Toffelmier DA, Tyburczy JA. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States.
Nature 2007;
447:991-4. [PMID:
17581582 DOI:
10.1038/nature05922]
[Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/10/2007] [Indexed: 11/09/2022]
Abstract
A deep-seated melt or fluid layer on top of the 410-km-deep seismic discontinuity in Earth's upper mantle, as proposed in the transition-zone 'water filter' hypothesis, may have significant bearing on mantle dynamics and chemical differentiation. The geophysical detection of such a layer has, however, proved difficult. Magnetotelluric and geomagnetic depth sounding are geophysical methods sensitive to mantle melt. Here we use these methods to search for a distinct structure near 410-km depth. We calculate one-dimensional forward models of the response of electrical conductivity depth profiles, based on mineral physics studies of the effect of incorporating hydrogen in upper-mantle and transition-zone minerals. These models indicate that a melt layer at 410-km depth is consistent with regional magnetotelluric and geomagnetic depth sounding data from the southwestern United States (Tucson). The 410-km-deep melt layer in this model has a conductance of 3.0 x 10(4) S and an estimated thickness of 5-30 km. This is the only regional data set that we have examined for which such a melt layer structure was found, consistent with regional seismic studies. We infer that the hypothesized transition-zone water filter occurs regionally, but that such a layer is unlikely to be a global feature.
Collapse