1
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Uvizl M, Puechmaille SJ, Power S, Pippel M, Carthy S, Haerty W, Myers EW, Teeling EC, Huang Z. Comparative Genome Microsynteny Illuminates the Fast Evolution of Nuclear Mitochondrial Segments (NUMTs) in Mammals. Mol Biol Evol 2024; 41:msad278. [PMID: 38124445 PMCID: PMC10764098 DOI: 10.1093/molbev/msad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.
Collapse
Affiliation(s)
- Marek Uvizl
- Department of Zoology, National Museum, 19300 Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Sebastien J Puechmaille
- Institut des Sciences de l’Evolution de Montpellier (ISEM), University of Montpellier, 34095 Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Samuel Carthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Ln, NR4 7UZ Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Xue TT, Janssens SB, Liu BB, Yu SX. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Mol Phylogenet Evol 2024; 190:107956. [PMID: 37898296 DOI: 10.1016/j.ympev.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.
Collapse
Affiliation(s)
- Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Cai H, Ren Y, Du J, Liu L, Long L, Yang M. Analysis of the RNA Editing Sites and Orthologous Gene Function of Transcriptome and Chloroplast Genomes in the Evolution of Five Deutzia Species. Int J Mol Sci 2023; 24:12954. [PMID: 37629135 PMCID: PMC10454583 DOI: 10.3390/ijms241612954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, the chloroplast genomes and transcriptomes of five Deutzia genus species were sequenced, characterized, combined, and analyzed. A phylogenetic tree was constructed, including 32 other chloroplast genome sequences of Hydrangeoideae species. The results showed that the five Deutzia chloroplast genomes were typical circular genomes 156,860-157,025 bp in length, with 37.58-37.6% GC content. Repeat analysis showed that the Deutzia species had 41-45 scattered repeats and 199-201 simple sequence repeats. Comparative genomic and pi analyses indicated that the genomes are conservative and that the gene structures are stable. According to the phylogenetic tree, Deutzia species appear to be closely related to Kirengeshoma palmata and Philadelphus. By combining chloroplast genomic and transcriptomic analyses, 29-31 RNA editing events and 163-194 orthologous genes were identified. The ndh, rpo, rps, and atp genes had the most editing sites, and all RNA editing events were of the C-to-U type. Most of the orthologous genes were annotated to the chloroplast, mitochondria, and nucleus, with functions including energy production and conversion, translation, and protein transport. Genes related to the biosynthesis of monoterpenoids and flavonoids were also identified from the transcriptome of Deutzia spp. Our results will contribute to further studies of the genomic information and potential uses of the Deutzia spp.
Collapse
Affiliation(s)
- Hongyu Cai
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Yachao Ren
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Juan Du
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Shijiazhuang Botanical Garden, Shijiazhuang 050299, China
| | - Lingyun Liu
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Lianxiang Long
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Minsheng Yang
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| |
Collapse
|
5
|
Ding H, Bi D, Zhang S, Han S, Ye Y, Yi R, Yang J, Liu B, Wu L, Zhuo R, Kan X. The Mitogenome of Sedum plumbizincicola (Crassulaceae): Insights into RNA Editing, Lateral Gene Transfer, and Phylogenetic Implications. BIOLOGY 2022; 11:1661. [PMID: 36421375 PMCID: PMC9687357 DOI: 10.3390/biology11111661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2024]
Abstract
As the largest family within the order Saxifragales, Crassulaceae contains about 34 genera with 1400 species. Mitochondria play a critical role in cellular energy production. Since the first land plant mitogenome was reported in Arabidopsis, more than 400 mitogenomic sequences have been deposited in a public database. However, no entire mitogenome data have been available for species of Crassulaceae to date. To better understand the evolutionary history of the organelles of Crassulaceae, we sequenced and performed comprehensive analyses on the mitogenome of Sedum plumbizincicola. The master mitogenomic circle is 212,159 bp in length, including 31 protein-coding genes (PCGs), 14 tRNA genes, and 3 rRNA genes. We further identified totally 508 RNA editing sites in PCGs, and demonstrated that the second codon positions of mitochondrial genes are most prone to RNA editing events. Notably, by neutrality plot analyses, we observed that the mitochondrial RNA editing events have large effects on the driving forces of plant evolution. Additionally, 4 MTPTs and 686 NUMTs were detected in the mitochondrial and nuclear genomes of S. plumbizincicola, respectively. Additionally, we conducted further analyses on gene transfer, secondary structures of mitochondrial RNAs, and phylogenetic implications. Therefore, the findings presented here will be helpful for future investigations on plant mitogenomes.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Birong Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
6
|
Di Santo LN, Hoban S, Parchman TL, Wright JW, Hamilton JA. Reduced representation sequencing to understand the evolutionary history of Torrey pine (Pinus torreyana Parry) with implications for rare species conservation. Mol Ecol 2022; 31:4622-4639. [PMID: 35822858 DOI: 10.1111/mec.16615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
Understanding the contribution of neutral and adaptive evolutionary processes to population differentiation is often necessary for better informed management and conservation of rare species. In this study, we focused on Pinus torreyana Parry (Torrey pine), one of the world's rarest pines, endemic to one island and one mainland population in California. Small population size, low genetic diversity, and susceptibility to abiotic and biotic stresses suggest Torrey pine may benefit from inter-population genetic rescue to preserve the species' evolutionary potential. We leveraged reduced representation sequencing to tease apart the respective contributions of stochastic and deterministic evolutionary processes to population differentiation. We applied these data to model spatial and temporal demographic changes in effective population sizes and genetic connectivity, to identify loci possibly under selection, and evaluate genetic rescue as a potential conservation strategy. Overall, we observed exceedingly low standing variation within both Torrey pine populations, reflecting consistently low effective population sizes across time, and limited genetic differentiation, suggesting maintenance of gene flow between populations following divergence. However, genome scans identified more than 2000 candidate SNPs potentially under divergent selection. Combined with previous observations indicating population phenotypic differentiation, this indicates natural selection has likely contributed to the evolution of population genetic differences. Thus, while reduced genetic diversity, small effective population size, and genetic connectivity between populations suggest genetic rescue could mitigate the adverse effects of rarity, evidence for adaptive differentiation suggests genetic mixing could disrupt adaptation. Further work evaluating the fitness consequences of inter-population admixture is necessary to empirically evaluate the trade-offs associated with genetic rescue in Torrey pine.
Collapse
Affiliation(s)
- Lionel N Di Santo
- North Dakota State University, Department of Biological Sciences, Fargo, ND, USA
| | | | | | - Jessica W Wright
- USDA- Forest Service, Pacific Southwest Research Station, Davis, CA, USA
| | - Jill A Hamilton
- North Dakota State University, Department of Biological Sciences, Fargo, ND, USA.,Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA, USA
| |
Collapse
|
7
|
Choi IS, Wojciechowski MF, Steele KP, Hunter SG, Ruhlman TA, Jansen RK. Born in the mitochondrion and raised in the nucleus: evolution of a novel tandem repeat family in Medicago polymorpha (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:389-406. [PMID: 35061308 DOI: 10.1111/tpj.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Plant nuclear genomes harbor sequence elements derived from the organelles (mitochondrion and plastid) through intracellular gene transfer (IGT). Nuclear genomes also show a dramatic range of repeat content, suggesting that any sequence can be readily amplified. These two aspects of plant nuclear genomes are well recognized but have rarely been linked. Through investigation of 31 Medicago taxa we detected exceptionally high post-IGT amplification of mitochondrial (mt) DNA sequences containing rps10 in the nuclear genome of Medicago polymorpha and closely related species. The amplified sequences were characterized as tandem arrays of five distinct repeat motifs (2157, 1064, 987, 971, and 587 bp) that have diverged from the mt genome (mitogenome) in the M. polymorpha nuclear genome. The mt rps10-like arrays were identified in seven loci (six intergenic and one telomeric) of the nuclear chromosome assemblies and were the most abundant tandem repeat family, representing 1.6-3.0% of total genomic DNA, a value approximately three-fold greater than the entire mitogenome in M. polymorpha. Compared to a typical mt gene, the mt rps10-like sequence coverage level was 691.5-7198-fold higher in M. polymorpha and closely related species. In addition to the post-IGT amplification, our analysis identified the canonical telomeric repeat and the species-specific satellite arrays that are likely attributable to an ancestral chromosomal fusion in M. polymorpha. A possible relationship between chromosomal instability and the mt rps10-like tandem repeat family in the M. polymorpha clade is discussed.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kelly P Steele
- Division of Science and Mathematics, Arizona State University, Mesa, AZ, 85212, USA
| | - Sarah G Hunter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Kan SL, Shen TT, Ran JH, Wang XQ. Both Conifer II and Gnetales are characterized by a high frequency of ancient mitochondrial gene transfer to the nuclear genome. BMC Biol 2021; 19:146. [PMID: 34320951 PMCID: PMC8317393 DOI: 10.1186/s12915-021-01096-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial gene transfer/loss is common in land plants, and therefore the fate of missing mitochondrial genes has attracted more and more attention. The gene content of gymnosperm mitochondria varies greatly, supplying a system for studying the evolutionary fate of missing mitochondrial genes. RESULTS Here, we studied the tempo and pattern of mitochondrial gene transfer/loss in gymnosperms represented by all 13 families, using high-throughput sequencing of both DNA and cDNA. All 41 mitochondrial protein-coding genes were found in cycads, Ginkgo and Pinaceae, whereas multiple mitochondrial genes were absent in Conifer II and Gnetales. In Conifer II, gene transfer from mitochondria to the nucleus followed by loss of the mitochondrial copy was common, but complete loss of a gene in both mitochondrial and nuclear genomes was rare. In contrast, both gene transfer and loss were commonly found in Gnetales. Notably, in Conifer II and Gnetales, the same five mitochondrial genes were transferred to the nuclear genome, and these gene transfer events occurred, respectively, in ancestors of the two lineages. A two-step transfer mechanism (retroprocessing and subsequent DNA-mediated gene transfer) may be responsible for mitochondrial gene transfer in Conifer II and Gnetales. Moreover, the mitochondrial gene content variation is correlated with gene length, GC content, hydrophobicity, and nucleotide substitution rates in land plants. CONCLUSIONS This study reveals a complete evolutionary scenario for variations of mitochondrial gene transferring in gymnosperms, and the factors responsible for mitochondrial gene content variation in land plants.
Collapse
Affiliation(s)
- Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang, 330013, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Insights into molecular structure, genome evolution and phylogenetic implication through mitochondrial genome sequence of Gleditsia sinensis. Sci Rep 2021; 11:14850. [PMID: 34290263 PMCID: PMC8295344 DOI: 10.1038/s41598-021-93480-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Gleditsia sinensis is an endemic species widely distributed in China with high economic and medicinal value. To explore the genomic evolution and phylogenetic relationships of G. sinensis, the complete mitochondrial (mt) genome of G. sinensis was sequenced and assembled, which was firstly reported in Gleditsia. The mt genome was circular and 594,121 bp in length, including 37 protein-coding genes (PCGs), 19 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. The overall base composition of the G. sinensis mt genome was 27.4% for A, 27.4% for T, 22.6% for G, 22.7% for C. The comparative analysis of PCGs in Fabaceae species showed that most of the ribosomal protein genes and succinate dehydrogenase genes were lost. In addition, we found that the rps4 gene was only lost in G. sinensis, whereas it was retained in other Fabaceae species. The phylogenetic analysis based on shared PCGs of 24 species (22 Fabaceae and 2 Solanaceae) showed that G. sinensis is evolutionarily closer to Senna species. In general, this research will provide valuable information for the evolution of G. sinensis and provide insight into the phylogenetic relationships within the family Fabaceae.
Collapse
|
10
|
Filip E, Skuza L. Horizontal Gene Transfer Involving Chloroplasts. Int J Mol Sci 2021; 22:ijms22094484. [PMID: 33923118 PMCID: PMC8123421 DOI: 10.3390/ijms22094484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
- Correspondence:
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
11
|
Abstract
Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.
Collapse
Affiliation(s)
- Jérôme Duminil
- DIADE, University of Montpellier, IRD, Montpellier, France.
| | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, EDB, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
12
|
Ma X, Fan J, Wu Y, Zhao S, Zheng X, Sun C, Tan L. Whole-genome de novo assemblies reveal extensive structural variations and dynamic organelle-to-nucleus DNA transfers in African and Asian rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:596-612. [PMID: 32748498 PMCID: PMC7693357 DOI: 10.1111/tpj.14946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 05/05/2023]
Abstract
Asian cultivated rice (Oryza sativa) and African cultivated rice (Oryza glaberrima) originated from the wild rice species Oryza rufipogon and Oryza barthii, respectively. The genomes of both cultivated species have undergone profound changes during domestication. Whole-genome de novo assemblies of O. barthii, O. glaberrima, O. rufipogon and Oryza nivara, produced using PacBio single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies, showed that Gypsy-like retrotransposons are the major contributors to genome size variation in African and Asian rice. Through the detection of genome-wide structural variations (SVs), we observed that besides 28 shared SV hot spots, another 67 hot spots existed in either the Asian or African rice genomes. Based on gene annotation information of the SVs, we established that organelle-to-nucleus DNA transfers resulted in numerous SVs that participated in the nuclear genome divergence of rice species and subspecies. We detected 52 giant nuclear integrants of organelle DNA (NORGs, defined as >10 kb) in six Oryza AA genomes. In addition, we developed an effective method to genotype giant NORGs, based on genome assembly, and first showed the dynamic change in the distribution of giant NORGs in rice natural population. Interestingly, 16 highly differentiated giant NORGs tended to accumulate in natural populations of Asian rice from higher latitude regions, grown at lower temperatures and light intensities. Our study provides new insight into the genome divergence of African and Asian rice, and establishes that organelle-to-nucleus DNA transfers, as potentially powerful contributors to environmental adaptation during rice evolution, play a major role in producing SVs in rice genomes.
Collapse
Affiliation(s)
- Xin Ma
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jinjian Fan
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| | - Yongzhen Wu
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuangshuang Zhao
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xu Zheng
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Chuanqing Sun
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
| | - Lubin Tan
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
13
|
Hall ND, Zhang H, Mower JP, McElroy JS, Goertzen LR. The Mitochondrial Genome of Eleusine indica and Characterization of Gene Content within Poaceae. Genome Biol Evol 2020; 12:3684-3697. [PMID: 31665327 PMCID: PMC7145533 DOI: 10.1093/gbe/evz229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Plant mitochondrial (mt) genome assembly provides baseline data on size, structure, and gene content, but resolving the sequence of these large and complex organelle genomes remains challenging due to fragmentation, frequent recombination, and transfers of DNA from neighboring plastids. The mt genome for Eleusine indica (Poaceae: goosegrass) is comprehensibly analyzed here, providing key reference data for an economically significant invasive species that is also the maternal parent of the allotetraploid crop Finger millet (Eleusine coracana). The assembled E. indica genome contains 33 protein coding genes, 6 rRNA subunits, 24 tRNA, 8 large repetitive regions 15 kb of transposable elements across a total of 520,691 bp. Evidence of RNA editing and loss of rpl2, rpl5, rps14, rps11, sdh4, and sdh3 genes is evaluated in the context of an updated survey of mt genomic gene content across the grasses through an analysis of publicly available data. Hypothesized patterns of Poaceae mt gene loss are examined in a phylogenetic context to clarify timing, showing that rpl2 was transferred to the nucleus from the mitochondrion prior to the origin of the PACMAD clade.
Collapse
Affiliation(s)
- Nathan D Hall
- Department of Biological Sciences, Auburn University
| | - Hui Zhang
- Department of Crop, Soil and Environmental Sciences, Auburn University
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | | | | |
Collapse
|
14
|
Choi IS, Ruhlman TA, Jansen RK. Comparative Mitogenome Analysis of the Genus Trifolium Reveals Independent Gene Fission of ccmFn and Intracellular Gene Transfers in Fabaceae. Int J Mol Sci 2020; 21:E1959. [PMID: 32183014 PMCID: PMC7139807 DOI: 10.3390/ijms21061959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/30/2023] Open
Abstract
The genus Trifolium is the largest of the tribe Trifolieae in the subfamily Papilionoideae (Fabaceae). The paucity of mitochondrial genome (mitogenome) sequences has hindered comparative analyses among the three genomic compartments of the plant cell (nucleus, mitochondrion and plastid). We assembled four mitogenomes from the two subgenera (Chronosemium and Trifolium) of the genus. The four Trifolium mitogenomes were compact (294,911-348,724 bp in length) and contained limited repetitive (6.6-8.6%) DNA. Comparison of organelle repeat content highlighted the distinct evolutionary trajectory of plastid genomes in a subset of Trifolium species. Intracellular gene transfer (IGT) was analyzed among the three genomic compartments revealing functional transfer of mitochondrial rps1 to nuclear genome along with other IGT events. Phylogenetic analysis based on mitochondrial and nuclear rps1 sequences revealed that the functional transfer in Trifolieae was independent from the event that occurred in robinioid clade that includes genus Lotus. A novel, independent fission event of ccmFn in Trifolium was identified, caused by a 59 bp deletion. Fissions of this gene reported previously in land plants were reassessed and compared with Trifolium.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; (T.A.R.); (R.K.J.)
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; (T.A.R.); (R.K.J.)
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; (T.A.R.); (R.K.J.)
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| | - Hong-Xing Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| |
Collapse
|
16
|
Foflonker F, Mollegard D, Ong M, Yoon HS, Bhattacharya D. Genomic Analysis of Picochlorum Species Reveals How Microalgae May Adapt to Variable Environments. Mol Biol Evol 2019; 35:2702-2711. [PMID: 30184126 DOI: 10.1093/molbev/msy167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.
Collapse
Affiliation(s)
- Fatima Foflonker
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Devin Mollegard
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Meichin Ong
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
17
|
Asselin AK, Villegas-Ospina S, Hoffmann AA, Brownlie JC, Johnson KN. Contrasting Patterns of Virus Protection and Functional Incompatibility Genes in Two Conspecific Wolbachia Strains from Drosophila pandora. Appl Environ Microbiol 2019; 85:e02290-18. [PMID: 30552191 PMCID: PMC6384105 DOI: 10.1128/aem.02290-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Wolbachia infections can present different phenotypes in hosts, including different forms of reproductive manipulation and antiviral protection, which may influence infection dynamics within host populations. In populations of Drosophila pandora two distinct Wolbachia strains coexist, each manipulating host reproduction: strain wPanCI causes cytoplasmic incompatibility (CI), whereas strain wPanMK causes male killing (MK). CI occurs when a Wolbachia-infected male mates with a female not infected with a compatible type of Wolbachia, leading to nonviable offspring. wPanMK can rescue wPanCI-induced CI but is unable to induce CI. The antiviral protection phenotypes provided by the wPanCI and wPanMK infections were characterized; the strains showed differential protection phenotypes, whereby cricket paralysis virus (CrPV)-induced mortality was delayed in flies infected with wPanMK but enhanced in flies infected with wPanCI compared to their respective Wolbachia-cured counterparts. Homologs of the cifA and cifB genes involved in CI identified in wPanMK and wPanCI showed a high degree of conservation; however, the CifB protein in wPanMK is truncated and is likely nonfunctional. The presence of a likely functional CifA in wPanMK and wPanMK's ability to rescue wPanCI-induced CI are consistent with the recent confirmation of CifA's involvement in CI rescue, and the absence of a functional CifB protein further supports its involvement as a CI modification factor. Taken together, these findings indicate that wPanCI and wPanMK have different relationships with their hosts in terms of their protective and CI phenotypes. It is therefore likely that different factors influence the prevalence and dynamics of these coinfections in natural Drosophila pandora hosts.IMPORTANCEWolbachia strains are common endosymbionts in insects, with multiple strains often coexisting in the same species. The coexistence of multiple strains is poorly understood but may rely on Wolbachia organisms having diverse phenotypic effects on their hosts. As Wolbachia is increasingly being developed as a tool to control disease transmission and suppress pest populations, it is important to understand the ways in which multiple Wolbachia strains persist in natural populations and how these might then be manipulated. We have therefore investigated viral protection and the molecular basis of cytoplasmic incompatibility in two coexisting Wolbachia strains with contrasting effects on host reproduction.
Collapse
Affiliation(s)
- Angelique K Asselin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Simon Villegas-Ospina
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Korovesi AG, Ntertilis M, Kouvelis VN. Mt-rps3 is an ancient gene which provides insight into the evolution of fungal mitochondrial genomes. Mol Phylogenet Evol 2018; 127:74-86. [PMID: 29763662 DOI: 10.1016/j.ympev.2018.04.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/24/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
The nuclear ribosomal protein S3 (Rps3) is implicated in the assembly of the ribosomal small subunit. Fungi and plants present a gene copy in their mitochondrial (mt) genomes. An analysis of 303 complete fungal mt genomes showed that, when rps3 is found, it is either a free-standing gene or an anchored gene within the omega intron of the rnl gene. Early divergent fungi, Basidiomycota and all yeasts but the CTG group belong to the first case, and Pezizomycotina to the second. Its position, size and genetic code employed are conserved within species of the same Order. Size variability is attributed to different number of repeats. These repeats consist of AT-rich sequences. MtRps3 proteins lack the KH domain, necessary for binding to rRNA, in their N-terminal region. Their C-terminal region is conserved in all Domains of life. Phylogenetic analysis showed that nuclear and mtRps3 proteins are descendants of archaeal and a-proteobacterial homologues, respectively. Thus, fungal mt-rps3 gene is an ancient gene which evolved within the endosymbiotic model and presents different evolutionary routes: (a) coming from a-proteobacteria, it was relocated to another region of the mt genome, (b) via its insertion to the omega intron, it was transferred to the nucleus and/or got lost, and (c) it was re-routed to the mt genome again. Today, Basidiomycota and Saccharomycetales seem to follow the first evolutionary route and almost all Pezizomycotina support the second scenario with their exceptions being the result of the third scenario, i.e., the gene's re-entry to the mt genome.
Collapse
Affiliation(s)
- Artemis G Korovesi
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Ntertilis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
19
|
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Rohwer FL, Mylnikov AP, Keeling PJ. A New Lineage of Eukaryotes Illuminates Early Mitochondrial Genome Reduction. Curr Biol 2017; 27:3717-3724.e5. [PMID: 29174886 DOI: 10.1016/j.cub.2017.10.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 11/26/2022]
Abstract
The origin of eukaryotic cells represents a key transition in cellular evolution and is closely tied to outstanding questions about mitochondrial endosymbiosis [1, 2]. For example, gene-rich mitochondrial genomes are thought to be indicative of an ancient divergence, but this relies on unexamined assumptions about endosymbiont-to-host gene transfer [3-5]. Here, we characterize Ancoracysta twista, a new predatory flagellate that is not closely related to any known lineage in 201-protein phylogenomic trees and has a unique morphology, including a novel type of extrusome (ancoracyst). The Ancoracysta mitochondrion has a gene-rich genome with a coding capacity exceeding that of all other eukaryotes except the distantly related jakobids and Diphylleia, and it uniquely possesses heterologous, nucleus-, and mitochondrion-encoded cytochrome c maturase systems. To comprehensively examine mitochondrial genome reduction, we also assembled mitochondrial genomes from picozoans and colponemids and re-annotated existing mitochondrial genomes using hidden Markov model gene profiles. This revealed over a dozen previously overlooked mitochondrial genes at the level of eukaryotic supergroups. Analysis of trends over evolutionary time demonstrates that gene transfer to the nucleus was non-linear, that it occurred in waves of exponential decrease, and that much of it took place comparatively early, massively independently, and with lineage-specific rates. This process has led to differential gene retention, suggesting that gene-rich mitochondrial genomes are not a product of their early divergence. Parallel transfer of mitochondrial genes and their functional replacement by new nuclear factors are important in models for the origin of eukaryotes, especially as major gaps in our knowledge of eukaryotic diversity at the deepest level remain unfilled.
Collapse
Affiliation(s)
- Jan Janouškovec
- University College London, Department of Genetics, Evolution and Environment, London, UK; San Diego State University, Biology Department, San Diego, CA, USA; University of British Columbia, Botany Department, Vancouver, BC, Canada.
| | - Denis V Tikhonenkov
- University of British Columbia, Botany Department, Vancouver, BC, Canada; Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia.
| | - Fabien Burki
- University of British Columbia, Botany Department, Vancouver, BC, Canada; Science for Life Laboratory, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Alexis T Howe
- University of British Columbia, Botany Department, Vancouver, BC, Canada
| | - Forest L Rohwer
- San Diego State University, Biology Department, San Diego, CA, USA
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Patrick J Keeling
- University of British Columbia, Botany Department, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Szafranski P. Intercompartmental Piecewise Gene Transfer. Genes (Basel) 2017; 8:genes8100260. [PMID: 28984842 PMCID: PMC5664110 DOI: 10.3390/genes8100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Gene relocation from the residual genomes of organelles to the nuclear genome still continues, although as a scaled down evolutionary phenomenon, limited in occurrence mostly to protists (sensu lato) and land plants. During this process, the structural integrity of transferred genes is usually preserved. However, the relocation of mitochondrial genes that code for respiratory chain and ribosomal proteins is sometimes associated with their fragmentation into two complementary genes. Herein, this review compiles cases of piecewise gene transfer from the mitochondria to the nucleus, and discusses hypothesized mechanistic links between the fission and relocation of those genes.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Ni Z, Ye Y, Bai T, Xu M, Xu LA. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion. Molecules 2017; 22:E1528. [PMID: 28891993 PMCID: PMC6151703 DOI: 10.3390/molecules22091528] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/17/2022] Open
Abstract
The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.
Collapse
Affiliation(s)
- ZhouXian Ni
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - YouJu Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Tiandao Bai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
- Forestry College, Guangxi University, Nanning 530004, China.
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
22
|
Wu Z, Sloan DB, Brown CW, Rosenblueth M, Palmer JD, Ong HC. Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses. Mol Biol Evol 2017; 34:2340-2354. [PMID: 28541477 PMCID: PMC5850859 DOI: 10.1093/molbev/msx170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Colin W. Brown
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX
| | | | | | | |
Collapse
|
23
|
Ngu M, Massel K, Bonen L. Group II introns in wheat mitochondria have degenerate structural features and varied splicing pathways. Int J Biochem Cell Biol 2017; 91:156-167. [PMID: 28495309 DOI: 10.1016/j.biocel.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat. Using RT-PCR and circularized RT-PCR, we had previously demonstrated that several wheat mitochondrial introns which lack a branchpoint adenosine have atypical splicing pathways, and we have now extended this analysis to the full set of wheat introns, namely six trans-splicing and sixteen cis-splicing ones. A number of introns are excised using non-lariat pathways and interestingly, we find that several introns which do have a conventional domain VI also use pathways that appear to exploit other internal or external nucleophiles, with the lariat form being relatively minor. Somewhat surprisingly, several introns with weakly-structured domain V/VI helices still exhibit classical lariat splicing, suggesting that accessory factors aid in restoring a splicing-competent conformation. Our observations illustrate that the loss of conventional group II features during evolution is correlated with altered splicing biochemistry in an intron-distinctive manner.
Collapse
Affiliation(s)
- Matthew Ngu
- Biology Department, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Karen Massel
- Biology Department, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Linda Bonen
- Biology Department, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
24
|
Ye N, Wang X, Li J, Bi C, Xu Y, Wu D, Ye Q. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis. PeerJ 2017; 5:e3148. [PMID: 28367378 PMCID: PMC5374973 DOI: 10.7717/peerj.3148] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/05/2017] [Indexed: 11/20/2022] Open
Abstract
Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt) genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%), T (27.59%), C (22.34%), and G (22.64%), which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes), and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.
Collapse
Affiliation(s)
- Ning Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Xuelin Wang
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Juan Li
- School of Electrical and Automatic Engineering, Nanjing Normal University , Nanjing , Jiangsu , China
| | - Changwei Bi
- School of Biological Science and Medical Engineering, Southeast University , Nanjing , Jiangsu , China
| | - Yiqing Xu
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Dongyang Wu
- College of Forest Resources and Environment, Nanjing Forestry University , Nanjing , Jiangsu , China
| | - Qiaolin Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing , Jiangsu , China
| |
Collapse
|
25
|
Foreign Plastid Sequences in Plant Mitochondria are Frequently Acquired Via Mitochondrion-to-Mitochondrion Horizontal Transfer. Sci Rep 2017; 7:43402. [PMID: 28262720 PMCID: PMC5338292 DOI: 10.1038/srep43402] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022] Open
Abstract
Angiosperm mitochondrial genomes (mtDNA) exhibit variable quantities of alien sequences. Many of these sequences are acquired by intracellular gene transfer (IGT) from the plastid. In addition, frequent events of horizontal gene transfer (HGT) between mitochondria of different species also contribute to their expanded genomes. In contrast, alien sequences are rarely found in plastid genomes. Most of the plant-to-plant HGT events involve mitochondrion-to-mitochondrion transfers. Occasionally, foreign sequences in mtDNAs are plastid-derived (MTPT), raising questions about their origin, frequency, and mechanism of transfer. The rising number of complete mtDNAs allowed us to address these questions. We identified 15 new foreign MTPTs, increasing significantly the number of those previously reported. One out of five of the angiosperm species analyzed contained at least one foreign MTPT, suggesting a remarkable frequency of HGT among plants. By analyzing the flanking regions of the foreign MTPTs, we found strong evidence for mt-to-mt transfers in 65% of the cases. We hypothesize that plastid sequences were initially acquired by the native mtDNA via IGT and then transferred to a distantly-related plant via mitochondrial HGT, rather than directly from a foreign plastid to the mitochondrial genome. Finally, we describe three novel putative cases of mitochondrial-derived sequences among angiosperm plastomes.
Collapse
|
26
|
Machida RJ, Lin YY. Occurrence of mitochondrial CO1 pseudogenes in Neocalanus plumchrus (Crustacea: Copepoda): Hybridization indicated by recombined nuclear mitochondrial pseudogenes. PLoS One 2017; 12:e0172710. [PMID: 28231343 PMCID: PMC5322918 DOI: 10.1371/journal.pone.0172710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/08/2017] [Indexed: 11/18/2022] Open
Abstract
A portion of the mitochondrial cytochrome c oxidase I gene was sequenced using both genomic DNA and complement DNA from three planktonic copepod Neocalanus species (N. cristatus, N. plumchrus, and N. flemingeri). Small but critical sequence differences in CO1 were observed between gDNA and cDNA from N. plumchrus. Furthermore, careful observation revealed the presence of recombination between sequences in gDNA from N. plumchrus. Moreover, a chimera of the N. cristatus and N. plumchrus sequences was obtained from N. plumchrus gDNA. The observed phenomena can be best explained by the preferential amplification of the nuclear mitochondrial pseudogenes from gDNA of N. plumchrus. Two conclusions can be drawn from the observations. First, nuclear mitochondrial pseudogenes are pervasive in N. plumchrus. Second, a mating between a female N. cristatus and a male N. plumchrus produced viable offspring, which further backcrossed to a N. plumchrus individual. These observations not only demonstrate intriguing mating behavior in these species, but also emphasize the importance of careful interpretation of species marker sequences amplified from gDNA.
Collapse
Affiliation(s)
- Ryuji J. Machida
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
- * E-mail:
| | - Ya-Ying Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
27
|
Barker MS, Li Z, Kidder TI, Reardon CR, Lai Z, Oliveira LO, Scascitelli M, Rieseberg LH. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. AMERICAN JOURNAL OF BOTANY 2016; 103:1203-11. [PMID: 27313199 DOI: 10.3732/ajb.1600113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/06/2016] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. METHODS We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. KEY RESULTS We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. CONCLUSIONS Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Zheng Li
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Thomas I Kidder
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Chris R Reardon
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Zhao Lai
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405 USA
| | - Luiz O Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa 36570-900, Viçosa, Brazil
| | - Moira Scascitelli
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Loren H Rieseberg
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405 USA Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| |
Collapse
|
28
|
Jacoby RP, Millar AH, Taylor NL. Opportunities for wheat proteomics to discover the biomarkers for respiration-dependent biomass production, stress tolerance and cytoplasmic male sterility. J Proteomics 2016; 143:36-44. [DOI: 10.1016/j.jprot.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 01/23/2023]
|
29
|
The Whole Genome Assembly and Comparative Genomic Research of Thellungiella parvula (Extremophile Crucifer) Mitochondrion. Int J Genomics 2016; 2016:5283628. [PMID: 27148547 PMCID: PMC4842374 DOI: 10.1155/2016/5283628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 11/17/2022] Open
Abstract
The complete nucleotide sequences of the mitochondrial (mt) genome of an extremophile species Thellungiella parvula (T. parvula) have been determined with the lengths of 255,773 bp. T. parvula mt genome is a circular sequence and contains 32 protein-coding genes, 19 tRNA genes, and three ribosomal RNA genes with a 11.5% coding sequence. The base composition of 27.5% A, 27.5% T, 22.7% C, and 22.3% G in descending order shows a slight bias of 55% AT. Fifty-three repeats were identified in the mitochondrial genome of T. parvula, including 24 direct repeats, 28 tandem repeats (TRs), and one palindromic repeat. Furthermore, a total of 199 perfect microsatellites have been mined with a high A/T content (83.1%) through simple sequence repeat (SSR) analysis and they were distributed unevenly within this mitochondrial genome. We also analyzed other plant mitochondrial genomes' evolution in general, providing clues for the understanding of the evolution of organelles genomes in plants. Comparing with other Brassicaceae species, T. parvula is related to Arabidopsis thaliana whose characters of low temperature resistance have been well documented. This study will provide important genetic tools for other Brassicaceae species research and improve yields of economically important plants.
Collapse
|
30
|
Raman G, Park S. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective. PLoS One 2015; 10:e0141329. [PMID: 26513163 PMCID: PMC4626046 DOI: 10.1371/journal.pone.0141329] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Abstract
Mitochondria are energy-producing organelles in eukaryotic cells considered to be of bacterial origin. The mitochondrial genome has evolved under selection for minimization of gene content, yet it is not known why not all mitochondrial genes have been transferred to the nuclear genome. Here, we predict that hydrophobic membrane proteins encoded by the mitochondrial genomes would be recognized by the signal recognition particle and targeted to the endoplasmic reticulum if they were nuclear-encoded and translated in the cytoplasm. Expression of the mitochondrially encoded proteins Cytochrome oxidase subunit 1, Apocytochrome b, and ATP synthase subunit 6 in the cytoplasm of HeLa cells confirms export to the endoplasmic reticulum. To examine the extent to which the mitochondrial proteome is driven by selective constraints within the eukaryotic cell, we investigated the occurrence of mitochondrial protein domains in bacteria and eukaryotes. The accessory protein domains of the oxidative phosphorylation system are unique to mitochondria, indicating the evolution of new protein folds. Most of the identified domains in the accessory proteins of the ribosome are also found in eukaryotic proteins of other functions and locations. Overall, one-third of the protein domains identified in mitochondrial proteins are only rarely found in bacteria. We conclude that the mitochondrial genome has been maintained to ensure the correct localization of highly hydrophobic membrane proteins. Taken together, the results suggest that selective constraints on the eukaryotic cell have played a major role in modulating the evolution of the mitochondrial genome and proteome.
Collapse
|
32
|
Abstract
The lability in size, structure, and sequence content of mitochondrial genome (mtDNA) across plant species has sharply limited its use in taxonomic studies. However, due to the new opportunities offered by the availability of complete mtDNA sequence in plant species and the subsequent development of universal primers, the number of mtDNA-based molecular studies has recently increased. Historically, universal primers have enabled to characterize mtDNA polymorphism mainly by the RFLP technique. This methodology has been progressively replaced by Sanger DNA sequencing, which actually provides the full phylogenetic information content of a DNA fragment (single nucleotide, insertion/deletion, and single sequence repeat length polymorphism). This chapter presents a sequencing working protocol to be routinely used in mtDNA-based phylogenetic studies.
Collapse
|
33
|
Dukowic-Schulze S, Sundararajan A, Mudge J, Ramaraj T, Farmer AD, Wang M, Sun Q, Pillardy J, Kianian S, Retzel EF, Pawlowski WP, Chen C. The transcriptome landscape of early maize meiosis. BMC PLANT BIOLOGY 2014; 14:118. [PMID: 24885405 PMCID: PMC4032173 DOI: 10.1186/1471-2229-14-118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND A major step in the higher plant life cycle is the decision to leave the mitotic cell cycle and begin the progression through the meiotic cell cycle that leads to the formation of gametes. The molecular mechanisms that regulate this transition and early meiosis remain largely unknown. To gain insight into gene expression features during the initiation of meiotic recombination, we profiled early prophase I meiocytes from maize (Zea mays) using capillary collection to isolate meiocytes, followed by RNA-seq. RESULTS We detected ~2,000 genes as preferentially expressed during early meiotic prophase, most of them uncharacterized. Functional analysis uncovered the importance of several cellular processes in early meiosis. Processes significantly enriched in isolated meiocytes included proteolysis, protein targeting, chromatin modification and the regulation of redox homeostasis. The most significantly up-regulated processes in meiocytes were processes involved in carbohydrate metabolism. Consistent with this, many mitochondrial genes were up-regulated in meiocytes, including nuclear- and mitochondrial-encoded genes. The data were validated with real-time PCR and in situ hybridization and also used to generate a candidate maize homologue list of known meiotic genes from Arabidopsis. CONCLUSIONS Taken together, we present a high-resolution analysis of the transcriptome landscape in early meiosis of an important crop plant, providing support for choosing genes for detailed characterization of recombination initiation and regulation of early meiosis. Our data also reveal an important connection between meiotic processes and altered/increased energy production.
Collapse
Affiliation(s)
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | | | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Minghui Wang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Jaroslaw Pillardy
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Shahryar Kianian
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Wojciech P Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
34
|
Khrapko K, Turnbull D. Mitochondrial DNA mutations in aging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:29-62. [PMID: 25149213 DOI: 10.1016/b978-0-12-394625-6.00002-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The relationship of mitochondrial DNA mutations to aging is still debated. Most mtDNA mutations are recessive: there are multiple copies per cell and mutation needs to clonally expand to cause respiratory deficiency. Overall mtDNA mutant loads are low, so effects of mutations are limited to critical areas where mutations locally reach high fractions. This includes respiratory chain deficient zones in muscle fibers, respiratory-deficient crypts in colon, and massive expansions of deleted mtDNA in substantia nigra neurons. mtDNA "mutator" mouse with increased rate of mtDNA mutations is a useful model, although rates and distribution of mutations may significantly deviate from what is observed in human aging. Comparison of species with different longevity reveals intriguing longevity-related traits in mtDNA sequence, although their significance is yet to be evaluated. The impact of somatic mtDNA mutations rapidly increases with age, so their importance is expected to grow as human life expectancy increases.
Collapse
Affiliation(s)
- Konstantin Khrapko
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Doug Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
35
|
Torriani SF, Penselin D, Knogge W, Felder M, Taudien S, Platzer M, McDonald BA, Brunner PC. Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genet Biol 2014; 62:34-42. [DOI: 10.1016/j.fgb.2013.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 01/07/2023]
|
36
|
Matsunaga M, Takahashi Y, Yui-Kurino R, Mikami T, Kubo T. Evolutionary aspects of a unique internal mitochondrial targeting signal in nuclear-migrated rps19 of sugar beet (Beta vulgaris L.). Gene 2013; 517:19-26. [PMID: 23305819 DOI: 10.1016/j.gene.2012.12.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
The endosymbiotic theory postulates that many genes migrated from endosymbionts to the nuclear genomes of their hosts. Some migrated genes lack presequences directing proteins to mitochondria, and their mitochondrial targeting signals appear to be inscribed in the core coding regions as internal targeting signals (ITSs). ITSs may have evolved after sequence transfer to nuclei or ITSs may have pre-existed before sequence transfer. Here, we report the molecular cloning of a sugar beet gene for ribosomal protein S19 (Rps19; the first letter is capitalized when the gene is a nuclear gene). We show that sugar beet Rps19 (BvRps19) is an ITS-type gene. Based on amino-acid sequence comparison, dicotyledonous rps19s (the first letter is lower-cased when the gene is a mitochondrial gene), such as tobacco rps19 (Ntrps19), resemble an ancestral form of BvRps19. We investigated whether differences in amino-acid sequences between BvRps19 and Ntrps19 were involved in ITS evolution. Analyses of the intracellular localization of chimaeric GFP-fusion proteins that were transiently expressed in Welsh onion cells showed that Ntrps19-gfp was not localized in mitochondria. When several BvRps19-type amino acid substitutions, none of which was seen in any other angiosperm rps19, were introduced into Ntrps19-gfp, the modified Ntrps19-gfp became localized in mitochondria, supporting the notion that an ITS in BvRps19 evolved following sequence transfer to nuclei. Not all of these substitutions were seen in other ITS-type Rps19s, suggesting that the ITSs of Rps19 are diverse.
Collapse
Affiliation(s)
- Muneyuki Matsunaga
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
37
|
Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS One 2013; 8:e56502. [PMID: 23431381 PMCID: PMC3576410 DOI: 10.1371/journal.pone.0056502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.
Collapse
Affiliation(s)
- Shengxin Chang
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yankun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiangjie Lu
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jijie Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pu Chu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Xu L, Carrie C, Law SR, Murcha MW, Whelan J. Acquisition, conservation, and loss of dual-targeted proteins in land plants. PLANT PHYSIOLOGY 2013; 161:644-62. [PMID: 23257241 PMCID: PMC3561010 DOI: 10.1104/pp.112.210997] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The dual-targeting ability of a variety of proteins from Physcomitrella patens, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) was tested to determine when dual targeting arose and to what extent it was conserved in land plants. Overall, the targeting ability of over 80 different proteins from rice and P. patens, representing 42 dual-targeted proteins in Arabidopsis, was tested. We found that dual targeting arose early in land plant evolution, as it was evident in many cases with P. patens proteins that were conserved in rice and Arabidopsis. Furthermore, we found that the acquisition of dual-targeting ability is still occurring, evident in P. patens as well as rice and Arabidopsis. The loss of dual-targeting ability appears to be rare, but does occur. Ascorbate peroxidase represents such an example. After gene duplication in rice, individual genes encode proteins that are targeted to a single organelle. Although we found that dual targeting was generally conserved, the ability to detect dual-targeted proteins differed depending on the cell types used. Furthermore, it appears that small changes in the targeting signal can result in a loss (or gain) of dual-targeting ability. Overall, examination of the targeting signals within this study did not reveal any clear patterns that would predict dual-targeting ability. The acquisition of dual-targeting ability also appears to be coordinated between proteins. Mitochondrial intermembrane space import and assembly protein40, a protein involved in oxidative folding in mitochondria and peroxisomes, provides an example where acquisition of dual targeting is accompanied by the dual targeting of substrate proteins.
Collapse
|
39
|
Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. THE NEW PHYTOLOGIST 2012; 196:1228-1239. [PMID: 23009072 DOI: 10.1111/j.1469-8137.2012.04340.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/17/2012] [Indexed: 05/04/2023]
Abstract
In angiosperms, mitochondrial-encoded genes can cause cytoplasmic male sterility (CMS), resulting in the coexistence of female and hermaphroditic individuals (gynodioecy). We compared four complete mitochondrial genomes from the gynodioecious species Silene vulgaris and found unprecedented amounts of intraspecific diversity for plant mitochondrial DNA (mtDNA). Remarkably, only about half of overall sequence content is shared between any pair of genomes. The four mtDNAs range in size from 361 to 429 kb and differ in gene complement, with rpl5 and rps13 being intact in some genomes but absent or pseudogenized in others. The genomes exhibit essentially no conservation of synteny and are highly repetitive, with evidence of reciprocal recombination occurring even across short repeats (< 250 bp). Some mitochondrial genes exhibit atypically high degrees of nucleotide polymorphism, while others are invariant. The genomes also contain a variable number of small autonomously mapping chromosomes, which have only recently been identified in angiosperm mtDNA. Southern blot analysis of one of these chromosomes indicated a complex in vivo structure consisting of both monomeric circles and multimeric forms. We conclude that S. vulgaris harbors an unusually large degree of variation in mtDNA sequence and structure and discuss the extent to which this variation might be related to CMS.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| | - David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Helena Štorchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| |
Collapse
|
40
|
Petersen G, Seberg O, Davis JI. Phylogeny of the Liliales (Monocotyledons) with special emphasis on data partition congruence and RNA editing. Cladistics 2012; 29:274-295. [DOI: 10.1111/j.1096-0031.2012.00427.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Mol Phylogenet Evol 2012; 64:166-76. [PMID: 22724135 DOI: 10.1016/j.ympev.2012.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.
Collapse
|
42
|
Iorizzo M, Senalik D, Szklarczyk M, Grzebelus D, Spooner D, Simon P. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC PLANT BIOLOGY 2012; 12:61. [PMID: 22548759 PMCID: PMC3413510 DOI: 10.1186/1471-2229-12-61] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/01/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. RESULTS Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. CONCLUSIONS This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
| | - Douglas Senalik
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Marek Szklarczyk
- Department of Genetics, Plant Breeding and Seed Science, University of Agriculture Krakow, Al. 29 Listopada 54, 31-425, Krakow, Poland
| | - Dariusz Grzebelus
- Department of Genetics, Plant Breeding and Seed Science, University of Agriculture Krakow, Al. 29 Listopada 54, 31-425, Krakow, Poland
| | - David Spooner
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Philipp Simon
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
43
|
Lloyd AH, Timmis JN. Endosybiotic evolution in action: Real-time observations of chloroplast to nucleus gene transfer. Mob Genet Elements 2012; 1:216-220. [PMID: 22479690 DOI: 10.4161/mge.1.3.17947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
The origin of new genes has long been considered a fundamental question in evolutionary biology. In eukaryotes, a major pathway for the 'birth' of new nuclear genes has been transfer of genes from the cytoplasmic organelles (mitochondria and plastids) to the nucleus. While the vast majority of gene transfer occurred shortly after endosymbiosis, the process continues today and is still driving the evolution of nuclear genomes. In tobacco (Nicotiana tabacum) a number of studies have indicated that DNA can transfer from the chloroplast to the nucleus at relatively high frequency. Less has been known, however, about how a newly transferred organelle gene can become activated in this new genetic environment. In a recent report we observed, in real-time, the activation of a plastid reporter gene newly transferred to the nucleus. A key observation from this study was that non-homologous repair is an important generator of novel sequence combinations which, in rare instances, can result in the nuclear activation of plastid genes. In addition, the activation of relocated genes can be aided by the fortuitous presence of plastid sequences able to promote nuclear expression.
Collapse
Affiliation(s)
- Andrew H Lloyd
- School of Molecular and Biomedical Science; The University of Adelaide; South Australia, Australia
| | | |
Collapse
|
44
|
Burki F, Hirakawa Y, Keeling PJ. Intragenomic Spread of Plastid-Targeting Presequences in the Coccolithophore Emiliania huxleyi. Mol Biol Evol 2012; 29:2109-12. [DOI: 10.1093/molbev/mss103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Fluch S, Kopecky D, Burg K, Šimková H, Taudien S, Petzold A, Kubaláková M, Platzer M, Berenyi M, Krainer S, Doležel J, Lelley T. Sequence composition and gene content of the short arm of rye (Secale cereale) chromosome 1. PLoS One 2012; 7:e30784. [PMID: 22328922 PMCID: PMC3273464 DOI: 10.1371/journal.pone.0030784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/26/2011] [Indexed: 01/21/2023] Open
Abstract
Background The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. Methodology/Principal Findings Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice. Conclusions The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye.
Collapse
Affiliation(s)
- Silvia Fluch
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Dieter Kopecky
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Kornel Burg
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
- * E-mail:
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Stefan Taudien
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Jena, Germany
| | - Andreas Petzold
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Jena, Germany
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Matthias Platzer
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Jena, Germany
| | - Maria Berenyi
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Siegfried Krainer
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Tamas Lelley
- Department of Agrobiotechnology, Institute for Biotechnology in Plant Production (IFA-Tulln), University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
46
|
Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. Proc Natl Acad Sci U S A 2012; 109:2444-8. [PMID: 22308419 DOI: 10.1073/pnas.1117890109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria and chloroplasts (photosynthetic members of the plastid family of cytoplasmic organelles) in eukaryotic cells originated more than a billion years ago when an ancestor of the nucleated cell engulfed two different prokaryotes in separate sequential events. Extant cytoplasmic organellar genomes contain very few genes compared with their candidate free-living ancestors, as most have functionally relocated to the nucleus. The first step in functional relocation involves the integration of inactive DNA fragments into nuclear chromosomes, and this process continues at high frequency with attendant genetic, genomic, and evolutionary consequences. Using two different transplastomic tobacco lines, we show that DNA migration from chloroplasts to the nucleus is markedly increased by mild heat stress. In addition, we show that insertion of mitochondrial DNA fragments during the repair of induced double-strand breaks is increased by heat stress. The experiments demonstrate that the nuclear influx of organellar DNA is a potentially a source of mutation for nuclear genomes that is highly susceptible to temperature fluctuations that are well within the range experienced naturally.
Collapse
|
47
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Danne JC, Gornik SG, Waller RF. An Assessment of Vertical Inheritance versus Endosymbiont Transfer of Nucleus-encoded Genes for Mitochondrial Proteins Following Tertiary Endosymbiosis in Karlodinium micrum. Protist 2012; 163:76-90. [DOI: 10.1016/j.protis.2011.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/27/2011] [Indexed: 11/30/2022]
|
49
|
Lloyd AH, Rousseau-Gueutin M, Timmis JN, Sheppard AE, Ayliffe MA. Promiscuous Organellar DNA. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Busi MV, Gomez-Lobato ME, Araya A, Gomez-Casati DF. Mitochondrial dysfunction affects chloroplast functions. PLANT SIGNALING & BEHAVIOR 2011; 6:1904-1907. [PMID: 22101346 PMCID: PMC3337175 DOI: 10.4161/psb.6.12.18050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcriptomic response of A9:u-ATP9 and apetala3:u-ATP9 lines carrying a mitochondrial dysfunction in flower tissues has been characterized. Both lines showed an alteration in the transcription of several genes involved in carbon and nitrogen metabolism, stress responses, transcription factors and DNA binding proteins. Interestingly, several transcripts of photosynthetic-related genes were also affected in their expression such as the mRNAs encoding for chlorophyllase, chlorophyll binding proteins and a PSII. Moreover, chlorophyll levels were reduced and the Mg-dechelatase activity was increased, indicating an alteration in chlorophyll metabolism. Our results suggest that the mitochondrial dysfunction may also affect chloroplastic functions, and that our model could be useful to uncover retrograde signaling mechanisms operating between the three different plant genomes.
Collapse
Affiliation(s)
- Maria V. Busi
- Instituto de Investigaciones Biotecnológicas; Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM; Chascomús, Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Universidad Nacional de Rosario; Rosario, Argentina
| | - Maria E. Gomez-Lobato
- Instituto de Investigaciones Biotecnológicas; Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM; Chascomús, Argentina
| | - Alejandro Araya
- Microbiologie Cellulaire et Moléculaire et Pathogénicité; Centre National de la Recherche Scientifique and Université Victor Segalen; Bordeaux, France
| | - Diego F. Gomez-Casati
- Instituto de Investigaciones Biotecnológicas; Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM; Chascomús, Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Universidad Nacional de Rosario; Rosario, Argentina
| |
Collapse
|