiliation(s)
- Yasutaka Murahashi
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Makoto Emori
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Junya Shimizu
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Ken Anzai
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Takaaki Tanaka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 541-8567, Japan
| | - Norifumi Naka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 541-8567, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopaedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Hiroyuki Nagasawa
- Department of Orthopaedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopaedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopaedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
15
|
Virk RKA, Wu W, Almassalha LM, Bauer GM, Li Y, VanDerway D, Frederick J, Zhang D, Eshein A, Roy HK, Szleifer I, Backman V. Disordered chromatin packing regulates phenotypic plasticity. SCIENCE ADVANCES 2020; 6:eaax6232. [PMID: 31934628 PMCID: PMC6949045 DOI: 10.1126/sciadv.aax6232] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/08/2019] [Indexed: 05/19/2023]
Abstract
Three-dimensional supranucleosomal chromatin packing plays a profound role in modulating gene expression by regulating transcription reactions through mechanisms such as gene accessibility, binding affinities, and molecular diffusion. Here, we use a computational model that integrates disordered chromatin packing (CP) with local macromolecular crowding (MC) to study how physical factors, including chromatin density, the scaling of chromatin packing, and the size of chromatin packing domains, influence gene expression. We computationally and experimentally identify a major role of these physical factors, specifically chromatin packing scaling, in regulating phenotypic plasticity, determining responsiveness to external stressors by influencing both intercellular transcriptional malleability and heterogeneity. Applying CPMC model predictions to transcriptional data from cancer patients, we identify an inverse relationship between patient survival and phenotypic plasticity of tumor cells.
Collapse
Affiliation(s)
- Ranya K. A. Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wenli Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60211, USA
- Department of Internal Medicine, Northwestern University, Chicago, IL 60211, USA
| | - Greta M. Bauer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
| | - David VanDerway
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Di Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hemant K. Roy
- Section of Gastroenterology, Boston Medical Center/Boston University School of Medicine, Boston, MA 02118, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (V.B.); (I.S.)
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (V.B.); (I.S.)
| |
Collapse
|
16
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Wright GM, Cui F. The nucleosome position-encoding WW/SS sequence pattern is depleted in mammalian genes relative to other eukaryotes. Nucleic Acids Res 2019; 47:7942-7954. [PMID: 31216031 PMCID: PMC6735720 DOI: 10.1093/nar/gkz544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
Nucleosomal DNA sequences generally follow a well-known pattern with ∼10-bp periodic WW (where W is A or T) dinucleotides that oscillate in phase with each other and out of phase with SS (where S is G or C) dinucleotides. However, nucleosomes with other DNA patterns have not been systematically analyzed. Here, we focus on an opposite pattern, namely anti-WW/SS pattern, in which WW dinucleotides preferentially occur at DNA sites that bend into major grooves and SS (where S is G or C) dinucleotides are often found at sites that bend into minor grooves. Nucleosomes with the anti-WW/SS pattern are widespread and exhibit a species- and context-specific distribution in eukaryotic genomes. Unlike non-mammals (yeast, nematode and fly), there is a positive correlation between the enrichment of anti-WW/SS nucleosomes and RNA Pol II transcriptional levels in mammals (mouse and human). Interestingly, such enrichment is not due to underlying DNA sequence. In addition, chromatin remodeling complexes have an impact on the abundance but not on the distribution of anti-WW/SS nucleosomes in yeast. Our data reveal distinct roles of cis- and trans-acting factors in the rotational positioning of nucleosomes between non-mammals and mammals. Implications of the anti-WW/SS sequence pattern for RNA Pol II transcription are discussed.
Collapse
Affiliation(s)
- Gregory M Wright
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
18
|
Sun J, Shi Y, Yildirim E. The Nuclear Pore Complex in Cell Type-Specific Chromatin Structure and Gene Regulation. Trends Genet 2019; 35:579-588. [PMID: 31213386 DOI: 10.1016/j.tig.2019.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Nuclear pore complex (NPC)-mediated nucleocytoplasmic trafficking is essential for key cellular processes, such as cell growth, cell differentiation, and gene regulation. The NPC has also been viewed as a nuclear architectural platform that impacts genome function and gene expression by mediating spatial and temporal coordination between transcription factors, chromatin regulatory proteins, and transcription machinery. Recent findings have uncovered differential and cell type-specific expression and distinct chromatin-binding patterns of individual NPC components known as nucleoporins (Nups). Here, we examine recent studies that investigate the functional roles of NPCs and Nups in transcription, chromatin organization, and epigenetic gene regulation in the context of development and disease.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA
| | - Yuming Shi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Wong CK, Chen F, Walther A, Stenzel MH. Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angew Chem Int Ed Engl 2019; 58:7335-7340. [PMID: 30866152 DOI: 10.1002/anie.201901880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 12/11/2022]
Abstract
Recent years have seen an increased interest in the use of ABC triblock terpolymers to bottom-up assemble multicompartment patchy nanoparticles. Despite these experimental and theoretical efforts, the applications of polymer-based patchy nanoparticles remain rather limited. One of the major challenges that eclipses their potential is the lack of knowledge to selectively encapsulate cargoes within different compartments that are separated in the nanometer length scale. Here, strategies are reported to segregate two chemically distinct molecules in either the patches or core compartment of patchy nanoparticles that bear a (bioactive) sugar corona. The potential use of these bioactive patchy nanoparticles containing compartmentalized cargoes for simultaneous drug delivery with real-time release monitoring capabilities is further demonstrated.
Collapse
Affiliation(s)
- Chin Ken Wong
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 31, 79104, Freiburg, Germany
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
20
|
Wong CK, Chen F, Walther A, Stenzel MH. Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chin Ken Wong
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Andreas Walther
- Institute for Macromolecular Chemistry Albert-Ludwigs-University Freiburg Stefan-Meier-Strasse 31 79104 Freiburg Germany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
21
|
Heinz KS, Rapp A, Casas-Delucchi CS, Lehmkuhl A, Romero-Fernández I, Sánchez A, Krämer OH, Marchal JA, Cardoso MC. DNA replication dynamics of vole genome and its epigenetic regulation. Epigenetics Chromatin 2019; 12:18. [PMID: 30871586 PMCID: PMC6416958 DOI: 10.1186/s13072-019-0262-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
Background The genome of some vole rodents exhibit large blocks of heterochromatin coupled to their sex chromosomes. The DNA composition and transcriptional activity of these heterochromatin blocks have been studied, but little is known about their DNA replication dynamics and epigenetic composition. Results Here, we show prominent epigenetic marks of the heterochromatic blocks in the giant sex chromosomes of female Microtus cabrerae cells. While the X chromosomes are hypoacetylated and cytosine hypomethylated, they are either enriched for macroH2A and H3K27me3 typical for facultative heterochromatin or for H3K9me3 and HP1 beta typical for constitutive heterochromatin. Using pulse-chase replication labeling and time-lapse microscopy, we found that the heterochromatic block enriched for macroH2A/H3K27me3 of the X chromosome is replicated during mid-S-phase, prior to the heterochromatic block enriched for H3K9me3/HP1 beta, which is replicated during late S-phase. To test whether histone acetylation level regulates its replication dynamics, we induced either global hyperacetylation by pharmacological inhibition or by targeting a histone acetyltransferase to the heterochromatic region of the X chromosomes. Our data reveal that histone acetylation level affects DNA replication dynamics of the sex chromosomes’ heterochromatin and leads to a global reduction in replication fork rate genome wide. Conclusions In conclusion, we mapped major epigenetic modifications controlling the structure of the sex chromosome-associated heterochromatin and demonstrated the occurrence of differences in the molecular mechanisms controlling the replication timing of the heterochromatic blocks at the sex chromosomes in female Microtus cabrerae cells. Furthermore, we highlighted a conserved role of histone acetylation level on replication dynamics across mammalian species. Electronic supplementary material The online version of this article (10.1186/s13072-019-0262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin S Heinz
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.,Chromosome Replication Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | | | - Antonio Sánchez
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Oliver H Krämer
- Institute of Toxicology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.
| |
Collapse
|
22
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
23
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
24
|
Seitzer P, Jeanniard A, Ma F, Van Etten JL, Facciotti MT, Dunigan DD. Gene Gangs of the Chloroviruses: Conserved Clusters of Collinear Monocistronic Genes. Viruses 2018; 10:E576. [PMID: 30347809 PMCID: PMC6213493 DOI: 10.3390/v10100576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Chloroviruses (family Phycodnaviridae) are dsDNA viruses found throughout the world's inland waters. The open reading frames in the genomes of 41 sequenced chloroviruses (330 ± 40 kbp each) representing three virus types were analyzed for evidence of evolutionarily conserved local genomic "contexts", the organization of biological information into units of a scale larger than a gene. Despite a general loss of synteny between virus types, we informatically detected a highly conserved genomic context defined by groups of three or more genes that we have termed "gene gangs". Unlike previously described local genomic contexts, the definition of gene gangs requires only that member genes be consistently co-localized and are not constrained by strand, regulatory sites, or intervening sequences (and therefore represent a new type of conserved structural genomic element). An analysis of functional annotations and transcriptomic data suggests that some of the gene gangs may organize genes involved in specific biochemical processes, but that this organization does not involve their coordinated expression.
Collapse
Affiliation(s)
- Phillip Seitzer
- Department of Biomedical Engineering, One Shields Ave, University of California, Davis, CA 95616, USA;
- Genome Center, One Shields Ave, University of California, Davis, CA 95616, USA
- Proteome Software, Portland, OR 97219, USA
| | - Adrien Jeanniard
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
| | - Fangrui Ma
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
| | - James L. Van Etten
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
- Department of Plant Pathology, Plant Science Hall, University of Nebraska, Lincoln, NE 68583-0722, USA
| | - Marc T. Facciotti
- Department of Biomedical Engineering, One Shields Ave, University of California, Davis, CA 95616, USA;
- Genome Center, One Shields Ave, University of California, Davis, CA 95616, USA
| | - David D. Dunigan
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
- Department of Plant Pathology, Plant Science Hall, University of Nebraska, Lincoln, NE 68583-0722, USA
| |
Collapse
|
25
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
26
|
Jowhar Z, Gudla PR, Shachar S, Wangsa D, Russ JL, Pegoraro G, Ried T, Raznahan A, Misteli T. HiCTMap: Detection and analysis of chromosome territory structure and position by high-throughput imaging. Methods 2018; 142:30-38. [PMID: 29408376 PMCID: PMC5993577 DOI: 10.1016/j.ymeth.2018.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 12/23/2022] Open
Abstract
The spatial organization of chromosomes in the nuclear space is an extensively studied field that relies on measurements of structural features and 3D positions of chromosomes with high precision and robustness. However, no tools are currently available to image and analyze chromosome territories in a high-throughput format. Here, we have developed High-throughput Chromosome Territory Mapping (HiCTMap), a method for the robust and rapid analysis of 2D and 3D chromosome territory positioning in mammalian cells. HiCTMap is a high-throughput imaging-based chromosome detection method which enables routine analysis of chromosome structure and nuclear position. Using an optimized FISH staining protocol in a 384-well plate format in conjunction with a bespoke automated image analysis workflow, HiCTMap faithfully detects chromosome territories and their position in 2D and 3D in a large population of cells per experimental condition. We apply this novel technique to visualize chromosomes 18, X, and Y in male and female primary human skin fibroblasts, and show accurate detection of the correct number of chromosomes in the respective genotypes. Given the ability to visualize and quantitatively analyze large numbers of nuclei, we use HiCTMap to measure chromosome territory area and volume with high precision and determine the radial position of chromosome territories using either centroid or equidistant-shell analysis. The HiCTMap protocol is also compatible with RNA FISH as demonstrated by simultaneous labeling of X chromosomes and Xist RNA in female cells. We suggest HiCTMap will be a useful tool for routine precision mapping of chromosome territories in a wide range of cell types and tissues.
Collapse
MESH Headings
- Animals
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chromosome Mapping/instrumentation
- Chromosome Mapping/methods
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 18/metabolism
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/metabolism
- Chromosomes, Human, Y/genetics
- Chromosomes, Human, Y/metabolism
- Female
- Fibroblasts
- Humans
- Image Processing, Computer-Assisted/instrumentation
- Image Processing, Computer-Assisted/methods
- In Situ Hybridization, Fluorescence/instrumentation
- In Situ Hybridization, Fluorescence/methods
- Male
- Primary Cell Culture/methods
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Skin/cytology
- Staining and Labeling/instrumentation
- Staining and Labeling/methods
Collapse
Affiliation(s)
- Ziad Jowhar
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Prabhakar R Gudla
- NCI High-throughput Imaging Facility, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Sigal Shachar
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Jill L Russ
- Human Genetics Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States
| | - Gianluca Pegoraro
- NCI High-throughput Imaging Facility, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Armin Raznahan
- Human Genetics Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
27
|
Abstract
It is well known that the chromosomes are organized in the nucleus and this spatial arrangement of genome play a crucial role in gene regulation and genome stability. Different techniques have been developed and applied to uncover the intrinsic mechanism of genome architecture, especially the chromosome conformation capture (3C) and 3C-derived methods. 3C and 3C-derived techniques provide us approaches to perform high-throughput chromatin architecture assays at the genome scale. However, the advantage and disadvantage of current methodologies of C-technologies have not been discussed extensively. In this review, we described and compared the methodologies of C-technologies used in genome organization studies with an emphasis on Hi-C method. We also discussed the crucial challenges facing current genome architecture studies based on 3C and 3C-derived technologies and the direction of future technologies to address currently outstanding questions in the field. These latest news contribute to our current understanding of genome structure, and provide a comprehensive reference for researchers to choose the appropriate method in future application. We consider that these constantly improving technologies will offer a finer and more accurate contact profiles of entire genome and ultimately reveal specific molecular machines govern its shape and function.
Collapse
|
28
|
Aughey GN, Estacio Gomez A, Thomson J, Yin H, Southall TD. CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. eLife 2018; 7:32341. [PMID: 29481322 PMCID: PMC5826290 DOI: 10.7554/elife.32341] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development. For an embryo to successfully develop into an adult animal, specific genes must act in different types of cells. Though all the cells have the same genes encoded within their DNA, looking at the way that the DNA is packaged can indicate which parts of the DNA are important for that particular cell type. If regions of DNA are “open” one can infer that those regions are actively involved in gene regulation, whereas “closed” regions are considered less important. It is currently difficult to determine which parts of the DNA are open within an individual cell type in a complex organ, such as the brain. Existing methods require the cells to be physically isolated from the tissue, which is technically challenging. To overcome this issue, Aughey et al. have now developed a method that does not require isolation of the cells. The new technique involves using genetic engineering to introduce an enzyme called Dam into specific cell types in living fruit flies. This enzyme adds a chemical label on regions of open DNA, which can then be detected. Aughey et al. tested this technique on various cells of the developing brain and gut, and were able to see differences in the openness of DNA that corresponded to the action of genes that are important in each cell type. The data also contain trends that help to understand the role of open DNA in development. For example, mature cells were shown to overall have less open DNA than the stem cells that divide to generate them. Aughey et al. hope their new technique will be of use to other researchers working with either fruit flies or mammalian tissues. The knowledge that scientists will gain from identifying how open DNA contributes to gene regulation, in both healthy and diseased tissues, will further our understanding of human development and the biology of diseases such as cancer.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Jamie Thomson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Hang Yin
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Gulmez Karaca K, Brito DVC, Zeuch B, Oliveira AMM. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol Learn Mem 2018; 149:84-97. [PMID: 29438740 DOI: 10.1016/j.nlm.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
Abstract
MeCP2 is required both during postnatal neurodevelopment and throughout the adult life for brain function. Although it is well accepted that MeCP2 in the maturing nervous system is critical for establishing normal development, the functions of MeCP2 during adulthood are poorly understood. Particularly, the requirement of hippocampal MeCP2 for cognitive abilities in the adult is not studied. To characterize the role of MeCP2 in adult neuronal function and cognition, we used a temporal and region-specific disruption of MeCP2 expression in the hippocampus of adult male mice. We found that MeCP2 is required for long-term memory formation and that it controls the learning-induced transcriptional response of hippocampal neurons required for memory consolidation. Furthermore, we uncovered MeCP2 functions in the adult hippocampus that may underlie cognitive integrity. We showed that MeCP2 maintains the developmentally established chromatin configuration and epigenetic landscape of CA1 neurons throughout the adulthood, and that it regulates the expression of neuronal and immune-related genes in the adult hippocampus. Overall, our findings identify MeCP2 as a maintenance factor in the adult hippocampus that preserves signal responsiveness of the genome and allows for integrity of cognitive functions. This study provides new insight into how MeCP2 maintains adult brain functions, but also into the mechanisms underlying the cognitive impairments observed in RTT patients and highlights the understudied role of DNA methylation interpretation in adult cognitive processes.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Ahringer J, Gasser SM. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function. Genetics 2018; 208:491-511. [PMID: 29378810 PMCID: PMC5788517 DOI: 10.1534/genetics.117.300386] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/18/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals.
Collapse
Affiliation(s)
- Julie Ahringer
- The Gurdon Institute, University of Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge CB2 1QN, United Kingdom
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland, and
- Faculty of Natural Sciences, University of Basel, 4056, Switzerland
| |
Collapse
|
31
|
Narla ST, Decker B, Sarder P, Stachowiak EK, Stachowiak MK. Induced Pluripotent Stem Cells Reveal Common Neurodevelopmental Genome Deprograming in Schizophrenia. Results Probl Cell Differ 2018; 66:137-162. [PMID: 30209658 DOI: 10.1007/978-3-319-93485-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by complex aberrations in the structure, wiring, and chemistry of multiple neuronal systems. The abnormal developmental trajectory of the brain is established during gestation, long before clinical manifestation of the disease. Over 200 genes and even greater numbers of single nucleotide polymorphisms and copy number variations have been linked with schizophrenia. How does altered function of such a variety of genes lead to schizophrenia? We propose that the protein products of these altered genes converge on a common neurodevelopmental pathway responsible for the development of brain neural circuit and neurotransmitter systems. The results of a multichanneled investigation using induced pluripotent stem cell (iPSCs)- and embryonic stem cell (ESCs)-derived neuronal committed cells (NCCs) indicate an early (preneuronal) developmental-genomic etiology of schizophrenia and that the dysregulated developmental gene networks are common to genetically unrelated cases of schizophrenia. The results support a "watershed" mechanism in which mutations within diverse signaling pathways affect the common pan-ontogenic mechanism, integrative nuclear (n)FGFR1 signaling (INFS). Dysregulation of INFS in schizophrenia NCCs deconstructs coordinated gene networks and leads to formation of new networks by the dysregulated genes. This genome deprograming affects critical gene programs and pathways for neural development and functions. Studies show that the genomic deprograming reflect an altered nFGFR1-genome interactions and deregulation of miRNA genes by nFGFR1. In addition, changes in chromatin topology imposed by nFGFR1 may play a role in coordinate gene dysregulation in schizophrenia.
Collapse
Affiliation(s)
- Sridhar T Narla
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA
| | - Brandon Decker
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA.,Department of Biomedical Engineering, State University of New York, Buffalo, NY, USA
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA.,Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, NY, USA
| | - Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA. .,Department of Biomedical Engineering, State University of New York, Buffalo, NY, USA. .,Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
32
|
Nakamura A, Tsukiji S. Ratiometric fluorescence imaging of nuclear pH in living cells using Hoechst-tagged fluorescein. Bioorg Med Chem Lett 2017; 27:3127-3130. [DOI: 10.1016/j.bmcl.2017.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/03/2023]
|
33
|
Skubitz KM. Biology and Treatment of Aggressive Fibromatosis or Desmoid Tumor. Mayo Clin Proc 2017; 92:947-964. [PMID: 28578783 DOI: 10.1016/j.mayocp.2017.02.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
Aggressive fibromatosis, also known as desmoid-type fibromatosis (DTF) or desmoid tumor, is an uncommon locally invasive tumor. Because of its low incidence and variable behavior, DTF is often first seen by physicians who are not familiar with it, and recent advances in understanding this disease have led to changes in treatment approaches. The Wnt (β-catenin) pathway appears to play a key role in DTF pathogenesis, and recent studies of DTF biology suggest a possible model of DTF pathogenesis. Histologically, DTF shows a poorly circumscribed proliferation of myofibroblast-like cells with variable collagen deposition, similar to the proliferative phase of wound healing, and DTF has been associated with trauma and pregnancy. Desmoid-type fibromatosis may be a useful model of the tumor stroma in carcinomas as well as other fibrosing diseases such as progressive pulmonary fibrosis. The clinical course of DTF can vary greatly among patients, complicating the determination of the optimal treatment approach. Treatment options include surgery, nonsteroidal anti-inflammatory drugs with or without hormonal manipulation, chemotherapy, radiation therapy, and other forms of local therapy. Many treatments have been used, but these are not without toxicities. Because of the variable nature of the disease and the potential morbidity of treatment, some cases of DTF may do better without treatment; simple observation is often the best initial treatment. This review used a PubMed search from January 1, 1980, through October 31, 2016, using the terms fibromatosis and desmoid and discusses DTF disease characteristics, pathophysiology, and treatment options as well as examines several cases illustrating key points in the biology and treatment of this heterogeneous disease.
Collapse
Affiliation(s)
- Keith M Skubitz
- Department of Medicine, University of Minnesota Medical School, Minneapolis.
| |
Collapse
|
34
|
Smith ER, Meng Y, Moore R, Tse JD, Xu AG, Xu XX. Nuclear envelope structural proteins facilitate nuclear shape changes accompanying embryonic differentiation and fidelity of gene expression. BMC Cell Biol 2017; 18:8. [PMID: 28088180 PMCID: PMC5237523 DOI: 10.1186/s12860-017-0125-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nuclear size and shape are specific to a cell type, function, and location, and can serve as indicators of disease and development. We previously found that lamin A/C and associated nuclear envelope structural proteins were upregulated when murine embryonic stem (ES) cells differentiated to primitive endoderm cells. Here we further investigated the morphological changes of nuclei that accompany this differentiation. RESULTS The nuclei of undifferentiated wild type cells were found shaped as flattened, irregular ovals, whereas nuclei of Gata4-positive endoderm cells were more spherical, less flattened, and with a slightly reduced volume. The morphological change was confirmed in the trophectoderm and primitive endoderm lineages of E4.5 blastocysts, compared to larger and more irregularly shaped of the nuclei of the inner cell mass. We established ES cells genetically null for the nuclear lamina proteins lamin A/C or the inner nuclear envelope protein emerin, or compound mutant for both lamin A/C and emerin. ES cells deficient in lamin A/C differentiated to endoderm but less efficiently, and the nuclei remained flattened and failed to condense. The size and shape of emerin-deficient nuclei also remained uncondensed after treatment with RA. The emerin/lamin A/C double knockout ES cells failed to differentiate to endoderm cells, though the nuclei condensed but retained a generally flattened ellipsoid shape. Additionally, ES cells deficient for lamin A/C and/or emerin had compromised ability to undergo endoderm differentiation, where the differentiating cells often exhibited coexpression of pluripotent and differentiation markers, such as Oct3/4 and Gata4, respectively, indicating an infidelity of gene regulation. CONCLUSIONS The results suggest that changes in nuclear size and shape, which are mediated by nuclear envelope structural proteins lamin A/C and/or emerin, also impact gene regulation and lineage differentiation in early embryos. Nevertheless, mice lacking both lamin A/C and emerin were born at the expected frequency, indicating their embryonic development is completed despite the observed protein deficiency.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA.
| | - Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Arn G Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| |
Collapse
|
35
|
Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:95-117. [PMID: 28528441 DOI: 10.1007/978-3-319-53168-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nucleus is composed of multiple compartments and domains, which directly or indirectly influence many cellular processes including gene expression, RNA splicing and maturation, protein post-translational modifications, and chromosome segregation. Nuclear-replicating viruses, especially herpesviruses, have co-evolved with the cell, adopting strategies to counteract and eventually hijack this hostile environment for their own benefit. This allows them to persist in the host for the entire life of an individual and to ensure their maintenance in the target species. Herpesviruses establish latency in dividing or postmitotic cells from which they can efficiently reactivate after sometimes years of a seemingly dormant state. Therefore, herpesviruses circumvent the threat of permanent silencing by reactivating their dormant genomes just enough to escape extinction, but not too much to avoid life-threatening damage to the host. In addition, herpesviruses that establish latency in dividing cells must adopt strategies to maintain their genomes in the daughter cells to avoid extinction by dilution of their genomes following multiple cell divisions. From a biochemical point of view, reactivation and maintenance of viral genomes in dividing cells occur successfully because the viral genomes interact with the nuclear architecture in a way that allows the genomes to be transmitted faithfully and to benefit from the nuclear micro-environments that allow reactivation following specific stimuli. Therefore, spatial positioning of the viral genomes within the nucleus is likely to be essential for the success of the latent infection and, beyond that, for the maintenance of herpesviruses in their respective hosts.
Collapse
Affiliation(s)
- Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, 69008, Lyon, France.
| |
Collapse
|
36
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
37
|
Abstract
RNA polymerase II (Pol II) pausing at promoter-proximal regions is a highly regulated step in the transcription cycle. Pause release is facilitated by the P-TEFb kinase, which phosphorylates Pol II and negative elongation factors. Recent studies suggest that P-TEFb (as part of the inhibitory 7SK snRNP) is recruited to promoter-proximal regions through interaction with KAP1/TRIM28/TIF1β to facilitate 'on-site' kinase activation and transcription elongation. Here, I discuss features of this model and future challenges to further hone our understanding of transcriptional regulation including Pol II pausing and pause release.
Collapse
Affiliation(s)
- Iván D'Orso
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
38
|
Coll-Bonfill N, de la Cruz-Thea B, Pisano MV, Musri MM. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch 2016; 468:1071-87. [PMID: 27109570 DOI: 10.1007/s00424-016-1821-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
Vascular smooth muscle cells (SMC) are a highly specialized cell type that exhibit extraordinary plasticity in adult animals in response to a number of environmental cues. Upon vascular injury, SMC undergo phenotypic switch from a contractile-differentiated to a proliferative/migratory-dedifferentiated phenotype. This process plays a major role in vascular lesion formation and during the development of vascular remodeling. Vascular remodeling comprises the accumulation of dedifferentiated SMC in the intima of arteries and is central to a number of vascular diseases such as arteriosclerosis, chronic obstructive pulmonary disease or pulmonary hypertension. Therefore, it is critical to understand the molecular mechanisms that govern SMC phenotype. In the last decade, a number of new classes of noncoding RNAs have been described. These molecules have emerged as key factors controlling tissue homeostasis during physiological and pathological conditions. In this review, we will discuss the role of noncoding RNAs, including microRNAs and long noncoding RNAs, in the regulation of SMC plasticity.
Collapse
Affiliation(s)
- N Coll-Bonfill
- Department of Pulmonary Medicine Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - B de la Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M V Pisano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.
| |
Collapse
|
39
|
A Development of Nucleic Chromatin Measurements as a New Prognostic Marker for Severe Chronic Heart Failure. PLoS One 2016; 11:e0148209. [PMID: 26845691 PMCID: PMC4742272 DOI: 10.1371/journal.pone.0148209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Background Accurate prediction of both mortality and morbidity is of significant importance, but it is challenging in patients with severe heart failure. It is especially difficult to detect the optimal time for implanting mechanical circulatory support devices in such patients. We aimed to analyze the morphometric ultrastructure of nuclear chromatin in cardiomyocytes by developing an original clinical histopathological method. Using this method, we developed a biomarker to predict poor outcome in patients with dilated cardiomyopathy (DCM). Methods and Results As a part of their diagnostic evaluation, 171 patients underwent endomyocardial biopsy (EMB). Of these, 63 patients diagnosed with DCM were included in this study. We used electron microscopic imaging of cardiomyocyte nuclei and an automated image analysis software program to assess whether it was possible to detect discontinuity of the nuclear periphery. Twelve months after EMB, all patients with a discontinuous nuclear periphery (Group A, n = 11) died from heart failure or underwent left ventricular assist device (VAD) implantation. In contrast, in patients with a continuous nuclear periphery (Group N, n = 52) only 7 patients (13%) underwent VAD implantation and there were no deaths (p<0.01). We then evaluated chromatin particle density (Nuc-CS) and chromatin thickness in the nuclear periphery (Per-CS) in Group N patients; these new parameters were able to identify patients with poor prognosis. Conclusions We developed novel morphometric methods based on cardiomyocyte nuclear chromatin that may provide pivotal information for early prediction of poor prognosis in patients with DCM.
Collapse
|
40
|
Politz JCR, Scalzo D, Groudine M. The redundancy of the mammalian heterochromatic compartment. Curr Opin Genet Dev 2015; 37:1-8. [PMID: 26706451 DOI: 10.1016/j.gde.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023]
Abstract
Two chromatin compartments are present in most mammalian cells; the first contains primarily euchromatic, early replicating chromatin and the second, primarily late-replicating heterochromatin, which is the subject of this review. Heterochromatin is concentrated in three intranuclear regions: the nuclear periphery, the perinucleolar space and in pericentromeric bodies. We review recent evidence demonstrating that the heterochromatic compartment is critically involved in global nuclear organization and the maintenance of genome stability, and discuss models regarding how this compartment is formed and maintained. We also evaluate our understanding of how heterochromatic sequences (herein named heterochromatic associated regions (HADs)) might be tethered within these regions and review experiments that reveal the stochastic nature of individual HAD positioning within the compartment. These investigations suggest a substantial level of functional redundancy within the heterochromatic compartment.
Collapse
Affiliation(s)
| | - David Scalzo
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mark Groudine
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|
41
|
Jost KL, Bertulat B, Rapp A, Brero A, Hardt T, Domaing P, Gösele C, Schulz H, Hübner N, Cardoso MC. Gene repositioning within the cell nucleus is not random and is determined by its genomic neighborhood. Epigenetics Chromatin 2015; 8:36. [PMID: 26388944 PMCID: PMC4574441 DOI: 10.1186/s13072-015-0025-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Heterochromatin has been reported to be a major silencing compartment during development and differentiation. Prominent heterochromatin compartments are located at the nuclear periphery and inside the nucleus (e.g., pericentric heterochromatin). Whether the position of a gene in relation to some or all heterochromatin compartments matters remains a matter of debate, which we have addressed in this study. Answering this question demanded solving the technical challenges of 3D measurements and the large-scale morphological changes accompanying cellular differentiation. RESULTS Here, we investigated the proximity effects of the nuclear periphery and pericentric heterochromatin on gene expression and additionally considered the effect of neighboring genomic features on a gene's nuclear position. Using a well-established myogenic in vitro differentiation system and a differentiation-independent heterochromatin remodeling system dependent on ectopic MeCP2 expression, we first identified genes with statistically significant expression changes by transcriptional profiling. We identified nuclear gene positions by 3D fluorescence in situ hybridization followed by 3D distance measurements toward constitutive and facultative heterochromatin domains. Single-cell-based normalization enabled us to acquire morphologically unbiased data and we finally correlated changes in gene positioning to changes in transcriptional profiles. We found no significant correlation of gene silencing and proximity to constitutive heterochromatin and a rather unexpected inverse correlation of gene activity and position relative to facultative heterochromatin at the nuclear periphery. CONCLUSION In summary, our data question the hypothesis of heterochromatin as a general silencing compartment. Nonetheless, compared to a simulated random distribution, we found that genes are not randomly located within the nucleus. An analysis of neighboring genomic context revealed that gene location within the nucleus is rather dependent on CpG islands, GC content, gene density, and short and long interspersed nuclear elements, collectively known as RIDGE (regions of increased gene expression) properties. Although genes do not move away/to the heterochromatin upon up-/down-regulation, genomic regions with RIDGE properties are generally excluded from peripheral heterochromatin. Hence, we suggest that individual gene activity does not influence gene positioning, but rather chromosomal context matters for sub-nuclear location.
Collapse
Affiliation(s)
- K Laurence Jost
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Alessandro Brero
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tanja Hardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Petra Domaing
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Claudia Gösele
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Herbert Schulz
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
42
|
Armelin-Correa LM, Nagai MH, Leme Silva AG, Malnic B. Nuclear architecture and gene silencing in olfactory sensory neurons. BIOARCHITECTURE 2015; 4:160-3. [PMID: 25714005 DOI: 10.4161/19490992.2014.982934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Odorants are discriminated by hundreds of odorant receptor (OR) genes, which are dispersed throughout the mammalian genome. The OR genes are expressed in a highly specialized type of cell, the olfactory sensory neuron. Each one of these neurons expresses one of the 2 alleles from one single OR gene type. The mechanisms underlying OR gene expression are unclear. Here we describe recent work demonstrating that the olfactory sensory neuron shows a particular nuclear architecture, and that the genomic OR loci are colocalized in silencing heterochromatin compartments within the nucleus. These discoveries highlight the important role played by epigenetic modifications and nuclear genome organization in the regulation of OR gene expression.
Collapse
|
43
|
Epigenetic regulation of open chromatin in pluripotent stem cells. Transl Res 2015; 165:18-27. [PMID: 24695097 PMCID: PMC4163141 DOI: 10.1016/j.trsl.2014.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 01/10/2023]
Abstract
The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, alter, eventually, the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is open globally to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells, including microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genomewide nucleosome accessibility and nucleosome positioning. Greater understanding of epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem cells.
Collapse
|
44
|
Romero-Fernández I, Casas-Delucchi CS, Cano-Linares M, Arroyo M, Sánchez A, Cardoso MC, Marchal JA. Epigenetic modifications in sex heterochromatin of vole rodents. Chromosoma 2014; 124:341-51. [PMID: 25527445 DOI: 10.1007/s00412-014-0502-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 11/26/2022]
Abstract
The genome of some vole rodents contains large blocks of heterochromatin coupled to the sex chromosomes. While the DNA content of these heterochromatic blocks has been extensively analyzed, little is known about the epigenetic modifications controlling their structure and dynamics. To better understand its organization and functions within the nucleus, we have compared the distribution pattern of several epigenetic marks in cells from two species, Microtus agrestis and Microtus cabrerae. We first could show that the heterochromatic blocks are identifiable within the nuclei due to their AT enrichment detectable by DAPI staining. By immunostaining analyses, we demonstrated that enrichment in H3K9me3 and HP1, depletion of DNA methylation as well as H4K8ac and H3K4me2, are major conserved epigenetic features of this heterochromatin in both sex chromosomes. Furthermore, we provide evidence of transcriptional activity for some repeated DNAs in cultivated cells. These transcripts are partially polyadenylated and their levels are not altered during mitotic arrest. In summary, we show here that enrichment in H3K9me3 and HP1, DNA demethylation, and transcriptional activity are major epigenetic features of sex heterochromatin in vole rodents.
Collapse
Affiliation(s)
- I Romero-Fernández
- Department of Experimental Biology, University of Jaén, Jaén, E-23071, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Fidelity of histone gene regulation is obligatory for genome replication and stability. Mol Cell Biol 2014; 34:2650-9. [PMID: 24797072 DOI: 10.1128/mcb.01567-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fidelity of chromatin organization is crucial for normal cell cycle progression, and perturbations in packaging of DNA may predispose to transformation. Histone H4 protein is the most highly conserved chromatin protein, required for nucleosome assembly, with multiple histone H4 gene copies encoding identical protein. There is a long-standing recognition of the linkage of histone gene expression and DNA replication. A fundamental and unresolved question is the mechanism that couples histone biosynthesis with DNA replication and fidelity of cell cycle control. Here, we conditionally ablated the obligatory histone H4 transcription factor HINFP to cause depletion of histone H4 in mammalian cells. Deregulation of histone H4 results in catastrophic cellular and molecular defects that lead to genomic instability. Histone H4 depletion increases nucleosome spacing, impedes DNA synthesis, alters chromosome complement, and creates replicative stress. Our study provides functional evidence that the tight coupling between DNA replication and histone synthesis is reciprocal.
Collapse
|
46
|
Corley M, Kroll KL. The roles and regulation of Polycomb complexes in neural development. Cell Tissue Res 2014; 359:65-85. [PMID: 25367430 DOI: 10.1007/s00441-014-2011-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb repressive complexes, effectively limiting the expression of fate-determining genes. Here, we review the distinct roles that Polycomb repressive complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of the way in which Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation facilitating the efficient generation of specific neuronal and glial cell types for many biological applications.
Collapse
Affiliation(s)
- Matthew Corley
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
47
|
Dnmt3b Prefers Germ Line Genes and Centromeric Regions: Lessons from the ICF Syndrome and Cancer and Implications for Diseases. BIOLOGY 2014; 3:578-605. [PMID: 25198254 PMCID: PMC4192629 DOI: 10.3390/biology3030578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential contribution of these deregulated protein-coding and non-coding transcription programs to the perturbation of cellular phenotypes.
Collapse
|
48
|
Abstract
Odorants are detected by odorant receptors, which are located on olfactory sensory neurons of the nose. Each olfactory sensory neuron expresses one single odorant receptor gene allele from a large family of odorant receptor genes. To gain insight into the mechanisms underlying this monogenic and monoallelic expression, we examined the 3D nuclear organization of olfactory sensory neurons and determined the positions of homologous odorant receptor gene alleles in relation to different nuclear compartments. Our results show that olfactory neurons exhibit a singular nuclear architecture that is characterized by a large centrally localized constitutive heterochromatin block and by the presence of prominent facultative heterochromatin domains that are localized around this constitutive heterochromatin block. We also found that the two homologous alleles of a given odorant receptor gene are frequently segregated to separate compartments in the nucleus, with one of the alleles localized to the constitutive heterochromatin block and the other one localized to the more plastic facultative heterochromatin, or next to it. Our findings suggest that this nuclear compartmentalization may play a critical role in the expression of odorant receptor genes.
Collapse
|
49
|
Sood V, Brickner JH. Nuclear pore interactions with the genome. Curr Opin Genet Dev 2014; 25:43-9. [PMID: 24480294 DOI: 10.1016/j.gde.2013.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
Abstract
Within the nucleus, chromatin is functionally organized into distinct nuclear compartments. The nuclear periphery, containing Nuclear Pore Complexes (NPCs), plays an important role in the spatial organization of chromatin and in transcriptional regulation. The role of Nuclear Pore Proteins (Nups) in transcription and their involvement in leukemia and viral integration has renewed interest in understanding their mechanism of action. Nups bind to both repressed and active genes, often in a regulated fashion. Nups can associate with chromatin both at the NPC and inside the nucleoplasm. These interactions are guided by evolutionarily conserved mechanisms that involve promoter DNA elements and trans-acting factors. These interactions can also lead to interchromosomal clustering of co-regulated genes. Nups affect gene expression by promoting stronger transcription, by limiting the spread of repressed chromatin or by altering chromatin structure. Nups can promote epigenetic regulation by establishing boundary elements and poising recently repressed genes for faster reactivation.
Collapse
Affiliation(s)
- Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
50
|
Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. Cell Rep 2013; 5:1256-68. [PMID: 24316072 DOI: 10.1016/j.celrep.2013.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/02/2013] [Accepted: 11/02/2013] [Indexed: 12/19/2022] Open
Abstract
The transition from transcription initiation into elongation is controlled by transcription factors, which recruit positive transcription elongation factor b (P-TEFb) to promoters to phosphorylate RNA polymerase II. A fraction of P-TEFb is recruited as part of the inhibitory 7SK small nuclear ribonucleoprotein particle (snRNP), which inactivates the kinase and prevents elongation. However, it is unclear how P-TEFb is captured from the promoter-bound 7SK snRNP to activate elongation. Here, we describe a mechanism by which transcription factors mediate the enzymatic release of P-TEFb from the 7SK snRNP at promoters to trigger activation in a gene-specific manner. We demonstrate that Tat recruits PPM1G/PP2Cγ to locally disassemble P-TEFb from the 7SK snRNP at the HIV promoter via dephosphorylation of the kinase T loop. Similar to Tat, nuclear factor (NF)-κB recruits PPM1G in a stimulus-dependent manner to activate elongation at inflammatory-responsive genes. Recruitment of PPM1G to promoter-assembled 7SK snRNP provides a paradigm for rapid gene activation through transcriptional pause release.
Collapse
|