1
|
Wadding-Lee CA, Jay M, Shearer SM, Benson TW, Spuzzillo A, Howatt DA, Thompson J, Tourdot BE, Daugherty A, Mackman N, Owens Iii AP. Attenuation of Atherosclerosis With PAR4 Deficiency: A Potential Role of Hematopoietically Expressed PAR4 in Atherosclerosis. Arterioscler Thromb Vasc Biol 2025. [PMID: 40270259 DOI: 10.1161/atvbaha.124.322068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Cardiovascular disease is a significant burden globally and, despite current therapeutics, remains the leading cause of death. PAR (protease-activated receptor) 4 is a receptor highly expressed by hematopoietic cells, strongly activated by thrombin, and plays a vital role in platelet activation and aggregation. However, the role of PAR4 in atherothrombotic disease remains understudied. METHODS Mice on a low-density lipoprotein receptor-deficient (Ldlr-/-) background were bred with Par4-deficient (Par4-/-) mice to create Ldlr-/-/Par4+/+ and Ldlr-/-/Par4-/- cousin lines. Mice were fed high-fat (42%) and high-cholesterol (0.2%) Western diet for 12 weeks for all studies. Bone marrow transplant studies were conducted by irradiating Ldlr-/-/Par4+/+ and Ldlr-/-/Par4-/- mice with 550 rads (2×, 4 hours apart) and then repopulated with Par4+/+ or Par4-/- bone marrow. To determine whether the effects of thrombin were mediated solely by PAR4, the thrombin inhibitor dabigatran was added to the Western diet. RESULTS We observed higher abundance of PAR4 in arteries with atherosclerosis in mouse and human lesions versus healthy controls. Using a global deletion of PAR4, we observed an attenuation in atherosclerosis versus Par4+/+ mice. Bone marrow transplant studies demonstrated these effects were due to hematopoietic cells. When observing whether PAR4 activation via thrombin contributes to atherosclerotic development, Ldlr-/-/Par4-/- mice given dabigatran did not further decrease their atherosclerotic burden. Differences between apoE-deficient (apoE-/-) and Ldlr-/- platelets were assessed for changes in reactivity. PAR4 appeared to be acting independent of PAR1, as there were no changes with the addition of dabigatran to Par4-/- mice. apoE-/- platelets were hyperreactive compared with Ldlr-/- platelets. CONCLUSIONS We conclude that hematopoietic-derived PAR4 plays a vital role in the development and progression of atherosclerosis. More specifically, we observe thrombin-activated PAR4 contributes to the progression. Specifically, targeting of PAR4 may be a potential therapeutic target for cardiovascular disease.
Collapse
Affiliation(s)
- Caris A Wadding-Lee
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., T.W.B., A.S., A.P.O.)
- Pathobiology and Molecular Medicine Program, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., A.S., A.P.O.)
| | - Megan Jay
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., T.W.B., A.S., A.P.O.)
- Pathobiology and Molecular Medicine Program, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., A.S., A.P.O.)
| | - Shannon M Shearer
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., T.W.B., A.S., A.P.O.)
- Pathobiology and Molecular Medicine Program, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., A.S., A.P.O.)
| | - Tyler W Benson
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., T.W.B., A.S., A.P.O.)
| | - Anthony Spuzzillo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., T.W.B., A.S., A.P.O.)
- Pathobiology and Molecular Medicine Program, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., A.S., A.P.O.)
| | - Deborah A Howatt
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington. (D.A.H., A.D.)
| | - Joel Thompson
- Division of Endocrinology and Molecular Medicine, Department of Internal Medicine, University of Kentucky, Lexington. (J.T.)
| | - Benjamin E Tourdot
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH (B.E.T.)
| | - Alan Daugherty
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington. (D.A.H., A.D.)
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill (N.M.)
| | - A Phillip Owens Iii
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., T.W.B., A.S., A.P.O.)
- Pathobiology and Molecular Medicine Program, Department of Internal Medicine, University of Cincinnati College of Medicine, OH. (C.A.W.-L., M.J., S.M.S., A.S., A.P.O.)
| |
Collapse
|
2
|
Knauss EA, Guci J, Luc N, Disharoon D, Huang GH, Gupta AS, Nieman MT. Mice with reduced protease-activated receptor 4 reactivity show decreased venous thrombosis and platelet procoagulant activity. J Thromb Haemost 2025; 23:1278-1288. [PMID: 39798922 PMCID: PMC11992619 DOI: 10.1016/j.jtha.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Hypercoagulation and thrombin generation are major risk factors for venous thrombosis. Sustained thrombin signaling through protease-activated receptor (PAR) 4 promotes platelet activation, phosphatidylserine exposure, and subsequent thrombin generation. A single nucleotide polymorphism in PAR4 (rs2227376) changes proline to leucine extracellular loop 3, which decreases PAR4 reactivity and is associated with a lower risk for venous thromboembolism (VTE) in a genome wide association studies meta-analysis. OBJECTIVES The goal of this study was to determine the mechanism for the association of rs2227376 with a reduced risk of VTE using mice with a homologous mutation (PAR4-P322L). METHODS Venous thrombosis was examined using our recently generated PAR4-P322L mice in the inferior vena cava stasis and stenosis models. Coagulation and clot stability were measured using rotational thromboelastometry. Thrombin-generating potential was measured in platelet-rich plasma. Phosphatidylserine surface expression and platelet-neutrophil aggregates were analyzed using flow cytometry. RESULTS Mice heterozygous (PAR4P/L) or homozygous (PAR4L/L) at position 310 had reduced sizes of venous clots at 48 hours. PAR4P/L and PAR4L/L platelets had progressively decreased phosphatidylserine in response to thrombin and convulxin, in addition to decreased thrombin generation and decreased PAR4-mediated platelet-neutrophil aggregation. CONCLUSION The leucine allele in extracellular loop 3, PAR4-322L, leads to fewer procoagulant platelets, decreased endogenous thrombin potential, and reduced platelet-neutrophil aggregation. This decreased ability to generate thrombin and bind to neutrophils offers a mechanism for PAR4's role in VTE, highlighting a key role for PAR4 signaling.
Collapse
Affiliation(s)
- Elizabeth A Knauss
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johana Guci
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Norman Luc
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dante Disharoon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Grace H Huang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marvin T Nieman
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Zhang K, Liang W, Chen XB, Mang J. Smart materials strategy for vascular challenges targeting in-stent restenosis: a critical review. Regen Biomater 2025; 12:rbaf020. [PMID: 40290450 PMCID: PMC12034381 DOI: 10.1093/rb/rbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
In-stent restenosis (ISR) presents a major challenge in vascular disease management, often leading to complications and repeated interventions. This review article explores the potential of existing smart materials strategies in addressing ISR, emphasizing advancements in materials science and biomedical engineering. We focus on innovative solutions such as bioactive coatings and responsive polymers that offer targeted responses to ISR-related internal and external triggers. These smart materials can dynamically adapt to the physiological conditions within blood vessels, responding in real time to various stimuli such as pH, oxidative stress and temperature. Moreover, we discuss preclinical progress and translational challenges associated with these materials as they move toward clinical applications. The review highlights the importance of controlled drug release and the need for materials that can degrade appropriately to minimize adverse effects. This work aims to identify critical research gaps and provide guidance to encourage interdisciplinary efforts to advance the development of smart stent technologies. Ultimately, the goal is to improve patient outcomes in vascular interventions by leveraging the capabilities of intelligent biomaterials to enhance ISR management and ensure better long-term efficacy and safety in-stent applications.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhao Liang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
4
|
Rajala R, Griffin CT. Intercellular synergy between protease-activated receptors 1 and 4 during mouse development. J Thromb Haemost 2025; 23:1117-1119. [PMID: 39667689 PMCID: PMC11890951 DOI: 10.1016/j.jtha.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Rahul Rajala
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
5
|
Habibi A, Ruf W, Schurgers L. Protease-activated receptors in vascular smooth muscle cells: a bridge between thrombo-inflammation and vascular remodelling. Cell Commun Signal 2025; 23:57. [PMID: 39891111 PMCID: PMC11786455 DOI: 10.1186/s12964-025-02066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025] Open
Abstract
Coagulation factors are responsible for blood clot formation yet have also non-canonical functions as signalling molecules. In this context, they can activate protease-activated receptors (PARs) ubiquitously expressed in the vasculature. During vascular repair, vascular smooth muscle cells (VSMCs) will switch from a contractile to a synthetic reparative phenotype. During prolonged vascular stress, VSMCs acquire a pathological phenotype leading to cardiovascular disease. Activated coagulation factors impact on vessel wall permeability and integrity after vascular injury with a key role for PAR activation on endothelial cells. The activation of PARs on VSMCs supports vessel wall repair following injury. Prolonged PAR activation, however, results in pathological vascular remodelling. Therefore, understanding the mechanisms of PAR activation on VSMCs is key to propel our understanding of the molecular and cellular mechanisms to develop novel therapeutic strategies to resolve vascular remodelling.In this review, we discuss recent advances on the role of PAR signalling on VSMCs and specifically their role in vascular remodelling contributing to cardiovascular disease. Additionally, we discuss current therapeutic strategies targeting PAR signalling - indirectly or directly - in relation to cardiovascular disease.
Collapse
Affiliation(s)
- Anxhela Habibi
- Department of Biochemistry, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Center for Thrombosis and Hemostasis, Johannes-Gutenberg-University Medical Center Mainz, Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes-Gutenberg-University Medical Center Mainz, Mainz, Germany
| | - Leon Schurgers
- Department of Biochemistry, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Lin HH. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 2025; 26:552. [PMID: 39859266 PMCID: PMC11765499 DOI: 10.3390/ijms26020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
G protein-coupled receptors (GPCRs), critical for cellular communication and signaling, represent the largest cell surface protein family and play important roles in numerous pathophysiological processes. Consequently, GPCRs have become a primary focus in drug discovery efforts. Beyond their traditional G protein-dependent signaling pathways, GPCRs are also capable of activating alternative signaling mechanisms, including G protein-independent signaling, biased signaling, and signaling crosstalk. A particularly novel signaling mode employed by these receptors is GPCR transactivation, which enables cross-communication between GPCRs and other receptor types. Intriguingly, GPCR transactivation by distinct GPCRs has also been identified. In this review, I provide an overview of the known GPCR transactivation mechanisms and explore recently uncovered GPCR transactivation mediated by adhesion-class GPCRs (aGPCRs). These aGPCR-GPCR transactivation processes regulate unique cell type-specific functions, offering an exciting opportunity to develop therapies that precisely modulate specific GPCR-mediated biological effects.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-03-2118800-3321
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
| |
Collapse
|
7
|
Zhang F, Zhou X, Hua B, He X, Li Z, Xiao X, Wu X. Activated factor X delivered by adeno-associated virus significantly inhibited bleeding and alleviated hemophilic synovitis in hemophilic mice. Gene Ther 2024; 31:544-552. [PMID: 39256611 DOI: 10.1038/s41434-024-00479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
In hemophilia, deficiency of factor VIII or IX prevents the activation of the common coagulation pathway, and inhibits the conversion of FX to activated FXa, which is required for thrombin generation. We hypothesized that the direct expressed FXa has the potential to activate the common pathway and restore coagulation in hemophilia patients. In this study, the cassettes that expressed FXa, FXaop and FXa-FVII were packaged into an engineered AAV capsid, AAV843, and were delivered into hemophilia A and B mice by intravenous injection. AAV-FXaop could be stably expressed in vivo and showed the best immediate and prolonged hemostatic effects, similar to those of commercial drugs (Xyntha and Benefix). AAV-FXaop also significantly inhibited bleeding in hemophilia A mice with inhibitors. In addition, FXa expression in joints significantly alleviated the occurrence of hemophilic synovitis. AAV-delivered FXa may be a novel target for treating hemophilic and hemophilic synovitis.
Collapse
Affiliation(s)
- Feixu Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinyue Zhou
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baolai Hua
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyi He
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhanao Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiao Xiao
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xia Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
8
|
Knauss EA, Guci J, Luc N, Disharoon D, Huang GH, Gupta AS, Nieman MT. Mice with Reduced PAR4 Reactivity show Decreased Venous Thrombosis and Platelet Procoagulant Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617127. [PMID: 39463946 PMCID: PMC11507748 DOI: 10.1101/2024.10.14.617127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Hypercoagulation and thrombin generation are major risk factors for venous thrombosis. Sustained thrombin signaling through PAR4 promotes platelet activation, phosphatidylserine exposure, and subsequent thrombin generation. A single-nucleotide polymorphism in PAR4 (rs2227376) changes proline to leucine extracellular loop 3 (P310L), which decreases PAR4 reactivity and is associated with a lower risk for venous thromboembolism (VTE) in a GWAS meta-analysis. Objective The goal of this study is to determine the mechanism for the association of rs2227376 with reduced risk for VTE in using mice with a homologous mutation (PAR4-P322L). Methods Venous thrombosis was examined using our recently generated PAR4-P322L mice in the inferior vena cava stasis and stenosis models. Coagulation and clot stability was measured using rotational thromboelastometry (ROTEM). Thrombin generating potential was measured in platelet-rich plasma. Phosphatidylserine surface expression and platelet-neutrophil aggregates were analyzed using flow cytometry. Results PAR4P/L and PAR4L/L had reduced incidence and size of venous clots at 48 hours. PAR4P/L and PAR4L/L platelets had progressively decreased phosphatidylserine in response to thrombin and convulxin, which led to decreased thrombin generation and decreased PAR4-mediated platelet-neutrophil aggregation. Conclusions The leucine allele in extracellular loop 3, PAR4-322L leads to fewer procoagulant platelets and decreased endogenous thrombin potential. This decreased ability to generate thrombin offers a mechanism for PAR4's role in VTE highlighting a key role for PAR4 signaling.
Collapse
Affiliation(s)
- Elizabeth A. Knauss
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH United States
| | - Johana Guci
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH United States
| | - Norman Luc
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH United States
| | - Dante Disharoon
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH United States
| | - Grace H. Huang
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH United States
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH United States
| | - Marvin T. Nieman
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH United States
| |
Collapse
|
9
|
Wang J, Zhou Q, Dong Q, Shen J, Hao J, Li D, Xu T, Cai X, Bai W, Ying T, Li Y, Zhang L, Zhu Y, Wang L, Wu J, Zheng Y. Nanoarchitectonic Engineering of Thermal-Responsive Magnetic Nanorobot Collectives for Intracranial Aneurysm Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400408. [PMID: 38709208 DOI: 10.1002/smll.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Stent-assisted coiling is a main treatment modality for intracranial aneurysms (IAs) in clinics, but critical challenges remain to be overcome, such as exogenous implant-induced stenosis and reliance on antiplatelet agents. Herein, an endovascular approach is reported for IA therapy without stent grafting or microcatheter shaping, enabled by active delivery of thrombin (Th) to target aneurysms using innovative phase-change material (PCM)-coated magnetite-thrombin (Fe3O4-Th@PCM) FTP nanorobots. The nanorobots are controlled by an integrated actuation system of dynamic torque-force hybrid magnetic fields. With robust intravascular navigation guided by real-time ultrasound imaging, nanorobotic collectives can effectively accumulate and retain in model aneurysms constructed in vivo, followed by controlled release of the encapsulated Th for rapid occlusion of the aneurysm upon melting the protective PCM (thermally responsive in a tunable manner) through focused magnetic hyperthermia. Complete and stable aneurysm embolization is confirmed by postoperative examination and 2-week postembolization follow-up using digital subtraction angiography (DSA), contrast-enhanced ultrasound (CEUS), and histological analysis. The safety of the embolization therapy is assessed through biocompatibility evaluation and histopathology assays. This strategy, seamlessly integrating secure drug packaging, agile magnetic actuation, and clinical interventional imaging, avoids possible exogenous implant rejection, circumvents cumbersome microcatheter shaping, and offers a promising option for IA therapy.
Collapse
Affiliation(s)
- Jienan Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Qi Zhou
- School of Engineering, The University of Edinburgh, Edinburgh, EH9 3FB, UK
| | - Qi Dong
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200002, P. R. China
| | - Jian Shen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Dong Li
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuehua Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
10
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Role of Platelets and Their Interaction with Immune Cells in Venous Thromboembolism. Semin Thromb Hemost 2024. [PMID: 39214148 DOI: 10.1055/s-0044-1789022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Venous thromboembolism (VTE) represents a significant global health challenge, ranking as the third leading cause of cardiovascular-related mortality. VTE pervades diverse clinical specialties, posing substantial risks to patient well-being and imposing considerable economic strains on health care systems. While platelets have long been recognized as pivotal players in hemostasis, emerging evidence underscores their multifaceted immune functions and their capacity to engage in crosstalk with other immune cells, such as neutrophils, thereby fostering immune-related thrombosis. Notably, investigations have elucidated the pivotal role of platelets in the pathogenesis of VTE. This review provides a comprehensive overview of platelet physiology, encompassing their activation, secretion dynamics, and implications in VTE. Moreover, it delineates the impact of platelet interactions with various immune cells on the initiation and progression of VTE, explores the correlation between platelet-related laboratory markers and VTE, and elucidates the role of platelets in thrombosis regression.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xianghui Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xin Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Zhipeng Cheng
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Yu Hu
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| |
Collapse
|
11
|
Wadding-Lee CA, Jay M, Jones SM, Thompson J, Howatt DA, Daugherty A, Mackman N, Owens AP. Attenuation of Atherosclerosis with PAR4 Deficiency: Differential Platelet Outcomes in apoE -/- vs. Ldlr -/- Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606266. [PMID: 39211209 PMCID: PMC11361089 DOI: 10.1101/2024.08.01.606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Cardiovascular disease (CVD) is a significant burden globally and, despite current therapeutics, remains the leading cause of death. Platelet inhibitors are of interest in CVD treatment to reduce thrombus formation post-plaque rupture as well their contribution to inflammation throughout the progression of atherosclerosis. Protease activated receptor 4 (PAR4) is a receptor highly expressed by platelets, strongly activated by thrombin, and plays a vital role in platelet activation and aggregation. However, the role of PAR4. Approach and Results Mice on a low-density lipoprotein receptor-deficient ( Ldlr -/- ) background were bred with Par4 deficient ( Par4 -/- ) mice to create Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- cousin lines. Mice were fed high fat (42%) and cholesterol (0.2%) 'Western' diet for 12 weeks for all studies. Bone marrow transplant (BMT) studies were conducted by irradiating Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- mice with 550 rads (2x, 4 hours apart) and then repopulated with Par4 +/+ or Par4 -/- bone marrow. To determine if the effects of thrombin were mediated solely by PAR4, the thrombin inhibitor dabigatran was added to the 'Western' diet. Ldlr -/- /Par4 -/- given dabigatran did not further decrease their atherosclerotic burden. Differences between apolipoprotein E deficient ( apoE -/- ) and Ldlr -/- platelets were assessed for changes in reactivity. We observed higher PAR4 abundance in arteries with atherosclerosis in human and mice versus healthy controls. PAR4 deficiency attenuated atherosclerosis in the aortic sinus and root versus proficient controls. BMT studies demonstrated this effect was due to hematopoietic cells, most likely platelets. PAR4 appeared to be acting independent of PAR1, as there werer no changes with addition of dabigatran to PAR4 deficient mice. apoE -/- platelets are hyperreactive compared to Ldlr -/- platelets. Conclusions Hematopoietic-derived PAR4, most likely platelets, plays a vital role in the development and progression of atherosclerosis. Specific targeting of PAR4 may be a potential therapeutic target for CVD. Highlights Deficiency of protease-activated receptor 4 attenuates the development of diet-induced atherosclerosis in a Ldlr -/- mouse model. PAR4 deficiency in hematopoietic cells is atheroprotective. PAR4 deficiency accounts for the majority of thrombin-induced atherosclerosis in a Ldlr -/- mouse model. The examination of platelet-specific proteins and platelet activation should be carefully considered before using the apoE -/- or Ldlr -/- mouse models of atherosclerosis.
Collapse
|
12
|
Han X, Knauss EA, Fuente MDL, Li W, Conlon RA, LePage DF, Jiang W, Renna SA, McKenzie SE, Nieman MT. A mouse model of the protease-activated receptor 4 Pro310Leu variant has reduced platelet reactivity. J Thromb Haemost 2024; 22:1715-1726. [PMID: 38508397 PMCID: PMC12036797 DOI: 10.1016/j.jtha.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) mediates thrombin signaling on platelets and other cells. Our recent structural studies demonstrated that a single nucleotide polymorphism in extracellular loop 3 and PAR4-P310L (rs2227376) leads to a hyporeactive receptor. OBJECTIVES The goal of this study was to determine how the hyporeactive PAR4 variant in extracellular loop 3 impacts platelet function in vivo using a novel knock-in mouse model (PAR4-322L). METHODS A point mutation was introduced into the PAR4 gene F2rl3 via CRISPR/Cas9 to create PAR4-P322L, the mouse homolog to human PAR4-P310L. Platelet response to PAR4 activation peptide (AYPGKF), thrombin, ADP, and convulxin was monitored by αIIbβ3 integrin activation and P-selectin translocation using flow cytometry or platelet aggregation. In vivo responses were determined by the tail bleeding assay and the ferric chloride-induced carotid artery injury model. RESULTS PAR4-P/L and PAR4-L/L platelets had a reduced response to AYPGKF and thrombin measured by P-selectin translocation or αIIbβ3 activation. The response to ADP and convulxin was unchanged among genotypes. In addition, both PAR4-P/L and PAR4-L/L platelets showed a reduced response to thrombin in aggregation studies. There was an increase in the tail bleeding time for PAR4-L/L mice. The PAR4-P/L and PAR4-L/L mice both showed an extended time to arterial thrombosis. CONCLUSION PAR4-322L significantly reduced platelet responsiveness to AYPGKF and thrombin, which is in agreement with our previous structural and cell signaling studies. In addition, PAR4-322L had prolonged arterial thrombosis time. Our mouse model provides a foundation to further evaluate the role of PAR4 in other pathophysiological contexts.
Collapse
Affiliation(s)
- Xu Han
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA
| | - Elizabeth A Knauss
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA
| | - Maria de la Fuente
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, USA
| | - Ronald A Conlon
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - David F LePage
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Weihong Jiang
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie A Renna
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marvin T Nieman
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA.
| |
Collapse
|
13
|
Nash J, Meah MN, Whittington B, Debono S, Raftis J, Miller MR, Sorbie A, Mills NL, Nespoux J, Bruce L, Duffin R, Dhaun N, Brittan M, Chao L, Merali S, Kim M, Wang Z, Zhang Y, Jin S, Wang B, Kozinn M, Newby DE. PAR4 Antagonism in Patients With Coronary Artery Disease Receiving Antiplatelet Therapies. Arterioscler Thromb Vasc Biol 2024; 44:987-996. [PMID: 38357820 DOI: 10.1161/atvbaha.123.320448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND BMS-986141 is a novel potent highly selective antagonist of PAR (protease-activated receptor) type 4. PAR4 antagonism has been demonstrated to reduce thrombus formation in isolation and in combination with factor Xa inhibition in high shear conditions in healthy people. We sought to determine whether PAR4 antagonism had additive antithrombotic effects in patients with coronary artery disease who were receiving antiplatelet therapy. METHODS Forty-five patients with stable coronary heart disease and 10 healthy volunteers completed a phase 2a open-label 4-arm single-center study. Patients were allocated to 1 of 3 treatment arms for 7 days: (1) ticagrelor (90 mg BID), (2) aspirin (75 mg QD), or (3) the combination of ticagrelor and aspirin. Agonist-induced platelet aggregation, platelet activation, and ex vivo thrombus formation were measured before and 2 and 24 hours after a single oral 4-mg dose of BMS-986141 on the first study visit day in all participants. RESULTS BMS-986141 demonstrated highly selective inhibition of PAR4-AP (agonist peptide)-induced platelet aggregation, P-selectin expression, and platelet-monocyte aggregate expression (P≤0.001 for all), which were unaffected by concomitant antiplatelet therapies. PAR4 antagonism reduced ex vivo thrombus area in high shear conditions in healthy volunteers (-21%; P=0.001) and in patients receiving ticagrelor alone (-28%; P=0.001), aspirin alone (-23%; P=0.018), or both in combination (-24%; P≤0.001). Plasma concentration of BMS-986141 correlated with PAR4-AP-induced platelet responses (P≤0.001 for all) and total thrombus area under high shear stress conditions (P≤0.01 for all). CONCLUSIONS PAR4 antagonism has additive antithrombotic effects when used in addition to ticagrelor, aspirin, or their combination, in patients with stable coronary heart disease. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT05093790.
Collapse
Affiliation(s)
- Jennifer Nash
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Mohammed N Meah
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Beth Whittington
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
- WorldWide Patient Safety (B.W.), Bristol Myers Squibb, Lawrenceville, NJ
| | - Samuel Debono
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Jennifer Raftis
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Andrew Sorbie
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Nicholas L Mills
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Josselin Nespoux
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Lorraine Bruce
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Rodger Duffin
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Longfei Chao
- Clinical Pharmacology and Pharmacometrics (L.C., S.M.), Bristol Myers Squibb, Lawrenceville, NJ
| | - Samira Merali
- Clinical Pharmacology and Pharmacometrics (L.C., S.M.), Bristol Myers Squibb, Lawrenceville, NJ
| | - Minji Kim
- Translational Medicine (M.K., Z.W.), Bristol Myers Squibb, Lawrenceville, NJ
- Early Cardiovascular Clinical Development, R&D (M.K.), Bristol Myers Squibb, Lawrenceville, NJ
| | - Zhaoqing Wang
- Translational Medicine (M.K., Z.W.), Bristol Myers Squibb, Lawrenceville, NJ
| | - Yue Zhang
- Global Biometrics and Data Sciences (Y.Z., S.J.), Bristol Myers Squibb, Lawrenceville, NJ
| | - Shiqiang Jin
- Global Biometrics and Data Sciences (Y.Z., S.J.), Bristol Myers Squibb, Lawrenceville, NJ
| | - Beqing Wang
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| | - Marc Kozinn
- Translational Medicine (M.K., Z.W.), Bristol Myers Squibb, Lawrenceville, NJ
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.N., M.N.M., B.W., S.D., J.R., M.R.M., A.S., N.L.M., J.N., L.B., R.D., N.D., M.B., D.E.N.)
| |
Collapse
|
14
|
Park HR, Azzara D, Cohen ED, Boomhower SR, Diwadkar AR, Himes BE, O'Reilly MA, Lu Q. Identification of novel NRF2-dependent genes as regulators of lead and arsenic toxicity in neural progenitor cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132906. [PMID: 37939567 PMCID: PMC10842917 DOI: 10.1016/j.jhazmat.2023.132906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb) and arsenic (As) are prevalent metal contaminants in the environment. Exposures to these metals are associated with impaired neuronal functions and adverse effects on neurodevelopment in children. However, the molecular mechanisms by which Pb and As impair neuronal functions remain poorly understood. Here, we identified F2RL2, TRIM16L, and PANX2 as novel targets of Nuclear factor erythroid 2-related factor 2 (NRF2)-the master transcriptional factor for the oxidative stress response-that are commonly upregulated with both Pb and As in human neural progenitor cells (NPCs). Using a ChIP (Chromatin immunoprecipitation)-qPCR assay, we showed that NRF2 directly binds to the promoter region of F2RL2, TRIM16L, and PANX2 to regulate expression of these genes. We demonstrated that F2RL2, PANX2, and TRIM16L have differential effects on cell death, proliferation, and differentiation of NPCs in both the presence and absence of metal exposures, highlighting their roles in regulating NPC function. Furthermore, the analyses of the transcriptomic data on NPCs derived from autism spectrum disorder (ASD) patients revealed that dysregulation of F2RL2, TRIM16L, and PANX2 was associated with ASD genetic backgrounds and ASD risk genes. Our findings revealed that Pb and As induce a shared NRF2-dependent transcriptional response in NPCs and identified novel genes regulating NPC function. While further in vivo studies are warranted, this study provides a novel mechanism linking metal exposures to NPC function and identifies potential genes of interest in the context of neurodevelopment.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Avantika R Diwadkar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Erreger K, Cao S, Pan Y, Jiang M, Zhang MZ, Harris RC, Hamm HE. Role of protease-activated receptor 4 in mouse models of acute and chronic kidney injury. Am J Physiol Renal Physiol 2024; 326:F219-F226. [PMID: 38031732 PMCID: PMC11198992 DOI: 10.1152/ajprenal.00162.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Protease-activated receptor 4 (PAR4) is a G protein-coupled receptor activated by thrombin. In the platelet, response to thrombin PAR4 contributes to the predominant procoagulant microparticle formation, increased fibrin deposition, and initiation of platelet-stimulated inflammation. In addition, PAR4 is expressed in other cell types, including endothelial cells. Under inflammatory conditions, PAR4 is overexpressed via epigenetic demethylation of the PAR4 gene, F2RL3. PAR4 knockout (KO) studies have determined a role for PAR4 in ischemia-reperfusion injury in the brain, and PAR4 KO mice display normal cardiac function but present less myocyte death and cardiac dysfunction in response to acute myocardial infarction. Although PAR4 has been reported to be expressed within the kidney, the contribution of PAR4 to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 KO mice are protected against kidney injury in two mouse models. First, PAR4 KO mice are protected against induction of markers of both fibrosis and inflammation in two different models of kidney injury: 1) 7 days following unilateral ureter obstruction (UUO) and 2) an AKI-CKD model of ischemia-reperfusion followed by 8 days of contralateral nephrectomy. We further show that PAR4 expression in the kidney is low in the control mouse kidney but induced over time following UUO. PAR4 KO mice are protected against blood urea nitrogen (BUN) and glomerular filtration rate (GFR) kidney function pathologies in the AKI-CKD model. Following the AKI-CKD model, PAR4 is expressed in the collecting duct colocalizing with Dolichos biflorus agglutinin (DBA), but not in the proximal tubule with Lotus tetragonolobus lectin (LTL). Collectively, the results reported in this study implicate PAR4 as contributing to the pathology in mouse models of acute and chronic kidney injury.NEW & NOTEWORTHY The contribution of the thrombin receptor protease-activated receptor 4 (PAR4) to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 expression is upregulated after kidney injury and PAR4 knockout (KO) mice are protected against fibrosis following kidney injury in two mouse models. First, PAR4 KO mice are protected against unilateral ureter obstruction. Second, PAR4 KO mice are protected against an AKI-CKD model of ischemia-reperfusion followed by contralateral nephrectomy.
Collapse
Affiliation(s)
- Kevin Erreger
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Shirong Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yu Pan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Mengdi Jiang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
16
|
Zhang QD, Duan QY, Tu J, Wu FG. Thrombin and Thrombin-Incorporated Biomaterials for Disease Treatments. Adv Healthc Mater 2024; 13:e2302209. [PMID: 37897228 DOI: 10.1002/adhm.202302209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Thrombin, a coagulation-inducing protease, has long been used in the hemostatic field. During the past decades, many other therapeutic uses of thrombin have been developed. For instance, burn treatment, pseudoaneurysm therapy, wound management, and tumor vascular infarction (or tumor vasculature blockade therapy) can all utilize the unique and powerful function of thrombin. Based on their therapeutic effects, many thrombin-associated products have been certificated by the Food and Drug Administration, including bovine thrombin, human thrombin, recombinant thrombin, fibrin glue, etc. Besides, several thrombin-based drugs are currently undergoing clinical trials. In this article, the therapeutic uses of thrombin (from the initial hemostasis to the latest cancer therapy), the commercially available drugs associated with thrombin, and the pros and cons of thrombin-based therapeutics (e.g., adverse immune responses related to bovine thrombin, thromboinflammation, and vasculogenic "rebounds") are summarized. Further, the current challenges and possible future research directions of thrombin-incorporated biomaterials and therapies are discussed. It is hoped that this review may provide a valuable reference for researchers in this field and help them to design safer and more effective thrombin-based drugs for fighting against various intractable diseases.
Collapse
Affiliation(s)
- Qiong-Dan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
17
|
Ding B, Mao Y, Li Y, Xin M, Jiang S, Hu X, Xu Q, Ding Q, Wang X. A novel GATA1 variant p.G229D causing the defect of procoagulant platelet formation. Thromb Res 2024; 234:39-50. [PMID: 38159323 DOI: 10.1016/j.thromres.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION GATA1 is one of the master transcription factors in hematopoietic lineages development which is crucial for megakaryocytic differentiation and maturation. Previous studies have shown that distinct GATA1 variants are associated with varying severities of macrothrombocytopenia and platelet dysfunction. OBJECTIVE To determine the underlying pathological mechanisms of a novel GATA1 variant (c. 686G > A, p. G229D) in a patient with recurrent traumatic muscle hematomas. METHODS Comprehensive phenotypic analysis of the patient platelets was performed. Procoagulant platelet formation and function were detected using flow cytometry assay and thrombin generation test (TGT), respectively. The ANO6 expression was measured by qPCR and western blot. The intracellular supramaximal calcium flux was detected by Fluo-5N fluorescent assay. RESULTS The patient displayed mild macrothrombocytopenia with defects of platelet granules, aggregation, and integrin αIIbβ3 activation. The percentage of the procoagulant platelet formation of the patient upon the stimulation of thrombin plus collagen was lower than that of the healthy controls (40.9 % vs 49.0 % ± 5.1 %). The patient platelets exhibited a marked reduction of thrombin generation in platelet rich plasma TGT compared to the healthy controls (peak value: ∼70 % of the healthy controls; the endogenous thrombin potential: ∼40 % of the healthy controls). The expression of ANO6 and intracellular calcium flux were impaired, which together with abnormal granules of the patient platelets might contribute to defect of procoagulant platelet function. CONCLUSIONS The G229D variant could lead to a novel platelet phenotype characterized by defective procoagulant platelet formation and function, which extended the range of GATA1 variants associated platelet disorders.
Collapse
Affiliation(s)
- Biying Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yinqi Mao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shifeng Jiang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobo Hu
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Han X, Knauss EA, de la Fuente M, Li W, Conlon RA, LePage DF, Jiang W, Renna SA, McKenzie SE, Nieman MT. A Mouse Model of the Protease Activated Receptor 4 (PAR4) Pro310Leu Variant has Reduced Platelet Reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569075. [PMID: 38077081 PMCID: PMC10705540 DOI: 10.1101/2023.12.01.569075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Background Protease activated receptor 4 (PAR4) mediates thrombin signaling on platelets and other cells. Our recent structural studies demonstrated a single nucleotide polymorphism in extracellular loop 3 (ECL3), PAR4-P310L (rs2227376) leads to a hypo-reactive receptor. Objectives The goal of this study was to determine how the hypo-reactive PAR4 variant in ECL3 impacts platelet function in vivo using a novel knock-in mouse model (PAR4-322L). Methods A point mutation was introduced into the PAR4 gene, F2rl3, via CRISPR/Cas9 to create PAR4-P322L, the mouse homolog to human PAR4-P310L. Platelet response to PAR4 activation peptide (AYPGKF), thrombin, ADP, and convulxin was monitored by αIIbβ3 integrin activation and P-selectin translocation using flow cytometry or platelet aggregation. In vivo responses were determined by the tail bleeding assay and the ferric chloride-induced carotid artery injury model. Results PAR4-P/L and PAR4-L/L platelets had a reduced response to AYPGKF and thrombin measured by P-selectin translocation or αIIbβ3 activation. The response to ADP and convulxin was unchanged among genotypes. In addition, both PAR4-P/L and PAR4-L/L platelets showed a reduced response to thrombin in aggregation studies. There was an increase in the tail bleeding time for PAR4-L/L mice. The PAR4-P/L and PAR4-L/L mice both showed an extended time to arterial thrombosis. Conclusions PAR4-322L significantly reduced platelet responsiveness to AYPGKF and thrombin, which is in agreement with our previous structural and cell signaling studies. In addition, PAR4-322L had prolonged arterial thrombosis time. Our mouse model provides a foundation to further evaluate the role of PAR4 in other pathophysiological contexts.
Collapse
Affiliation(s)
- Xu Han
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH United States
| | - Elizabeth A. Knauss
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH United States
| | - Maria de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH United States
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV United States
| | - Ronald A Conlon
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, OH United States
| | - David F. LePage
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, OH United States
| | - Weihong Jiang
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, OH United States
| | - Stephanie A. Renna
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA United States
| | - Steven E. McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA United States
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH United States
| |
Collapse
|
19
|
Lee SK, Malik RA, Zhou J, Wang W, Gross PL, Weitz JI, Ramachandran R, Trigatti BL. PAR4 Inhibition Reduces Coronary Artery Atherosclerosis and Myocardial Fibrosis in SR-B1/LDLR Double Knockout Mice. Arterioscler Thromb Vasc Biol 2023; 43:2165-2178. [PMID: 37675637 PMCID: PMC10597419 DOI: 10.1161/atvbaha.123.319767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND SR-B1 (scavenger receptor class B type 1)/LDLR (low-density lipoprotein receptor) double knockout mice fed a high-fat, high-cholesterol diet containing cholate exhibit coronary artery disease characterized by occlusive coronary artery atherosclerosis, platelet accumulation in coronary arteries, and myocardial fibrosis. Platelets are involved in atherosclerosis development, and PAR (protease-activated receptor) 4 has a prominent role in platelet function in mice. However, the role of PAR4 on coronary artery disease in mice has not been tested. METHODS We tested the effects of a PAR4 inhibitory pepducin (RAG8) on diet-induced aortic sinus and coronary artery atherosclerosis, platelet accumulation in atherosclerotic coronary arteries, and myocardial fibrosis in SR-B1/LDLR double knockout mice. SR-B1/LDLR double knockout mice were fed a high-fat, high-cholesterol diet containing cholate and injected daily with 20 mg/kg of either the RAG8 pepducin or a control reverse-sequence pepducin (SRQ8) for 20 days. RESULTS Platelets from the RAG8-treated mice exhibited reduced thrombin and PAR4 agonist peptide-mediated activation compared with those from control SRQ8-treated mice when tested ex vivo. Although aortic sinus atherosclerosis levels did not differ, RAG8-treated mice exhibited reduced coronary artery atherosclerosis, reduced platelet accumulation in atherosclerotic coronary arteries, and reduced myocardial fibrosis. These protective effects were not accompanied by changes in circulating lipids, inflammatory cytokines, or immune cells. However, RAG8-treated mice exhibited reduced VCAM-1 (vascular cell adhesion molecule 1) protein levels in nonatherosclerotic coronary artery cross sections and reduced leukocyte accumulation in atherosclerotic coronary artery cross sections compared with those from SRQ8-treated mice. CONCLUSIONS The PAR4 inhibitory RAG8 pepducin reduced coronary artery atherosclerosis and myocardial fibrosis in SR-B1/LDLR double knockout mice fed a high-fat, high-cholesterol diet containing cholate. Furthermore, RAG8 reduced VCAM-1 in nonatherosclerotic coronary arteries and reduced leukocyte and platelet accumulation in atherosclerotic coronary arteries. These findings identify PAR4 as an attractive target in reducing coronary artery disease development, and the use of RAG8 may potentially be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Samuel K. Lee
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| | - Rida A. Malik
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
| | - Ji Zhou
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
| | - Wei Wang
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| | - Peter L. Gross
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
| | - Jeffrey I. Weitz
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.R.)
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| |
Collapse
|
20
|
Renna SA, Zhao X, Kunapuli SP, Ma P, Holinstat M, Boxer MB, Maloney DJ, Michael JV, McKenzie SE. Novel Strategy to Combat the Procoagulant Phenotype in Heparin-Induced Thrombocytopenia Using 12-LOX Inhibition. Arterioscler Thromb Vasc Biol 2023; 43:1808-1817. [PMID: 37345522 DOI: 10.1161/atvbaha.123.319434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Heparin-induced thrombocytopenia (HIT) is a major concern for all individuals that undergo cardiac bypass surgeries or require prolonged heparin exposure. HIT is a life- and limb-threatening adverse drug reaction with an immune response following the formation of ultra-large immune complexes that drive platelet activation through the receptor FcγRIIA. Thrombotic events remain high following the standard of care treatment with anticoagulants, while increasing risk of bleeding complications. This study sought to investigate a novel approach to treatment of HIT. Recent reports demonstrate increased procoagulant activity in HIT; however, these reports required analysis ex vivo, and relevance in vivo remains unclear. METHODS Using human and mouse model systems, we investigated the cooperativity of PARs (protease-activated receptors) and FcγRIIA in HIT. We challenged humanized FcγRIIA transgenic mice with or without endogenous mouse Par4 (denoted as IIA-Par4+/+ or IIA-Par4-/-, respectively) with a well-established model IgG immune complex (anti [α]-CD9). Furthermore, we assessed the procoagulant phenotype and efficacy to treat HIT utilizing inhibitor of 12-LOX (12[S]-lipoxygenase), VLX-1005, previously reported to decrease platelet activation downstream of FcγRIIA and PAR4, using the triple allele HIT mouse model. RESULTS IIA-Par4+/+ mice given αCD9 were severely thrombocytopenic, with extensive platelet-fibrin deposition in the lung. In contrast, IIA-Par4-/- mice had negligible thrombocytopenia or pulmonary platelet-fibrin thrombi. We observed that pharmacological inhibition of 12-LOX resulted in a significant reduction in both platelet procoagulant phenotype ex vivo, and thrombocytopenia and thrombosis in our humanized mouse model of HIT in vivo. CONCLUSIONS These data demonstrate for the first time the need for dual platelet receptor (PAR and FcγRIIA) stimulation for fibrin formation in HIT in vivo. These results extend our understanding of HIT pathophysiology and provide a scientific rationale for targeting the procoagulant phenotype as a possible therapeutic strategy in HIT.
Collapse
Affiliation(s)
- Stephanie A Renna
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.A.R., X.Z., P.M., J.V.M., S.E.M.)
| | - Xuefei Zhao
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.A.R., X.Z., P.M., J.V.M., S.E.M.)
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Center and the Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.P.K.)
| | - Peisong Ma
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.A.R., X.Z., P.M., J.V.M., S.E.M.)
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor (M.H.)
| | | | | | - James V Michael
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.A.R., X.Z., P.M., J.V.M., S.E.M.)
| | - Steven E McKenzie
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.A.R., X.Z., P.M., J.V.M., S.E.M.)
| |
Collapse
|
21
|
Rudran T, Antoniak S, Flick MJ, Ginsberg MH, Wolberg AS, Bergmeier W, Lee RH. Protease-activated receptors and glycoprotein VI cooperatively drive the platelet component in thromboelastography. J Thromb Haemost 2023; 21:2236-2247. [PMID: 37068592 PMCID: PMC10824270 DOI: 10.1016/j.jtha.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Thromboelastography (TEG) is used for real-time determination of hemostatic status in patients with acute risk of bleeding. Thrombin is thought to drive clotting in TEG through generation of polymerized fibrin and activation of platelets through protease-activated receptors (PARs). However, the specific role of platelet agonist receptors and signaling in TEG has not been reported. OBJECTIVES Here, we investigated the specific receptors and signaling pathways required for platelet function in TEG using genetic and pharmacologic inhibition of platelet proteins in mouse and human blood samples. METHODS Clotting parameters (R time, α-angle [α], and maximum amplitude [MA]), were determined in recalcified, kaolin-triggered citrated blood samples using a TEG 5000 analyzer. RESULTS We confirmed the requirement of platelets, platelet contraction, and αIIbβ3 integrin function for normal α and MA. Loss of the integrin adaptor Talin1 in megakaryocytes/platelets (Talin1mKO) also reduced α and MA, but only minimal defects were observed in samples from mice lacking Rap1 GTPase signaling. PAR4mKO samples showed impaired α but normal MA. However, impaired TEG traces similar to those in platelet-depleted samples were observed with samples from PAR4mKO mice depleted of glycoprotein VI on platelets or with addition of a Syk inhibitor. We reproduced these results in human blood with combined inhibition of PAR1, PAR4, and Syk. CONCLUSION Our results demonstrate that standard TEG is not sensitive to platelet signaling pathways critical for integrin inside-out activation and platelet hemostatic function. Furthermore, we provide the first evidence that PARs and glycoprotein VI play redundant roles in platelet-mediated clot contraction in TEG.
Collapse
Affiliation(s)
- Tanvi Rudran
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew J Flick
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alisa S Wolberg
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
22
|
Elgheznawy A, Öftering P, Englert M, Mott K, Kaiser F, Kusch C, Gbureck U, Bösl MR, Schulze H, Nieswandt B, Vögtle T, Hermanns HM. Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo. Front Immunol 2023; 14:1197894. [PMID: 37359521 PMCID: PMC10285393 DOI: 10.3389/fimmu.2023.1197894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.
Collapse
Affiliation(s)
- Amro Elgheznawy
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Michael R. Bösl
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Heike M. Hermanns
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Bravo-Iñiguez CE, Fritz JR, Shukla S, Sarangi S, Thompson DA, Amin SG, Tsaava T, Chaudhry S, Valentino SP, Hoffman HB, Imossi CW, Addorisio ME, Valdes-Ferrer SI, Chavan SS, Blanc L, Czura CJ, Tracey KJ, Huston JM. Vagus nerve stimulation primes platelets and reduces bleeding in hemophilia A male mice. Nat Commun 2023; 14:3122. [PMID: 37264009 PMCID: PMC10235098 DOI: 10.1038/s41467-023-38505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Deficiency of coagulation factor VIII in hemophilia A disrupts clotting and prolongs bleeding. While the current mainstay of therapy is infusion of factor VIII concentrates, inhibitor antibodies often render these ineffective. Because preclinical evidence shows electrical vagus nerve stimulation accelerates clotting to reduce hemorrhage without precipitating systemic thrombosis, we reasoned it might reduce bleeding in hemophilia A. Using two different male murine hemorrhage and thrombosis models, we show vagus nerve stimulation bypasses the factor VIII deficiency of hemophilia A to decrease bleeding and accelerate clotting. Vagus nerve stimulation targets acetylcholine-producing T lymphocytes in spleen and α7 nicotinic acetylcholine receptors (α7nAChR) on platelets to increase calcium uptake and enhance alpha granule release. Splenectomy or genetic deletion of T cells or α7nAChR abolishes vagal control of platelet activation, thrombus formation, and bleeding in male mice. Vagus nerve stimulation warrants clinical study as a therapy for coagulation disorders and surgical or traumatic bleeding.
Collapse
Affiliation(s)
- Carlos E Bravo-Iñiguez
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jason R Fritz
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shilpa Shukla
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Pediatric Hematology and Oncology, Cohen Children's Medical Center, Northwell Health, Lake Success, NY, 11040, USA
| | - Susmita Sarangi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Pediatric Hematology and Oncology, Cohen Children's Medical Center, Northwell Health, Lake Success, NY, 11040, USA
| | - Dane A Thompson
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Surgery, Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Seema G Amin
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Pediatric Hematology and Oncology, Cohen Children's Medical Center, Northwell Health, Lake Success, NY, 11040, USA
| | - Tea Tsaava
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Saher Chaudhry
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sara P Valentino
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Hannah B Hoffman
- Department of Surgery, Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Catherine W Imossi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Meghan E Addorisio
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sergio I Valdes-Ferrer
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Lionel Blanc
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Boulevard, Hempstead, NY, 11549, USA
| | - Christopher J Czura
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jared M Huston
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Department of Surgery, Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA.
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Boulevard, Hempstead, NY, 11549, USA.
| |
Collapse
|
24
|
Afaque Ansari M, Juen Liew W, Padmakumari Kurup C, Uddin Ahmed M. Label-free electrochemical aptasensor for ultrasensitive thrombin detection using graphene nanoplatelets and carbon nano onion-based nanocomposite. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
25
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
26
|
Dunker C, Imberg L, Siutkina AI, Erbacher C, Daniliuc CG, Karst U, Kalinin DV. Pyrazole-Based Thrombin Inhibitors with a Serine-Trapping Mechanism of Action: Synthesis and Biological Activity. Pharmaceuticals (Basel) 2022; 15:1340. [PMID: 36355511 PMCID: PMC9696832 DOI: 10.3390/ph15111340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/25/2023] Open
Abstract
New antithrombotic drugs are needed to combat thrombosis, a dangerous pathology that causes myocardial infarction and ischemic stroke. In this respect, thrombin (FIIa) represents an important drug target. We herein report the synthesis and biological activity of a series of 1H-pyrazol-5-amine-based thrombin inhibitors with a serine-trapping mechanism of action. Among synthesized compounds, flexible acylated 1H-pyrazol-5-amines 24e, 34a, and 34b were identified as potent 16-80 nM thrombin inhibitors, which showed practically no off-targeting effect against other physiologically relevant serine proteases. To prove that synthesized compounds are covalent thrombin inhibitors, the most potent derivative 24e (FIIa IC50 = 16 nM) was studied in a mass-shift assay, where it has been shown that 24e transfers its acyl moiety (pivaloyl) to the catalytic Ser195 of thrombin. Performed herein docking studies also confirmed the covalent mechanism of thrombin inhibition by synthesized compounds. Acylated aminopyrazoles found during this study showed only limited effects on plasma coagulation in activated partial thrombin time (aPTT) and prothrombin time (PT) in vitro assays. However, such thrombin inhibitors are expected to have virtually no effect on bleeding time and can be used as a starting point for developing a safer alternative to traditional non-covalent anticoagulants.
Collapse
Affiliation(s)
- Calvin Dunker
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Alena I. Siutkina
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Catharina Erbacher
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
27
|
Extracting Mural and Volumetric Growth Patterns of Platelet Aggregates on Engineered Surfaces by Use of an Entity Tracking Algorithm. ASAIO J 2022; 69:382-390. [PMID: 36302265 PMCID: PMC10065893 DOI: 10.1097/mat.0000000000001841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Thrombosis is a major complication that can occur in both blood-contacting devices and regions and in regions of vascular damage. Microfluidic devices are popular templates to model various thrombogenic settings and to assess conditions that lead to bulk channel occlusion. However, area-averaged measurements miss the opportunity to extract real-time information on thrombus evolution and early dynamics of thrombus formation and propagation, which result in late-stage bulk channel occlusion. To clarify these dynamics, we have developed a standalone tracking algorithm that uses consecutive image connectivity and minimal centroid distance mappings to uniquely index all appearing thrombi in fluorescence time-lapse videos http://links.lww.com/ASAIO/A887 , and http://links.lww.com/ASAIO/A888 . This leads to measurements of all individual aggregates that can in turn be studied as ensembles. We applied tracking to fluorescence time-lapse videos http://links.lww.com/ASAIO/A887 , and http://links.lww.com/ASAIO/A888 of thrombosis across both collagen-functionalized substrate and across the surface of a roughened titanium alloy (Ti6Al4V) at a shear rate of 4000 s -1 . When comparing ensemble-averaged measurements to area-averaged metrics, we unveil immediate, steady thrombus growth at early phases on collagen surfaces and unstable thrombus attachment to roughened Ti6Al4V surfaces on Ti6Al4V surfaces. Additionally, we introduce tracked thrombus eccentricity and fluorescence intensity as additional volumetric measures of thrombus growth that relate back to the primary thrombosis mechanism at play. This work advocates for the complementation of surface macrostate metrics with characteristic thrombus microstate growth patterns to accurately predict critical thrombosis events.
Collapse
|
28
|
PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23158758. [PMID: 35955891 PMCID: PMC9368822 DOI: 10.3390/ijms23158758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are involved in a wide array of physiological and disease functions, yet knowledge of their role in colon cancer stem cell maintenance is still lacking. In addition, the molecular mechanisms underlying GPCR-induced post-translational signaling regulation are poorly understood. Here, we find that protease-activated receptor 4 (PAR4) unexpectedly acts as a potent oncogene, inducing β-catenin stability and transcriptional activity. Both PAR4 and PAR2 are able to drive the association of methyltransferase EZH2 with β-catenin, culminating in β-catenin methylation. This methylation on a lysine residue at the N-terminal portion of β-catenin suppresses the ubiquitination of β-catenin, thereby promoting PAR-induced β-catenin stability and transcriptional activity. Indeed, EZH2 is found to be directly correlated with high PAR4-driven tumors, and is abundantly expressed in large tumors, whereas very little to almost none is expressed in small tumors. A truncated form of β-catenin, ∆N133β-catenin, devoid of lysine, as well as serine/threonine residues, exhibits low levels of β-catenin and a markedly reduced transcriptional activity following PAR4 activation, in contrast to wt β-catenin. Our study demonstrates the importance of β-catenin lysine methylation in terms of its sustained expression and function. Taken together, we reveal that PAR-induced post-transcriptional regulation of β-catenin is centrally involved in colon cancer.
Collapse
|
29
|
Gnanenthiran SR, Pennings GJ, Reddel CJ, Campbell H, Kockx M, Hamilton JR, Chen V, Kritharides L. Identification of a Distinct Platelet Phenotype in the Elderly: ADP Hypersensitivity Coexists With Platelet PAR (Protease-Activated Receptor)-1 and PAR-4-Mediated Thrombin Resistance. Arterioscler Thromb Vasc Biol 2022; 42:960-972. [PMID: 35708029 DOI: 10.1161/atvbaha.120.316772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thrombin (via PAR [protease-activated receptor]-1 and PAR-4) and ADP (via P2Y12 receptors) are potent endogenous platelet activators implicated in the development of cardiovascular disease. We aimed to assess whether platelet pathways alter with aging. METHODS We characterized platelet activity in community-dwelling volunteers (n=174) in the following age groups: (1) 20 to 30 (young); (2) 40 to 55 (middle-aged); (3) ≥70 years (elderly). Platelet activity was assessed by aggregometry; flow cytometry (surface markers [P-selectin: alpha granule release, CD63: dense granule release, PAC-1 (measure of conformationally active GPIIb/IIIa at the fibrinogen binding site): GPIIb/IIIa conformational activation] measured under basal conditions and after agonist stimulation [ADP, thrombin, PAR-1 agonist or PAR-4 agonist]); receptor cleavage and quantification; fluorometry; calcium flux; ELISA. RESULTS The elderly had higher basal platelet activation than the young, evidenced by increased expression of P-selectin, CD63, and PAC-1, which correlated with increasing inflammation (IL [interleukin]-1β/IL-6). The elderly demonstrated higher P2Y12 receptor density, with greater ADP-induced platelet aggregation (P<0.05). However, elderly subjects were resistant to thrombin, achieving less activation in response to thrombin (higher EC50) and to selective stimulation of both PAR-1 and PAR-4, with higher basal PAR-1/PAR-4 cleavage and less inducible PAR-1/PAR-4 cleavage (all P<0.05). Thrombin resistance was attributable to a combination of reduced thrombin orienting receptor GPIbα, reduced secondary ADP contribution to thrombin-mediated activation, and blunted calcium flux. D-Dimer, a marker of in situ thrombin generation, correlated with platelet activation in the circulation, ex vivo thrombin resistance, and circulating inflammatory mediators (TNF [tumor necrosis factor]-α/IL-6). CONCLUSIONS Aging is associated with a distinctive platelet phenotype of increased basal activation, ADP hyperreactivity, and thrombin resistance. In situ thrombin generation associated with systemic inflammation may be novel target to prevent cardiovascular disease in the elderly.
Collapse
Affiliation(s)
- Sonali R Gnanenthiran
- Cardiology Department, Concord Repatriation General Hospital, NSW, Australia (S.R.G., M.K., L.K.).,ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Gabrielle J Pennings
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Caroline J Reddel
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Heather Campbell
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Maaike Kockx
- Cardiology Department, Concord Repatriation General Hospital, NSW, Australia (S.R.G., M.K., L.K.).,ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Justin R Hamilton
- Australian Centre of Blood Diseases, Monash University, Victoria, Australia (J.R.H.)
| | - Vivien Chen
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.).,Haematology Department, Concord Repatriation General Hospital, NSW, Australia (V.C.)
| | - Leonard Kritharides
- Cardiology Department, Concord Repatriation General Hospital, NSW, Australia (S.R.G., M.K., L.K.).,ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| |
Collapse
|
30
|
Bochenek ML, Gogiraju R, Großmann S, Krug J, Orth J, Reyda S, Georgiadis GS, Spronk H, Konstantinides S, Münzel T, Griffin JH, Wild PS, Espinola-Klein C, Ruf W, Schäfer K. EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia. JCI Insight 2022; 7:157701. [PMID: 35700057 PMCID: PMC9431695 DOI: 10.1172/jci.insight.157701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Blood clot formation initiates ischemic events, but coagulation roles during postischemic tissue repair are poorly understood. The endothelial protein C receptor (EPCR) regulates coagulation, as well as immune and vascular signaling, by protease activated receptors (PARs). Here, we show that endothelial EPCR-PAR1 signaling supports reperfusion and neovascularization in hindlimb ischemia in mice. Whereas deletion of PAR2 or PAR4 did not impair angiogenesis, EPCR and PAR1 deficiency or PAR1 resistance to cleavage by activated protein C caused markedly reduced postischemic reperfusion in vivo and angiogenesis in vitro. These findings were corroborated by biased PAR1 agonism in isolated primary endothelial cells. Loss of EPCR-PAR1 signaling upregulated hemoglobin expression and reduced endothelial nitric oxide (NO) bioavailability. Defective angiogenic sprouting was rescued by the NO donor DETA-NO, whereas NO scavenging increased hemoglobin and mesenchymal marker expression in human and mouse endothelial cells. Vascular specimens from patients with ischemic peripheral artery disease exhibited increased hemoglobin expression, and soluble EPCR and NO levels were reduced in plasma. Our data implicate endothelial EPCR-PAR1 signaling in the hypoxic response of endothelial cells and identify suppression of hemoglobin expression as an unexpected link between coagulation signaling, preservation of endothelial cell NO bioavailability, support of neovascularization, and prevention of fibrosis.
Collapse
Affiliation(s)
- Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Stefanie Großmann
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Janina Krug
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Orth
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Henri Spronk
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, Netherlands
| | | | - Thomas Münzel
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States of America
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
31
|
Renna SA, Michael JV, Kong X, Ma L, Ma P, Nieman MT, Edelstein LC, McKenzie SE. Human and mouse PAR4 are functionally distinct receptors: Studies in novel humanized mice. J Thromb Haemost 2022; 20:1236-1247. [PMID: 35152546 DOI: 10.1111/jth.15669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 08/31/2023]
Abstract
BACKGROUND Human and mouse platelets both express protease-activated receptor (PAR) 4 but sequence alignment reveals differences in several functional domains. These differences may result in functional disparities between the receptors which make it difficult to translate PAR4 studies using mice to human platelet physiology. OBJECTIVES To generate transgenic mice that express human, but not mouse, PAR4 and directly compare human and mouse PAR4 function in the same platelet environment. METHODS Transgenic mice were made using a genomic clone of the F2RL3 gene (encoding PAR4) and backcrossed with Par4 KO mice. For certain experiments, mice were bred with GRK6 KO mice. Tail bleeding time and platelet function in response to PAR4-activating peptide were assessed. RESULTS Human F2RL3 was successfully integrated into the mouse genome, transgenic mice were crossed to the mPar4 KO background (PAR4 tg/KO), and PAR4 was functionally expressed on platelets. Compared to WT, PAR4 tg/KO mice exhibited shortened tail bleeding time and their platelets were more responsive to PAR4-AP as assessed by α-granule release and integrin activation. The opposite was observed with thrombin. Knocking out GRK6 had no effect on human PAR4-expressing platelets, unlike mouse Par4-expressing platelets. PAR4 tg/KO platelets exhibited greater Ca2+ area under the curve and more robust extracellular vesicle release than WT stimulated with PAR4-AP. CONCLUSION These data suggest that (1) human PAR4- and mouse Par4-mediated signaling are different and (2) the feedback regulation mechanisms of human and mouse PAR4 are different. These functional differences are important to consider when interpreting PAR4 studies done with mice.
Collapse
Affiliation(s)
- Stephanie A Renna
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James V Michael
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xianguo Kong
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lin Ma
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peisong Ma
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marvin T Nieman
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leonard C Edelstein
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Abstract
The utility of mouse models to dissect the molecular basis of hemostasis and thrombosis is now well established. The anucleate properties of circulating blood platelet and their specialized release from mature megakaryocytes makes the use of in vivo models all the more informative and powerful. Indeed, they are powerful but there do exist limitations. Here, we review the contributions of mouse models to the pathogenesis of the Bernard-Soulier syndrome, their use in platelet-specific gene expression, the recent development of mice expressing both human GPIb-IX and human von Willebrand factor (VWF), and finally the use of GPIb-IX mouse models to examine the impact of platelet biology beyond clotting. The humanization of the receptor and ligand axis is likely to be a major advancement in the characterization of therapeutics in the complex pathogenesis that drives thrombosis. When appropriate, we highlight some limitations of each mouse model, but this is not to minimize the contributions these models to the field. Rather, the limitations are meant to provide context for any direct application to the important mechanisms supporting human primary hemostasis and thrombosis.
Collapse
Affiliation(s)
- Jerry Ware
- University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
33
|
Stoller ML, Basak I, Denorme F, Rowley JW, Alsobrooks J, Parsawar K, Nieman MT, Yost CC, Hamilton JR, Bray PF, Campbell RA. Neutrophil cathepsin G proteolysis of protease-activated receptor 4 generates a novel, functional tethered ligand. Blood Adv 2022; 6:2303-2308. [PMID: 34883511 PMCID: PMC9006282 DOI: 10.1182/bloodadvances.2021006133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022] Open
Abstract
Platelet-neutrophil interactions regulate ischemic vascular injury. Platelets are activated by serine proteases that cleave protease-activated receptor (PAR) amino termini, resulting in an activating tethered ligand. Neutrophils release cathepsin G (CatG) at sites of injury and inflammation, which activates PAR4 but not PAR1, although the molecular mechanism of CatG-induced PAR4 activation is unknown. We show that blockade of the canonical PAR4 thrombin cleavage site did not alter CatG-induced platelet aggregation, suggesting CatG cleaves a different site than thrombin. Mass spectrometry analysis using PAR4 N-terminus peptides revealed CatG cleavage at Ser67-Arg68. A synthetic peptide, RALLLGWVPTR, representing the tethered ligand resulting from CatG proteolyzed PAR4, induced PAR4-dependent calcium flux and greater platelet aggregation than the thrombin-generated GYPGQV peptide. Mutating PAR4 Ser67or Arg68 reduced CatG-induced calcium flux without affecting thrombin-induced calcium flux. Dog platelets, which contain a conserved CatG PAR4 Ser-Arg cleavage site, aggregated in response to human CatG and RALLLGWVPTR, while mouse (Ser-Gln) and rat (Ser-Glu) platelets were unresponsive. Thus, CatG amputates the PAR4 thrombin cleavage site by cleavage at Ser67-Arg68 and activates PAR4 by generating a new functional tethered ligand. These findings support PAR4 as an important CatG signaling receptor and suggest a novel therapeutic approach for blocking platelet-neutrophil-mediated pathophysiologies.
Collapse
Affiliation(s)
- Michelle L. Stoller
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Jesse W. Rowley
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - James Alsobrooks
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, University of Arizona, Tucson, AZ
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Christian Con Yost
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Neonatology, Department of Pediatric Medicine, University of Utah, Salt Lake City, UT
| | - Justin R. Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia; and
| | - Paul F. Bray
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, and
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
34
|
Fang H, Yuan Z, Zhu Y, Tang H, Pang C, Li J, Shi J, Guo W, Zhang S. Blocking protease-activated receptor 4 alleviates liver injury induced by brain death. Biochem Biophys Res Commun 2022; 595:47-53. [PMID: 35093640 DOI: 10.1016/j.bbrc.2022.01.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Brain death (BD) induces a systemic inflammatory response that influences donor liver quality. Protease-activated receptor 4 (PAR4) is a thrombin receptor that mediates platelet activation and is involved in inflammatory and apoptotic processes. Therefore, we investigated the role of PAR4 blockade in liver injury induced by BD and its associated mechanisms. In this study, we constructed a BD rat model and treated rats with TcY-NH2, a selective PAR4 antagonist, to block PAR4 signaling at the onset of BD induction. Our results revealed that PAR4 protein expression increased in the livers of rats with BD. PAR4 blockade alleviated liver injury induced by BD, as indicated by lower serum ALT/AST levels and an improvement in histomorphology. Blood platelet activation and hepatic platelet accumulation in BD rats were reduced by PAR4 blockade. Additionally, PAR4 blockade attenuated the inflammatory response and apoptosis in the livers of BD rats. Moreover, the activation of NF-κB and MAPK pathways induced by BD was inhibited by PAR4 blockade. Thus, our results suggest that PAR4 contributes to liver injury induced by BD by regulating inflammation and apoptosis through the NF-κB and MAPK pathways. Thus, PAR4 blockade may provide a feasible approach to improve the quality of organs from BD donors.
Collapse
Affiliation(s)
- Hongbo Fang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Zibo Yuan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yaohua Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Hongwei Tang
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou City, Henan Province, China; Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou City, Henan Province, China
| | - Chun Pang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jihua Shi
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou City, Henan Province, China; Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou City, Henan Province, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China; Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou City, Henan Province, China; Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou City, Henan Province, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China; Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou City, Henan Province, China; Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou City, Henan Province, China.
| |
Collapse
|
35
|
Lee RH, Kawano T, Grover SP, Bharathi V, Martinez D, Cowley DO, Mackman N, Bergmeier W, Antoniak S. Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability. J Thromb Haemost 2022; 20:422-433. [PMID: 34689407 PMCID: PMC8792346 DOI: 10.1111/jth.15569] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) is expressed by a wide variety of cells, including megakaryocytes/platelets, immune cells, cardiomyocytes, and lung epithelial cells. It is the only functional thrombin receptor on murine platelets. A global deficiency of PAR4 is associated with impaired hemostasis and reduced thrombosis. OBJECTIVE We aimed to generate a mouse line with a megakaryocyte/platelet-specific deletion of PAR4 (PAR4fl/fl ;PF4Cre+ ) and use the mouse line to investigate the role of platelet PAR4 in hemostasis and thrombosis in mice. METHODS Platelets from PAR4fl/fl ;PF4Cre+ were characterized in vitro. Arterial and venous thrombosis was analyzed. Hemostatic plug formation was analyzed using a saphenous vein laser injury model in mice with global or megakaryocyte/platelet-specific deletion of PAR4 or wild-type mice treated with thrombin or glycoprotein VI (GPVI) inhibitors. RESULTS PAR4fl/fl ;PF4Cre+ platelets were unresponsive to thrombin or specific PAR4 stimulation but not to other agonists. PAR4-/- and PAR4fl/fl ;PF4Cre+ mice both exhibited a similar reduction in arterial thrombosis compared to their respective controls. More importantly, we show for the first time that platelet PAR4 is critical for venous thrombosis in mice. In addition, PAR4-/- mice and PAR4fl/fl ;PF4Cre+ mice exhibited a similar impairment in hemostatic plug stability in a saphenous vein laser injury model. Inhibition of thrombin in wild-type mice gave a similar phenotype. Combined PAR4 deficiency on platelets with GPVI inhibition did not impair hemostatic plug formation but further reduced plug stability. CONCLUSION We generated a novel PAR4fl/fl ;PF4Cre+ mouse line. We used this mouse line to show that PAR4 signaling in platelets is critical for arterial and venous thrombosis and hemostatic plug stability.
Collapse
Affiliation(s)
- Robert H. Lee
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tomohiro Kawano
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven P. Grover
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vanthana Bharathi
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Martinez
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dale O. Cowley
- UNC Animal Models Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
36
|
Yu X, Li S, Zhu X, Kong Y. Inhibitors of protease activated receptor 4 (PAR4): a review of recent patents (2013-2021). Expert Opin Ther Pat 2022; 32:153-170. [PMID: 35081321 DOI: 10.1080/13543776.2022.2034786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Protease-activated receptor 4 (PAR4), belonging to a subfamily of G-protein-coupled receptors (GPCR), is expressed on the surface of Human platelets, and the activation of it can lead to platelets aggregation. Studies demonstrated that PAR4 inhibition protect mice from arterial/arteriolar thrombosis, pulmonary embolism and cerebral infarct, while do not affect the haemostatic responses integrity. Therefore, PAR4 has been a promising target for the development of anti-thrombotic agents. AREAS COVERED This review covers recent patents and literature on PAR4 and their application published between 2013 and 2021. EXPERT OPINION PAR4 is a promising anti-thrombotic target and PAR4 inhibitors are important biologically active compounds for the treatment of thrombosis. Most the recent patents and literature focus on PAR4 selective inhibitors, and BMS-986120 and BMS-986141, which were developed by BMS, have entered clinical trials. With the deep understanding of the crystal structures and biological functions of PAR4, we believe that many other novel types of molecules targeting PAR4 would enter the clinical studies or the market.
Collapse
Affiliation(s)
- Xiangying Yu
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shanshan Li
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiong Zhu
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yi Kong
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|
37
|
Chen L, Zhang J, Lin Z, Zhang Z, Mao M, Wu J, Li Q, Zhang Y, Fan C. Pharmaceutical applications of framework nucleic acids. Acta Pharm Sin B 2022; 12:76-91. [PMID: 35127373 PMCID: PMC8799870 DOI: 10.1016/j.apsb.2021.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
DNA is a biological polymer that encodes and stores genetic information in all living organism. Particularly, the precise nucleobase pairing inside DNA is exploited for the self-assembling of nanostructures with defined size, shape and functionality. These DNA nanostructures are known as framework nucleic acids (FNAs) for their skeleton-like features. Recently, FNAs have been explored in various fields ranging from physics, chemistry to biology. In this review, we mainly focus on the recent progress of FNAs in a pharmaceutical perspective. We summarize the advantages and applications of FNAs for drug discovery, drug delivery and drug analysis. We further discuss the drawbacks of FNAs and provide an outlook on the pharmaceutical research direction of FNAs in the future.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Miao Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
38
|
Kailashiya J, Dash D. Effects of Nanoceria on Human Platelet Functions and Blood Coagulation. Int J Nanomedicine 2022; 17:273-284. [PMID: 35087272 PMCID: PMC8789318 DOI: 10.2147/ijn.s332909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jyotsna Kailashiya
- Centre for Advanced Research on Platelet Signalling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Debabrata Dash
- Centre for Advanced Research on Platelet Signalling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Correspondence: Debabrata Dash, Centre for Advanced Research on Platelet Signalling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India, Email
| |
Collapse
|
39
|
Navarro S, Stegner D, Nieswandt B, Heemskerk JWM, Kuijpers MJE. Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. Int J Mol Sci 2021; 23:ijms23010358. [PMID: 35008781 PMCID: PMC8745329 DOI: 10.3390/ijms23010358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022] Open
Abstract
In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6214 KD Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, Professor Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| |
Collapse
|
40
|
Chen H, Smith M, Herz J, Li T, Hasley R, Le Saout C, Zhu Z, Cheng J, Gronda A, Martina JA, Irusta PM, Karpova T, McGavern DB, Catalfamo M. The role of protease-activated receptor 1 signaling in CD8 T cell effector functions. iScience 2021; 24:103387. [PMID: 34841225 PMCID: PMC8605340 DOI: 10.1016/j.isci.2021.103387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
CD8 T cells are essential for adaptive immunity against viral infections. Protease activated receptor 1 (PAR1) is expressed by CD8 T cells; however, its role in T cell effector function is not well defined. Here we show that in human CD8 T cells, PAR1 stimulation accelerates calcium mobilization. Furthermore, PAR1 is involved in cytotoxic T cell function by facilitating granule trafficking via actin polymerization and repositioning of the microtubule organizing center (MTOC) toward the immunological synapse. In vivo, PAR1-/- mice have reduced cytokine-producing T cells in response to a lymphocytic choriomeningitis virus (LCMV) infection and fail to efficiently control the virus. Specific deletion of PAR1 in LCMV GP33-specific CD8 T cells results in reduced expansion and diminished effector function. These data demonstrate that PAR1 plays a role in T cell activation and function, and this pathway could represent a new therapeutic strategy to modulate CD8 T cell effector function.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mindy Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jasmin Herz
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tong Li
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Rebecca Hasley
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cecile Le Saout
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ziang Zhu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Andres Gronda
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - José A. Martina
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo M. Irusta
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
41
|
Kim SJ, Carestia A, McDonald B, Zucoloto AZ, Grosjean H, Davis RP, Turk M, Naumenko V, Antoniak S, Mackman N, Abdul-Cader MS, Abdul-Careem MF, Hollenberg MD, Jenne CN. Platelet-Mediated NET Release Amplifies Coagulopathy and Drives Lung Pathology During Severe Influenza Infection. Front Immunol 2021; 12:772859. [PMID: 34858432 PMCID: PMC8632260 DOI: 10.3389/fimmu.2021.772859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/30/2023] Open
Abstract
The influenza A virus (IAV) causes a respiratory tract infection with approximately 10% of the population infected by the virus each year. Severe IAV infection is characterized by excessive inflammation and tissue pathology in the lungs. Platelet and neutrophil recruitment to the lung are involved in the pathogenesis of IAV, but the specific mechanisms involved have not been clarified. Using confocal intravital microscopy in a mouse model of IAV infection, we observed profound neutrophil recruitment, platelet aggregation, neutrophil extracellular trap (NET) production and thrombin activation within the lung microvasculature in vivo. Importantly, deficiency or antagonism of the protease-activated receptor 4 (PAR4) reduced platelet aggregation, NET production, and neutrophil recruitment. Critically, inhibition of thrombin or PAR4 protected mice from virus-induced lung tissue damage and edema. Together, these data imply thrombin-stimulated platelets play a critical role in the activation/recruitment of neutrophils, NET release and directly contribute to IAV pathogenesis in the lung.
Collapse
MESH Headings
- Animals
- Blood Coagulation Disorders/immunology
- Blood Coagulation Disorders/metabolism
- Blood Coagulation Disorders/virology
- Blood Platelets/immunology
- Blood Platelets/metabolism
- Blood Platelets/virology
- Disease Models, Animal
- Extracellular Traps/immunology
- Extracellular Traps/metabolism
- Extracellular Traps/virology
- Female
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/virology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Platelet Aggregation/immunology
- Mice
Collapse
Affiliation(s)
- Seok-Joo Kim
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Agostina Carestia
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Amanda Z. Zucoloto
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Heidi Grosjean
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Rachelle P. Davis
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Madison Turk
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Victor Naumenko
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | - Morley D. Hollenberg
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Craig N. Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang CY, Knight JM, Valladolid C, Sun H, Cruz MA, Hube B, Naglik JR, Luong AU, Kheradmand F, Corry DB. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 2021; 54:2595-2610.e7. [PMID: 34506733 DOI: 10.1016/j.immuni.2021.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Fungal airway infection (airway mycosis) is an important cause of allergic airway diseases such as asthma, but the mechanisms by which fungi trigger asthmatic reactions are poorly understood. Here, we leverage wild-type and mutant Candida albicans to determine how this common fungus elicits characteristic Th2 and Th17 cell-dependent allergic airway disease in mice. We demonstrate that rather than proteinases that are essential virulence factors for molds, C. albicans instead promoted allergic airway disease through the peptide toxin candidalysin. Candidalysin activated platelets through the Von Willebrand factor (VWF) receptor GP1bα to release the Wnt antagonist Dickkopf-1 (Dkk-1) to drive Th2 and Th17 cell responses that correlated with reduced lung fungal burdens. Platelets simultaneously precluded lethal pulmonary hemorrhage resulting from fungal lung invasion. Thus, in addition to hemostasis, platelets promoted protection against C. albicans airway mycosis through an antifungal pathway involving candidalysin, GP1bα, and Dkk-1 that promotes Th2 and Th17 responses.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhimin Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jill E Weatherhead
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuying Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lynn Bimler
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Translational Biology and Molecular Medicine Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John M Knight
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christian Valladolid
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Hua Sun
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Miguel A Cruz
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Jena 07745, Germany; Institute of Microbiology, Friedrich Schiller University, Jena 07737, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Amber U Luong
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - David B Corry
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA.
| |
Collapse
|
43
|
Ma Z, Zhang Y, Dai X, Zhang W, Foda MF, Zhang J, Zhao Y, Han H. Selective Thrombosis of Tumor for Enhanced Hypoxia-Activated Prodrug Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104504. [PMID: 34436814 DOI: 10.1002/adma.202104504] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/08/2021] [Indexed: 06/13/2023]
Abstract
One of the main challenges for tumor vascular infarction in combating cancer lies in failing to produce sustained complete thrombosis. Inspired by the capability of vascular infarction in blocking the delivery of oxygen to aggravate tumor hypoxia, the performance of selective tumor thrombus inducing hypoxia activation therapy to improve the therapeutic index of coagulation-based tumor therapy is presented. By encapsulating coagulation-inducing protease thrombin and a hypoxia-activated prodrug (HAP) tirapazamine into metal-organic framework nanoparticles with a tumor-homing ligand, the obtained nanoplatform selectively activates platelet aggregation at the tumor to induce thrombosis and vascular obstruction therapy by the exposed thrombin. Meanwhile, the thrombus can cut off the blood oxygen supply and potentiate the hypoxia levels to enhance the HAP therapy. This strategy not only addresses the dissatisfaction of vascular therapy, but also conquers the dilemma of inadequate hypoxia in HAP treatment. Since clinical operations such as surgery can be used to induce coagulation, coagulation-based synergistic therapy is promising for translation into a clinical combination regimen.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yifan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xinxin Dai
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Jin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
44
|
Bode MF, Schmedes CM, Egnatz GJ, Bharathi V, Hisada YM, Martinez D, Kawano T, Weithauser A, Rosenfeldt L, Rauch U, Palumbo JS, Antoniak S, Mackman N. Cell type-specific roles of PAR1 in Coxsackievirus B3 infection. Sci Rep 2021; 11:14264. [PMID: 34253819 PMCID: PMC8275627 DOI: 10.1038/s41598-021-93759-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Protease-activated receptor 1 (PAR1) is widely expressed in humans and mice, and is activated by a variety of proteases, including thrombin. Recently, we showed that PAR1 contributes to the innate immune response to viral infection. Mice with a global deficiency of PAR1 expressed lower levels of CXCL10 and had increased Coxsackievirus B3 (CVB3)-induced myocarditis compared with control mice. In this study, we determined the effect of cell type-specific deletion of PAR1 in cardiac myocytes (CMs) and cardiac fibroblasts (CFs) on CVB3-induced myocarditis. Mice lacking PAR1 in either CMs or CFs exhibited increased CVB3 genomes, inflammatory infiltrates, macrophages and inflammatory mediators in the heart and increased CVB3-induced myocarditis compared with wild-type controls. Interestingly, PAR1 enhanced poly I:C induction of CXCL10 in rat CFs but not in rat neonatal CMs. Importantly, activation of PAR1 reduced CVB3 replication in murine embryonic fibroblasts and murine embryonic cardiac myocytes. In addition, we showed that PAR1 reduced autophagy in murine embryonic fibroblasts and rat H9c2 cells, which may explain how PAR1 reduces CVB3 replication. These data suggest that PAR1 on CFs protects against CVB3-induced myocarditis by enhancing the anti-viral response whereas PAR1 on both CMs and fibroblasts inhibits viral replication.
Collapse
Affiliation(s)
- Michael F Bode
- Division of Cardiology, Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiology, Department of Medicine, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Clare M Schmedes
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Grant J Egnatz
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Vanthana Bharathi
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Yohei M Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - David Martinez
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Tomohiro Kawano
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Alice Weithauser
- CharitéCentrum 11 Cardiovascular Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Leah Rosenfeldt
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ursula Rauch
- CharitéCentrum 11 Cardiovascular Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Joseph S Palumbo
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
45
|
Liu M, Wu C, Ke L, Li Z, Wu YL. Emerging Biomaterials-Based Strategies for Inhibiting Vasculature Function in Cancer Therapy. SMALL METHODS 2021; 5:e2100347. [PMID: 34927997 DOI: 10.1002/smtd.202100347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Indexed: 06/14/2023]
Abstract
The constant feeding of oxygen and nutrients through the blood vasculature has a vital role in maintaining tumor growth. Interestingly, recent endeavors have shown that nanotherapeutics with the strategy to block tumor blood vessels feeding nutrients and oxygen for starvation therapy can be helpful in cancer treatment. However, this field has not been detailed. Hence, this review will present an exhaustive summary of the existing biomaterial based strategies to disrupt tumor vascular function for effective cancer treatment, including hydrogel or nanogel-mediated local arterial embolism, thrombosis activator loaded nano-material-mediated vascular occlusion and anti-vascular drugs that block tumor vascular function, which may be beneficial to the design of anti-cancer nanomedicine by targeting the tumor vascular system.
Collapse
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
46
|
Abstract
The serine protease thrombin, a naturally derived enzyme, plays a key role in hemostasis by converting fibrinogen to fibrin and activating coagulation factor XIII whereby the fibrin clot is stabilized. Furthermore, thrombin activates platelets through protease-activated receptors on the platelet surface. Conversely, thrombin also exerts anticoagulant effects, enhancing the protein C activity while complexed with thrombomodulin. During recent years, it has become evident that thrombin has significant effects beyond hemostasis, as it contributes also to modulation of the endothelium, promotes inflammation and angiogenesis, and plays a role in tumor progression. Yet, due to the very short half-life and almost immediate inhibition in fluid phase by antithrombin, thrombin itself remains elusive, and only indirect measurement of thrombin generation is possible. This review provides a description of structure and mechanisms of action of thrombin both in physiological and pathological processes. Furthermore, it summarizes laboratory tests that measure in vivo or ex vivo thrombin generation, and presents knowledge on the value of these biomarkers in bleeding disorders, cardiopulmonary bypass surgery, and thromboembolic risk assessment in different patient populations. Finally, this review outlines further perspectives on using thrombin generation biomarkers for research purposes and in clinical practice.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Seshadri VD. Cardioprotective properties of natural medicine in isoproterenol induced myocardial damage in the male Albino rats. Saudi J Biol Sci 2021; 28:3169-3175. [PMID: 34121851 PMCID: PMC8176003 DOI: 10.1016/j.sjbs.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
The main aim of this study is to investigate cardioprotective properties of natural medicine inmyocardial damage induced male Albino rats. The aqueous extractof Allium sativumwas used for the determination of phenolic compounds and flavonoids. The amount of phenol (1.39 ± 0.37 GAE/g dry weight) and flavonoids (49.1 ± 2.79 QE/g dry weight) were high in aqueous extract. A. sativumextract and showed 68.39 ± 3.6% DPPHscavenging activity. Isoproterenol was used to induce myocardial injury in Albino rats in vivo by subcutaneous injection (100 mg/kg body weight). To achieve this, experimental animals were categorized into six groups (n = 4), namely, positive, negative control, only isoproterenol administered groups, and garlic extract administered group at 100-300 mg extract/kg body weight. Oxidative stress marker and cardiac markers were assayed to analyze the cardioprotective properties of garlic extract. At 300 mg/kg doseof garlic extract, rat was recovered from various altered factors such as, aspartate aminotransferase, alkaline transminase and alkaline phosphatase. The rats treated with 300 mggarlic extract/kg body weight decreased the level of asparate aminotransferase (126 ± 6.4 IU/L) than other lower doses (100 mg extract/kg and 200 mg extract/kg). Alkaline transaminase level of rat serum level was 81 ± 4.34 IU/L. In the isoproterenol treated rats elevated level was observed (152 ± 4.42 IU/L enzyme activity). Pre-treatment of Albino rat with A. sativum extract reduced cardiac damage. Isoproterenol exposed animal showed 207.6 ± 1.2 mg/dL triglyceride and the garlic administered rat (300 mgextract/kg) reduced LDL-cholesterol level (61.3 ± 1.3 mg/dL) significantly (p < 0.05). Creatinine kinase -MB level was 269.5 ± 12.5 IU/L in the control animal and stress induced animal showed elevated level (572.3 ± 19.4 IU/L). Garlic treated experimental animal (300 µg/kg bw) decreased CK-MB level. To conclude, the aqueous extract of A. sativumshowed cardio protective properties against myocardial injury.
Collapse
Affiliation(s)
- Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
48
|
Loss of the exocyst complex component EXOC3 promotes hemostasis and accelerates arterial thrombosis. Blood Adv 2021; 5:674-686. [PMID: 33560379 DOI: 10.1182/bloodadvances.2020002515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
The exocyst is an octameric complex comprising 8 distinct protein subunits, exocyst complex components (EXOC) 1 to 8. It has an established role in tethering secretory vesicles to the plasma membrane, but its relevance to platelet granule secretion and function remains to be determined. Here, EXOC3 conditional knockout (KO) mice in the megakaryocyte/platelet lineage were generated to assess exocyst function in platelets. Significant defects in platelet aggregation, integrin activation, α-granule (P-selectin and platelet factor 4), dense granule, and lysosomal granule secretion were detected in EXOC3 KO platelets after treatment with a glycoprotein VI (GPVI)-selective agonist, collagen-related peptide (CRP). Except for P-selectin exposure, these defects were completely recovered by maximal CRP concentrations. GPVI surface levels were also significantly decreased by 14.5% in KO platelets, whereas defects in proximal GPVI signaling responses, Syk and LAT phosphorylation, and calcium mobilization were also detected, implying an indirect mechanism for these recoverable defects due to decreased surface GPVI. Paradoxically, dense granule secretion, integrin activation, and changes in surface expression of integrin αIIb (CD41) were significantly increased in KO platelets after protease-activated receptor 4 activation, but calcium responses were unaltered. Elevated integrin activation responses were completely suppressed with a P2Y12 receptor antagonist, suggesting enhanced dense granule secretion of adenosine 5'-diphosphate as a critical mediator of these responses. Finally, arterial thrombosis was significantly accelerated in KO mice, which also displayed improved hemostasis determined by reduced tail bleeding times. These findings reveal a regulatory role for the exocyst in controlling critical aspects of platelet function pertinent to thrombosis and hemostasis.
Collapse
|
49
|
Activated protein C has a regulatory role in factor VIII function. Blood 2021; 137:2532-2543. [PMID: 33512448 DOI: 10.1182/blood.2020007562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Mechanisms thought to regulate activated factor VIII (FVIIIa) cofactor function include A2-domain dissociation and activated protein C (APC) cleavage. Unlike A2-domain dissociation, there is no known phenotype associated with altered APC cleavage of FVIII, and biochemical studies have suggested APC plays a marginal role in FVIIIa regulation. However, the in vivo contribution of FVIIIa inactivation by APC is unexplored. Here we compared wild-type B-domainless FVIII (FVIII-WT) recombinant protein with an APC-resistant FVIII variant (FVIII-R336Q/R562Q; FVIII-QQ). FVIII-QQ demonstrated expected APC resistance without other changes in procoagulant function or A2-domain dissociation. In plasma-based studies, FVIII-WT/FVIIIa-WT demonstrated dose-dependent sensitivity to APC with or without protein S, whereas FVIII-QQ/FVIIIa-QQ did not. Importantly, FVIII-QQ demonstrated approximately fivefold increased procoagulant function relative to FVIII-WT in the tail clip and ferric chloride injury models in hemophilia A (HA) mice. To minimize the contribution of FV inactivation by APC in vivo, a tail clip assay was performed in homozygous HA/FV Leiden (FVL) mice infused with FVIII-QQ or FVIII-WT in the presence or absence of monoclonal antibody 1609, an antibody that blocks murine PC/APC hemostatic function. FVIII-QQ again demonstrated enhanced hemostatic function in HA/FVL mice; however, FVIII-QQ and FVIII-WT performed analogously in the presence of the PC/APC inhibitory antibody, indicating the increased hemostatic effect of FVIII-QQ was APC specific. Our data demonstrate APC contributes to the in vivo regulation of FVIIIa, which has the potential to be exploited to develop novel HA therapeutics.
Collapse
|
50
|
Chen W, Liu T, Liang Q, Chen X, Tao W, Fang M, Xiao Y, Chen L. miR-1283 Contributes to Endoplasmic Reticulum Stress in the Development of Hypertension Through the Activating Transcription Factor-4 (ATF4)/C/EBP-Homologous Protein (CHOP) Signaling Pathway. Med Sci Monit 2021; 27:e930552. [PMID: 33911065 PMCID: PMC8095088 DOI: 10.12659/msm.930552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Hypertension-related microRNA(miR)-1283 and its target gene, activating transcription factor-4 (ATF4), can regulate vascular endothelial dysfunction. This study aimed to explore whether miR-1283 prevents hypertension through targeting ATF4. Material/Methods Transcriptome sequencing was performed after overexpression or inhibition of miR-1283 in human amniotic epithelial cells (HAECs). After miR-1283 was overexpressed or inhibited in HAECs, ATF4+/− and wild-type mice were induced with a high-salt diet. We detected the expression of ATF4, C/EBP-homologous protein (CHOP), BH3-interacting domain death agonist (BID), Bcl-2, Bcl-2-like protein 11 (BIM), Bcl-2-like protein 1 (BCL-X), and caspase-3 by PCR and western blotting. We detected the changes of vasoactive substances including nitric oxide (NO), endothelin 1 (ET-1), endothelial protein C receptor (EPCR), thrombin (TM), and von Willebrand factor (vWF) by ELISA. Results Compared with that of the miR-1283- inhibited group, NO was higher in the miR-1283 overexpression group, while the expression of ET-1, EPCR, TM, and vWF were lower. Similarly, compared with that of the miR-1283 inhibited group, the expression of ATF4, CHOP, BID, BIM, and caspase-3 in the miR-1283 overexpression group was downregulated, while the expression of BCL-2 and BCL-X was upregulated (P<0.05). In vivo experiments showed the lack of ATF4 gene could prevent hypertension in mice induced by high-salt diet and protect endothelial function. Conclusions The mechanism of regulating blood pressure and endothelial function of the miR-1283/ATF4 axis was related to inhibiting endoplasmic reticulum stress and cell apoptosis through the ATF4/CHOP signaling pathway. Therefore, the miR-1283/ATF4 axis may be a target for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Weihao Chen
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Tianhao Liu
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Qiuer Liang
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xudong Chen
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Wencong Tao
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Meixia Fang
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Liguo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|