1
|
Black BA, Manga M, Ojha L, Longpré M, Karunatillake S, Hlinka L. The History of Water in Martian Magmas From Thorium Maps. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098061. [PMID: 35859852 PMCID: PMC9285613 DOI: 10.1029/2022gl098061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Water inventories in Martian magmas are poorly constrained. Meteorite-based estimates range widely, from 102 to >104 ppm H2O, and are likely variably influenced by degassing. Orbital measurements of H primarily reflect water cycled and stored in the regolith. Like water, Th behaves incompatibly during mantle melting, but unlike water Th is not prone to degassing and is relatively immobile during aqueous alteration at low temperature. We employ Th as a proxy for original, mantle-derived H2O in Martian magmas. We use regional maps of Th from Mars Odyssey to assess variations in magmatic water across major volcanic provinces and through time. We infer that Hesperian and Amazonian magmas had ∼100-3,000 ppm H2O, in the lower range of previous estimates. The implied cumulative outgassing since the Hesperian, equivalent to a global H2O layer ∼1-40 m deep, agrees with Mars' present-day surface and near-surface water inventory and estimates of sequestration and loss rates.
Collapse
Affiliation(s)
- Benjamin A. Black
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Michael Manga
- Department of Earth and Planetary SciencesUniversity of California, BerkeleyBerkeleyCAUSA
| | - Lujendra Ojha
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Marc‐Antoine Longpré
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| | | | - Lisa Hlinka
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| |
Collapse
|
2
|
Adcock CT, Tschauner O, Hausrath EM, Udry A, Luo SN, Cai Y, Ren M, Lanzirotti A, Newville M, Kunz M, Lin C. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nat Commun 2017; 8:14667. [PMID: 28262701 PMCID: PMC5343502 DOI: 10.1038/ncomms14667] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 01/23/2017] [Indexed: 11/17/2022] Open
Abstract
Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite–whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites have experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H+-bearing whitlockite with implications for interpreting meteorites and the need for future sample return. Quantifying the amount of water in meteorites remains challenging, with minerals the key to understanding water contents. Here, Adcock et al. perform shock experiments on H+-bearing whitlockite demonstrating that it may transform into anhydrous merrillite, which is commonly found in Martian meteorites.
Collapse
Affiliation(s)
- C T Adcock
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - O Tschauner
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA.,High Pressure Science and Engineering Center, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA.,LSPM-CNRS, Institut Galilée, Université Paris 13, Nord, 99, av. J. B. Clément, 93430 Villetaneuse, France.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - E M Hausrath
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - A Udry
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - S N Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.,The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, China
| | - Y Cai
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, China.,CAS Key Laboratory of Materials Behavior and Design, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - M Ren
- Department of Geoscience, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - A Lanzirotti
- GeoScienceEnviro Center for Advanced Radiation Sources, University of Chicago, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Newville
- GeoScienceEnviro Center for Advanced Radiation Sources, University of Chicago, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Kunz
- Lawrence Berkeley National Laboratory, Advanced Light Source, University of California, Berkeley, Berkeley, California 94720, USA
| | - C Lin
- High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| |
Collapse
|
3
|
Fairén AG, Losa-Adams E, Gil-Lozano C, Gago-Duport L, Uceda ER, Squyres SW, Rodríguez JAP, Davila AF, McKay CP. Tracking the weathering of basalts on Mars using lithium isotope fractionation models. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2015; 16:1172-1197. [PMID: 27642264 PMCID: PMC5008203 DOI: 10.1002/2015gc005748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/24/2015] [Indexed: 06/06/2023]
Abstract
Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium-7Li and 6Li-have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals-the source of Li-and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history.
Collapse
Affiliation(s)
- Alberto G Fairén
- Centro de Astrobiología Madrid Spain; Department of Astronomy Cornell University Ithaca New York USA
| | | | | | - Luis Gago-Duport
- Departamento de Geociencias Marinas Universidad de Vigo Vigo Spain
| | - Esther R Uceda
- Departamento de Biología Molecular Universidad Autónoma de Madrid Madrid Spain
| | | | - J Alexis P Rodríguez
- Space Science and Astrobiology Division NASA Ames Research Center Mountain View California USA
| | | | - Christopher P McKay
- Space Science and Astrobiology Division NASA Ames Research Center Mountain View California USA
| |
Collapse
|
4
|
Planning for Mars returned sample science: final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). ASTROBIOLOGY 2012; 12:175-230. [PMID: 22468886 DOI: 10.1089/ast.2011.0805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
5
|
McCoy TJ, Corrigan CM, Herd CDK. Combining meteorites and missions to explore Mars. Proc Natl Acad Sci U S A 2011; 108:19159-64. [PMID: 21969535 PMCID: PMC3228422 DOI: 10.1073/pnas.1013478108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.
Collapse
Affiliation(s)
- Timothy J McCoy
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenues NW, Washington, DC 20560-0119, USA.
| | | | | |
Collapse
|
6
|
Grott M, Breuer D. On the spatial variability of the Martian elastic lithosphere thickness: Evidence for mantle plumes? ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003456] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Abstract
Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the Moon and the Earth were essentially dry immediately after the formation of the Moon-by a giant impact on the proto-Earth-and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is supported by U-Pb and I-Xe chronologies, which show that water delivery peaked approximately 100 million years after the isolation of the Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars.
Collapse
|
8
|
|
9
|
Parmentier EM, Zuber MT. Early evolution of Mars with mantle compositional stratification or hydrothermal crustal cooling. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005je002626] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Abstract
One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.
Collapse
Affiliation(s)
- Monica M Grady
- Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | | |
Collapse
|
11
|
Médard E, Grove TL. Early hydrous melting and degassing of the Martian interior. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002742] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, Dombard AJ, Frey HV, Golombek MP, Hauck SA, Head JW, Jakosky BM, Johnson CL, McGovern PJ, Neumann GA, Phillips RJ, Smith DE, Zuber MT. New Perspectives on Ancient Mars. Science 2005; 307:1214-20. [PMID: 15731435 DOI: 10.1126/science.1101812] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mars was most active during its first billion years. The core, mantle, and crust formed within approximately 50 million years of solar system formation. A magnetic dynamo in a convecting fluid core magnetized the crust, and the global field shielded a more massive early atmosphere against solar wind stripping. The Tharsis province became a focus for volcanism, deformation, and outgassing of water and carbon dioxide in quantities possibly sufficient to induce episodes of climate warming. Surficial and near-surface water contributed to regionally extensive erosion, sediment transport, and chemical alteration. Deep hydrothermal circulation accelerated crustal cooling, preserved variations in crustal thickness, and modified patterns of crustal magnetization.
Collapse
Affiliation(s)
- Sean C Solomon
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hynek BM. Explosive volcanism in the Tharsis region: Global evidence in the Martian geologic record. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002062] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Breuer D. Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je001999] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wyatt MB, McSween HY. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 2002; 417:263-6. [PMID: 12015596 DOI: 10.1038/417263a] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mineral abundances derived from the analysis of remotely sensed thermal emission data from Mars have been interpreted to indicate that the surface is composed of basalt (Surface Type 1) and andesite (Surface Type 2). The global distribution of these rock types is divided roughly along the planetary dichotomy which separates ancient, heavily cratered crust in the southern hemisphere (basalt) from younger lowland plains in the north (andesite). But the existence of such a large volume of andesite is difficult to reconcile with our present understanding of the geological evolution of Mars. Here we reinterpret martian surface rock lithologies using mineral abundances from previous work and new mineralogies derived from a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts. Our results continue to indicate the dominance of unaltered basalt in the southern highlands, but reveal that the northern lowlands can be interpreted as weathered basalt as an alternative to andesite. The coincidence between locations of such altered basalt and a suggested northern ocean basin implies that lowland plains material may be composed of basalts weathered under submarine conditions or weathered basaltic sediments transported into this depocentre.
Collapse
Affiliation(s)
- Michael B Wyatt
- Department of Geological Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
16
|
|
17
|
Abstract
Clues to the history of Mars are recorded in the chemistry and structure of the planet's crust and mantle. The mantle is the rocky, interior region of the planet that transports heat generated during accretion and subsequent core formation. The crust formed by melting of the upper mantle, and has been shaped and re-distributed by impact, volcanism, mantle flow and erosion. Observations point to a dynamically active interior in the early phases of martian history, followed by a rapid fall-off in heat transport that significantly influenced the geological, geophysical and geochemical evolution of the planet, including the history of water and climate.
Collapse
Affiliation(s)
- M T Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.
| |
Collapse
|
18
|
Abstract
There is substantial evidence that the martian volatile inventory and climate have changed markedly throughout the planet's history. Clues come from areas as disparate as the history and properties of the deep interior, the composition of the crust and regolith, the morphology of the surface, composition of the present-day atmosphere, and the nature of the interactions between the upper atmosphere and the solar wind. We piece together the relevant observations into a coherent view of the evolution of the martian climate, focusing in particular on the observations that provide the strongest constraints.
Collapse
Affiliation(s)
- B M Jakosky
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309-0392, USA.
| | | |
Collapse
|
19
|
Phillips RJ, Zuber MT, Solomon SC, Golombek MP, Jakosky BM, Banerdt WB, Smith DE, Williams RM, Hynek BM, Aharonson O, Hauck SA. Ancient geodynamics and global-scale hydrology on Mars. Science 2001; 291:2587-91. [PMID: 11283367 DOI: 10.1126/science.1058701] [Citation(s) in RCA: 403] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Loading of the lithosphere of Mars by the Tharsis rise explains much of the global shape and long-wavelength gravity field of the planet, including a ring of negative gravity anomalies and a topographic trough around Tharsis, as well as gravity anomaly and topographic highs centered in Arabia Terra and extending northward toward Utopia. The Tharsis-induced trough and antipodal high were largely in place by the end of the Noachian Epoch and exerted control on the location and orientation of valley networks. The release of carbon dioxide and water accompanying the emplacement of approximately 3 x 10(8) cubic kilometers of Tharsis magmas may have sustained a warmer climate than at present, enabling the formation of ancient valley networks and fluvial landscape denudation in and adjacent to the large-scale trough.
Collapse
Affiliation(s)
- R J Phillips
- McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The oxidation state of basaltic martian meteorites is determined from the partitioning of europium (Eu) in their pyroxenes. The estimated redox conditions for these samples correlate with their initial neodymium and strontium isotopic compositions. This is interpreted to imply varying degrees of interaction between the basaltic parent melts, derived from a source in the martian mantle, and a crustal component. Thus, the mantle source of these martian basalts may have a redox state close to that of the iron-wüstite buffer, whereas the martian crust may be more oxidized (with a redox state higher than or equal to that of the quartz-fayalite-magnetite buffer). A difference in redox state of more than 3 log units between mantle and crustal reservoirs on Mars could result from oxidation of the crust by a process such as aqueous alteration, together with a subsequent lack of recycling of this oxidized crust through the reduced upper mantle.
Collapse
Affiliation(s)
- M Wadhwa
- Department of Geology, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, USA.
| |
Collapse
|
21
|
Ball P. Rising damp on the red planet. Nature 2001. [DOI: 10.1038/news010125-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
McKay CP, Marinova MM. The physics, biology, and environmental ethics of making mars habitable. ASTROBIOLOGY 2001; 1:89-109. [PMID: 12448997 DOI: 10.1089/153110701750137477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.
Collapse
Affiliation(s)
- C P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | | |
Collapse
|