1
|
Wei W, Valerio M, Ma N, Kang H, Nguyen LXT, Marcucci G, Vaidehi N. Disordered C-Terminus Plays a Critical Role in the Activity of the Small GTPase Ran. Biochemistry 2025; 64:1393-1404. [PMID: 39999282 DOI: 10.1021/acs.biochem.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ran is a small GTPase of the Ras superfamily that governs nucleocytoplasmic transport, including that of miR-126, a microRNA that supports the homeostasis and expansion of leukemia stem cells (LSCs). Ran binds to Exportin 5 to facilitate the transport of precursor (pre)-miR-126 across the nuclear membrane for its maturation. Our goal is to inhibit Ran to prevent transport of pre-miR-126 to the cytoplasm. Like other Ras family proteins, targeting Ran with small molecules is challenging due to its relatively flat surface and lack of binding cavities. Ran's activity is regulated by a long and disordered C-terminus that provides opportunities for identifying cryptic binding pockets to target. We used a combination of molecular dynamics simulations and experiments and uncovered the critical role of the ensemble of the C-terminal conformations that enable the transition of Ran from the GTP-bound "on state" to its GDP-bound "off-state". We also showed that the Ran C-terminus allosterically modulates the conformations of residues in the nucleotide binding site and in the functionally relevant Switch 1 and 2 regions. Through computational deep mutational scans and experiments, we identified four residue hotspots L182, Y197, D200, and L201 at the core-C-terminus interface and four residue mutations V27A, E70D, N122A, and N122Y that mediate the allosteric communication between the core and switch regions. This information paves the way for our next step in the design of novel allosteric modulators for Ran.
Collapse
Affiliation(s)
- Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| | - Melissa Valerio
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
| | - Hyunjun Kang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Le Xuan Truong Nguyen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California 91010, United States
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
2
|
Qin Z, Wu YN, Sun TT, Ma T, Xu M, Pang C, Li SW, Li S. Arabidopsis RAN GTPases are critical for mitosis during male and female gametogenesis. FEBS Lett 2022; 596:1892-1903. [PMID: 35680649 DOI: 10.1002/1873-3468.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
The development of male and female gametophytes is a prerequisite for successful propagation of angiosperms. The small GTPases RAN play fundamental roles in numerous cellular processes. Although RAN GTPases have been characterized in plants, their roles in cellular processes are far from understood. We report here that RAN GTPases in Arabidopsis are critical for gametophytic development. RAN1 loss-of-function showed no defects in gametophytic development likely due to redundancy. However, the expression of a dominant negative or constitutively active RAN1 resulted in gametophytic lethality. Genetic interference of RAN GTPases caused the arrest of pollen mitosis I and of mitosis of functional megaspores, implying a key role of properly regulated RAN activity in mitosis during gametophytic development.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, China
| | - Ya-Nan Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tian-Tian Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ting Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Chen Pang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Sha Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, China.,State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
Baker MJ, Rubio I. Active GTPase Pulldown Protocol. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:117-135. [PMID: 33977474 DOI: 10.1007/978-1-0716-1190-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ras and its related small GTPases are important signalling nodes that regulate a wide variety of cellular functions. The active form of these proteins exists in a transient GTP bound state that mediates downstream signalling events. The dysregulation of these GTPases has been associated with the progression of multiple diseases, most prominently cancer and developmental syndromes known as Rasopathies. Determining the activation state of Ras and its relatives has hence been of paramount importance for the investigation of the biochemical functions of small GTPases in the cellular signal transduction network. This chapter describes the most broadly employed approach for the rapid, label-free qualitative and semi-quantitative determination of the Ras GTPase activation state, which can readily be adapted to the analysis of other related GTPases. The method relies on the affinity-based isolation of the active GTP-bound fraction of Ras in cellular extracts, followed by its visualization via western blotting. Specifically, we describe the production of the recombinant affinity probes or baits that bind to the respective active GTPases and the pulldown method for isolating the active GTPase fraction from adherent or non-adherent cells. This method allows for the reproducible measurement of active Ras or Ras family GTPases in a wide variety of cellular contexts.
Collapse
Affiliation(s)
- Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany. .,Clinic for Anaesthesiology and Intensive Care, University Hospital Jena, Jena, Germany.
| |
Collapse
|
4
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Zheng L, Nagar M, Maurais AJ, Slade DJ, Parelkar SS, Coonrod SA, Weerapana E, Thompson PR. Calcium Regulates the Nuclear Localization of Protein Arginine Deiminase 2. Biochemistry 2019; 58:3042-3056. [PMID: 31243954 DOI: 10.1021/acs.biochem.9b00225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein arginine deiminases (PADs) are calcium-dependent enzymes that mediate the post-translational conversion of arginine into citrulline. Dysregulated PAD activity is associated with numerous autoimmune disorders and cancers. In breast cancer, PAD2 citrullinates histone H3R26 and activates the transcription of estrogen receptor target genes. However, PAD2 lacks a canonical nuclear localization sequence, and it is unclear how this enzyme is transported into the nucleus. Here, we show for the first time that PAD2 translocates into the nucleus in response to calcium signaling. Using BioID2, a proximity-dependent biotinylation method for identifying interacting proteins, we found that PAD2 preferentially associates with ANXA5 in the cytoplasm. Binding of calcium to PAD2 weakens this cytoplasmic interaction, which generates a pool of calcium-bound PAD2 that can interact with Ran. We hypothesize that this latter interaction promotes the translocation of PAD2 into the nucleus. These findings highlight a critical role for ANXA5 in regulating PAD2 and identify an unusual mechanism whereby proteins translocate between the cytosol and nucleus.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States.,Program in Chemical Biology , University of Massachusetts Medical School , 364 Plantation Street , Worcester , Massachusetts 01605 , United States
| | - Mitesh Nagar
- Department of Biochemistry and Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States.,Program in Chemical Biology , University of Massachusetts Medical School , 364 Plantation Street , Worcester , Massachusetts 01605 , United States
| | - Aaron J Maurais
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Daniel J Slade
- Department of Biochemistry , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | - Sangram S Parelkar
- Department of Biochemistry and Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Scott A Coonrod
- James A. Baker Institute for Animal Health, College of Veterinary Medicine , Cornell University , Ithaca , New York 14853 , United States
| | - Eranthie Weerapana
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Paul R Thompson
- Department of Biochemistry and Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States.,Program in Chemical Biology , University of Massachusetts Medical School , 364 Plantation Street , Worcester , Massachusetts 01605 , United States
| |
Collapse
|
6
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Kim Y, Lee I, Jo Y, Kim N, Namgoong S. Acentriolar microtubule organization centers and Ran‐mediated microtubule formation pathways are both required in porcine oocytes. Mol Reprod Dev 2019; 86:972-983. [DOI: 10.1002/mrd.23172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Han Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - In‐Won Lee
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Yu‐Jin Jo
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Suk Namgoong
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| |
Collapse
|
8
|
Kubitscheck U, Siebrasse JP. Kinetics of transport through the nuclear pore complex. Semin Cell Dev Biol 2017; 68:18-26. [PMID: 28676422 DOI: 10.1016/j.semcdb.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Single molecule microscopy techniques allow to visualize the translocation of single transport receptors and cargo molecules or particles through nuclear pore complexes. These data indicate that cargo molecule import into the nucleus takes less than 10ms and nuclear export of messenger RNA (mRNA) particles takes 50-350ms, up to several seconds for extremely bulky particles. This review summarizes and discusses experimental results on transport of nuclear transport factor 2 (NTF2), importin β and mRNA particles. Putative regulatory functions of importin β for the NPC transport mechanism and the RNA helicase Dbp5 for mRNA export kinetics are discussed.
Collapse
Affiliation(s)
- Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms-University Bonn, Wegeler Str. 12, D-53115 Bonn, Germany.
| | - Jan-Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms-University Bonn, Wegeler Str. 12, D-53115 Bonn, Germany
| |
Collapse
|
9
|
Functional implication of the common evolutionary origin of nuclear pore complex and endomembrane management systems. Semin Cell Dev Biol 2017; 68:10-17. [PMID: 28473267 DOI: 10.1016/j.semcdb.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022]
Abstract
Nuclear pore complexes (NPCs) are the sole gateway between the cytoplasm and the nucleus serving both as stringent permeability barrier and active transporters between the two compartments of eukaryotic cells. Complete mechanistic understanding of how these two functions are implemented within one and the same transport machine has not been attained to date. Based on several lines of structural evidence, a hypothesis was proposed postulating that NPCs shares common evolutionary origin with other intracellular systems responsible for active management of endomembranes. In this review we attempt to summarize the evidence supporting this hypothesis. The structural data obtained so far is evaluated and supplemented with the analysis of the functional evidence. Based on this analysis, a model is proposed which integrates the knowledge from the field of NPC function with that obtained from other endomembrane management systems in an attempt to shed new light on the mechanism of the NPC active transport.
Collapse
|
10
|
Brasseur A, Bayat S, Chua XL, Zhang Y, Zhou Q, Low BC, He CY. The bi-lobe-associated LRRP1 regulates Ran activity in Trypanosoma brucei. J Cell Sci 2014; 127:4846-56. [PMID: 25217630 DOI: 10.1242/jcs.148015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cilia and flagella are conserved eukaryotic organelles important for motility and sensory. The RanGTPase, best known for nucleocytoplasmic transport functions, may also play a role in protein trafficking into the specialized flagellar/ciliary compartments, although the regulatory mechanisms controlling Ran activity at the flagellum remain unclear. The unicellular parasite Trypanosoma brucei contains a single flagellum necessary for cell movement, division and morphogenesis. Correct flagellum functions require flagellar attachment to the cell body, which is mediated by a specialized flagellum attachment zone (FAZ) complex that is assembled together with the flagellum during the cell cycle. We have previously identified the leucine-rich-repeat protein 1 LRRP1 on a bi-lobe structure at the proximal base of flagellum and FAZ. LRRP1 is essential for bi-lobe and FAZ biogenesis, consequently affecting flagellum-driven cell motility and division. Here, we show that LRRP1 forms a complex with Ran and a Ran-binding protein, and regulates Ran-GTP hydrolysis in T. brucei. In addition to mitotic inhibition, depletion of Ran inhibits FAZ assembly in T. brucei, supporting the presence of a conserved mechanism that involves Ran in the regulation of flagellum functions in an early divergent eukaryote.
Collapse
Affiliation(s)
- Anaïs Brasseur
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | - Shima Bayat
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | - Xiu Ling Chua
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | - Yu Zhang
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | | | - Boon Chuan Low
- Singapore Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Cynthia Y He
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| |
Collapse
|
11
|
Patil H, Saha A, Senda E, Cho KI, Haque M, Yu M, Qiu S, Yoon D, Hao Y, Peachey NS, Ferreira PA. Selective impairment of a subset of Ran-GTP-binding domains of ran-binding protein 2 (Ranbp2) suffices to recapitulate the degeneration of the retinal pigment epithelium (RPE) triggered by Ranbp2 ablation. J Biol Chem 2014; 289:29767-89. [PMID: 25187515 DOI: 10.1074/jbc.m114.586834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Retinal pigment epithelium (RPE) degeneration underpins diseases triggered by disparate genetic lesions, noxious insults, or both. The pleiotropic Ranbp2 controls the expression of intrinsic and extrinsic pathological stressors impinging on cellular viability. However, the physiological targets and mechanisms controlled by Ranbp2 in tissue homeostasis, such as RPE, are ill defined. We show that mice, RPE-cre::Ranbp2(-/-), with selective Ranbp2 ablation in RPE develop pigmentary changes, syncytia, hypoplasia, age-dependent centrifugal and non-apoptotic degeneration of the RPE, and secondary leakage of choriocapillaris. These manifestations are accompanied by the development of F-actin clouds, metalloproteinase-11 activation, deregulation of expression or subcellular localization of critical RPE proteins, atrophic cell extrusions into the subretinal space, and compensatory proliferation of peripheral RPE. To gain mechanistic insights into what Ranbp2 activities are vital to the RPE, we performed genetic complementation analyses of transgenic lines of bacterial artificial chromosomes of Ranbp2 harboring loss of function of selective Ranbp2 domains expressed in a Ranbp2(-/-) background. Among the transgenic lines produced, only Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-)-expressing mutations, which selectively impair binding of RBD2/3 (Ran-binding domains 2 and 3) of Ranbp2 to Ran-GTP, recapitulate RPE degeneration, as observed with RPE-cre::Ranbp2(-/-). By contrast, Tg(RBD2/3*-HA) expression rescues the degeneration of cone photoreceptors lacking Ranbp2. The RPE of RPE-cre::Ranbp2(-/-) and Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-) share proteostatic deregulation of Ran GTPase, serotransferrin, and γ-tubulin and suppression of light-evoked electrophysiological responses. These studies unravel selective roles of Ranbp2 and its RBD2 and RBD3 in RPE survival and functions. We posit that the control of Ran GTPase by Ranbp2 emerges as a novel therapeutic target in diseases promoting RPE degeneration.
Collapse
Affiliation(s)
| | - Arjun Saha
- From the Departments of Ophthalmology and
| | | | | | | | - Minzhong Yu
- the Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Sunny Qiu
- From the Departments of Ophthalmology and
| | - Dosuk Yoon
- From the Departments of Ophthalmology and
| | - Ying Hao
- From the Departments of Ophthalmology and
| | - Neal S Peachey
- the Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, the Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, and the Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Paulo A Ferreira
- From the Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina 27710,
| |
Collapse
|
12
|
Ran GTPase in nuclear envelope formation and cancer metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:323-51. [PMID: 24563355 DOI: 10.1007/978-1-4899-8032-8_15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107-Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
Collapse
|
13
|
Abstract
MicroRNAs (miRNAs) are a novel class of 17-23 nucleotide short, nonprotein-coding RNA molecules which have emerged to be key players in posttranscriptional gene regulation. In this chapter we give an in-depth review of the classic, canonical mammalian miRNA maturation pathway and discuss new, noncanonical alternatives such as the mirtron pathway which were recently described.
Collapse
Affiliation(s)
- Michael Sand
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Nagai M, Yoneda Y. Downregulation of the small GTPase ras-related nuclear protein accelerates cellular ageing. Biochim Biophys Acta Gen Subj 2013; 1830:2813-9. [PMID: 23160023 DOI: 10.1016/j.bbagen.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/26/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND The small GTPase Ran, Ras-related nuclear protein, plays important roles in multiple fundamental cellular functions such as nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation, by binding to either GTP or GDP as a molecular switch. Although it has been clinically demonstrated that Ran is highly expressed in multiple types of cancer cells and specimens, the physiological significance of Ran expression levels is unknown. METHODS During the long-term culture of normal mammalian cells, we found that the endogenous Ran level gradually reduced in a passage-dependent manner. To examine the physiological significance of Ran reduction, we first performed small interfering RNA (siRNA)-mediated abrogation of Ran in human diploid fibroblasts. RESULTS Ran-depleted cells showed several senescent phenotypes. Furthermore, we found that nuclear accumulation of importin alpha, which was also observed in cells treated with siRNA against CAS, a specific export factor for importin alpha, occurred in the Ran-depleted cells before the cells showed senescent phenotypes. Further, the CAS-depleted cells also exhibited cellular senescence. Indeed, importin alpha showed predominant nuclear localisation in a passage-dependent manner. CONCLUSIONS Reduction in Ran levels causes cytoplasmic decrease and nuclear accumulation of importin alpha leading to cellular senescence in normal cells. GENERAL SIGNIFICANCE The amount of intracellular Ran may be critically related to cell fate determination, such as malignant transformation and senescence. The cellular ageing process may proceed through gradual regression of Ran-dependent nucleocytoplasmic transport competency.
Collapse
Affiliation(s)
- Masahiro Nagai
- Biomolecular Dynamics Laboratory, Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
15
|
Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase. Virology 2013; 443:177-85. [PMID: 23711384 DOI: 10.1016/j.virol.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/28/2013] [Accepted: 05/02/2013] [Indexed: 11/21/2022]
Abstract
Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35-40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition.
Collapse
|
16
|
Patil H, Cho KI, Lee J, Yang Y, Orry A, Ferreira PA. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2. Open Biol 2013; 3:120183. [PMID: 23536549 PMCID: PMC3718338 DOI: 10.1098/rsob.120183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein–protein and protein–phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBDn= 1–4) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure–function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260 000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
17
|
Goryaynov A, Ma J, Yang W. Single-molecule studies of nucleocytoplasmic transport: from one dimension to three dimensions. Integr Biol (Camb) 2011; 4:10-21. [PMID: 22020388 DOI: 10.1039/c1ib00041a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, the bidirectional trafficking of proteins and genetic materials across the double-membrane nuclear envelope is mediated by nuclear pore complexes (NPCs). A highly selective barrier formed by the phenylalanine-glycine (FG)-nucleoporin (Nup) in the NPC allows for two transport modes: passive diffusion and transport receptor-facilitated translocation. Strict regulation of nucleocytoplasmic transport is crucial for cell survival, differentiation, growth and other essential activities. However, due to the limited knowledge of the native configuration of the FG-Nup barrier and the interactions between the transiting molecules and the barrier in the NPC, the precise nucleocytoplasmic transport mechanism remains unresolved. To refine the transport mechanism, single-molecule fluorescence microscopy methods have been employed to obtain the transport kinetics of individual fluorescent molecules through the NPC and to map the interactions between transiting molecules and the FG-Nup barrier. Important characteristics of nucleocytoplasmic transport, such as transport time, transport efficiency and spatial distribution of single transiting molecules in the NPC, have been obtained that could not be measured by either ensemble average methods or conventional electron microscopy. In this critical review, we discuss the development of various single-molecule techniques and their application to nucleocytoplasmic transport in vitro and in vivo. In particular, we highlight a recent advance from one-dimensional to three-dimensional single-molecule characterization of transport through the NPC and present a comprehensive understanding of the nucleocytoplasmic transport mechanism obtained by this new technical development (105 references).
Collapse
Affiliation(s)
- Alexander Goryaynov
- Department of Biological Sciences, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | |
Collapse
|
18
|
Ran-dependent nuclear export mediators: a structural perspective. EMBO J 2011; 30:3457-74. [PMID: 21878989 DOI: 10.1038/emboj.2011.287] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/25/2022] Open
Abstract
Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.
Collapse
|
19
|
Calcium regulation of nucleocytoplasmic transport. Protein Cell 2011; 2:291-302. [PMID: 21528351 DOI: 10.1007/s13238-011-1038-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022] Open
Abstract
Bidirectional trafficking of macromolecules between the cytoplasm and the nucleus is mediated by the nuclear pore complexes (NPCs) embedded in the nuclear envelope (NE) of eukaryotic cell. The NPC functions as the sole pathway to allow for the passive diffusion of small molecules and the facilitated translocation of larger molecules. Evidence shows that these two transport modes and the conformation of NPC can be regulated by calcium stored in the lumen of nuclear envelope and endoplasmic reticulum. However, the mechanism of calcium regulation remains poorly understood. In this review, we integrate data on the observations of calciumregulated structure and function of the NPC over the past years. Furthermore, we highlight challenges in the measurements of dynamic conformational changes and transient transport kinetics in the NPC. Finally, an innovative imaging approach, single-molecule superresolution fluorescence microscopy, is introduced and expected to provide more insights into the mechanism of calcium-regulated nucleocytoplasmic transport.
Collapse
|
20
|
Nagai M, Moriyama T, Mehmood R, Tokuhiro K, Ikawa M, Okabe M, Tanaka H, Yoneda Y. Mice lacking Ran binding protein 1 are viable and show male infertility. FEBS Lett 2011; 585:791-6. [PMID: 21310149 DOI: 10.1016/j.febslet.2011.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
The small GTPase Ran plays important roles in multiple aspects of cellular function. Maximal RanGAP activity is achieved with the aid of RanBP1 and/or presumably of RanBP2. Here, we show that RanBP1-knockout mice are unexpectedly viable, and exhibit male infertility due to a spermatogenesis arrest, presumably caused by down-regulation of RanBP2 during spermatogenesis. Indeed, siRNA-mediated depletion of RanBP2 caused severe cell death only in RanBP1-deficient MEFs, indicating that simultaneous depletion of RanBP1 and RanBP2 severely affects normal cell viability. Collectively, we conclude that the dramatic decrease in "RanBP" activity impairs germ cell viability and affects spermatogenesis decisively in RanBP1-knockout mice.
Collapse
Affiliation(s)
- Masahiro Nagai
- Biomolecular Dynamics Laboratory, Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Langer K, Dian C, Rybin V, Müller CW, Petosa C. Insights into the function of the CRM1 cofactor RanBP3 from the structure of its Ran-binding domain. PLoS One 2011; 6:e17011. [PMID: 21364925 PMCID: PMC3045386 DOI: 10.1371/journal.pone.0017011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/18/2011] [Indexed: 02/03/2023] Open
Abstract
Proteins bearing a leucine-rich nuclear export signal (NES) are exported from the nucleus by the transport factor CRM1, which forms a cooperative ternary complex with the NES-bearing cargo and with the small GTPase Ran. CRM1-mediated export is regulated by RanBP3, a Ran-interacting nuclear protein. Unlike the related proteins RanBP1 and RanBP2, which promote disassembly of the export complex in the cytosol, RanBP3 acts as a CRM1 cofactor, enhancing NES export by stabilizing the export complex in the nucleus. RanBP3 also alters the cargo selectivity of CRM1, promoting recognition of the NES of HIV-1 Rev and of other cargos while deterring recognition of the import adaptor protein Snurportin1. Here we report the crystal structure of the Ran-binding domain (RBD) from RanBP3 and compare it to RBD structures from RanBP1 and RanBP2 in complex with Ran and CRM1. Differences among these structures suggest why RanBP3 binds Ran with unusually low affinity, how RanBP3 modulates the cargo selectivity of CRM1, and why RanBP3 promotes assembly rather than disassembly of the export complex. The comparison of RBD structures thus provides an insight into the functional diversity of Ran-binding proteins.
Collapse
Affiliation(s)
- Karla Langer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Cyril Dian
- Institut de Biologie Structurale Jean-Pierre Ebel, Unité Mixte de Recherche 5075 (Commissariat à L'Energie Atomique et aux Energies Alternatives/Centre National de la Recherche Scientifique/Université Joseph Fourier), Grenoble, France
| | - Vladimir Rybin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Petosa
- Institut de Biologie Structurale Jean-Pierre Ebel, Unité Mixte de Recherche 5075 (Commissariat à L'Energie Atomique et aux Energies Alternatives/Centre National de la Recherche Scientifique/Université Joseph Fourier), Grenoble, France
| |
Collapse
|
22
|
Piccioli Z, McKee CH, Leszczynski A, Onder Z, Hannah EC, Mamoor S, Crosby L, Moroianu J. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors. Virology 2010; 407:100-9. [PMID: 20800258 PMCID: PMC2946476 DOI: 10.1016/j.virol.2010.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/13/2010] [Accepted: 07/28/2010] [Indexed: 12/13/2022]
Abstract
We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7(39-98) localized mostly to the nucleus. The GST-11E7 and GST-11cE7(39-98) were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.
Collapse
Affiliation(s)
| | | | | | - Zeynep Onder
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Erin C. Hannah
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Shahan Mamoor
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Lauren Crosby
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | | |
Collapse
|
23
|
|
24
|
Nam HW. GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 47 Suppl:S29-37. [PMID: 19885333 DOI: 10.3347/kjp.2009.47.s.s29] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 01/23/2023]
Abstract
The dense granule of Toxoplasma gondii is a secretory vesicular organelle of which the proteins participate in the modification of the parasitophorous vacuole (PV) and PV membrane for the maintenance of intracellular parasitism in almost all nucleated host cells. In this review, the archives on the research of GRA proteins are reviewed on the foci of finding GRA proteins, characterizing molecular aspects, usefulness in diagnostic antigen, and vaccine trials in addition to some functions in host-parasite interactions.
Collapse
Affiliation(s)
- Ho-Woo Nam
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea.
| |
Collapse
|
25
|
Dias SM, Cerione RA, Wilson KF. Unloading RNAs in the cytoplasm: an "importin" task. Nucleus 2009; 1:139-43. [PMID: 21326945 DOI: 10.4161/nucl.1.2.10919] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
The nuclear cap-binding complex (CBC), a heterodimer comprised of a 20 kDa subunit (CBP20) and an 80 kDa regulatory subunit (CBP80), binds to nascent RNA polymerase II transcripts and is important throughout different aspects of RNA metabolism. In a recent publication, using a combination of X-ray crystallographic information, mutagenesis studies, small-angle scattering experiments, analytical ultracentrifugation and in vivo assays, we presented evidence that importin-α and importin-β, two nucleocytoplasmic transport proteins, play key roles in regulating the binding of capped RNA by the CBC in cells. A model for how complexes between CBC and the importins cycle in and out of the nucleus and direct the proper positional binding and release of capped RNA is presented here and is discussed in light of recent publications.
Collapse
Affiliation(s)
- Sandra Mg Dias
- Department of Molecular Medicine, College of Veterinary Medicine, Ithaca, NY, USA
| | | | | |
Collapse
|
26
|
Dias SMG, Wilson KF, Rojas KS, Ambrosio ALB, Cerione RA. The molecular basis for the regulation of the cap-binding complex by the importins. Nat Struct Mol Biol 2009; 16:930-7. [PMID: 19668212 PMCID: PMC2782468 DOI: 10.1038/nsmb.1649] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/02/2009] [Indexed: 11/23/2022]
Abstract
The binding of capped RNAs to the cap-binding complex (CBC) in the nucleus, and their dissociation from the CBC in the cytosol, represent essential steps in RNA processing. Here we show how the nucleocytoplasmic transport proteins importin-alpha and importin-beta have key roles in regulating these events. As a first step toward understanding the molecular basis for this regulation, we determined a 2.2-A resolution X-ray structure for a CBC-importin-alpha complex that provides a detailed picture for how importin-alpha binds to the CBP80 subunit of the CBC. Through a combination of biochemical studies, X-ray crystallographic information and small-angle scattering experiments, we then determined how importin-beta binds to the CBC through its CBP20 subunit. Together, these studies enable us to propose a model describing how importin-beta stimulates the dissociation of capped RNA from the CBC in the cytosol following its nuclear export.
Collapse
Affiliation(s)
- Sandra M G Dias
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|
27
|
Ptak C, Anderson AM, Scott RJ, Van de Vosse D, Rogers RS, Sydorskyy Y, Aitchison JD, Wozniak RW. A role for the karyopherin Kap123p in microtubule stability. Traffic 2009; 10:1619-34. [PMID: 19761543 DOI: 10.1111/j.1600-0854.2009.00978.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several components of the nuclear transport machinery play a role in mitotic spindle assembly in higher eukaryotes. To further investigate the role of this family of proteins in microtubule function, we screened for mutations in Saccharomyces cerevisiae that confer sensitivity to microtubule-destabilizing drugs. One mutant exhibiting this phenotype lacked the gene encoding the karyopherin Kap123p. Analysis of kap123Delta cells revealed that the drug sensitivity was caused by a defect in microtubule stability and/or assembly. In support of this idea, we demonstrated genetic interactions between the kap123Delta mutation and mutated alleles of genes encoding alpha-tubulins and factors controlling microtubule dynamics. Moreover, kap123Delta cells exhibit defects in spindle structure and dynamics as well as nuclear positioning defects during mitosis. Cultures of kap123Delta strains are enriched for mononucleated large-budded cells often containing short spindles and nuclei positioned away from the budneck, phenotypes indicative of defects in both cytoplasmic and nuclear microtubules. Finally, we identified a gene, CAJ1, which when deleted in combination with KAP123 exacerbated the microtubule-related defects of the kap123Delta mutants. We propose that Kap123p and Caj1p, a member of the Hsp40 family of proteins, together play an essential role in normal microtubule function.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dallol A, Hesson LB, Matallanas D, Cooper WN, O'Neill E, Maher ER, Kolch W, Latif F. RAN GTPase Is a RASSF1A Effector Involved in Controlling Microtubule Organization. Curr Biol 2009; 19:1227-32. [DOI: 10.1016/j.cub.2009.05.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 12/21/2022]
|
29
|
Abstract
MicroRNAs (miRNA) are small RNAs that regulate the translation of thousands of message RNAs and play a profound role in mammalian biology. Over the past 5 years, significant advances have been made towards understanding the pathways that generate miRNAs and the mechanisms by which miRNAs exert their regulatory functions. An emerging theme is that miRNAs are both generated by and utilized by large and complex macromolecular assemblies. Here, we review the biology of mammalian miRNAs with a focus on the macromolecular complexes that generate and control the biogenesis of miRNAs.
Collapse
Affiliation(s)
- Pick-Wei Lau
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
30
|
Khacho M, Mekhail K, Pilon-Larose K, Pause A, Côté J, Lee S. eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol Biol Cell 2008; 19:5296-308. [PMID: 18799616 DOI: 10.1091/mbc.e08-06-0562] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cytoplasmic translation factor eEF1A has been implicated in the nuclear export of tRNA species in lower eukaryotes. Here we demonstrate that eEF1A plays a central role in nuclear export of proteins in mammalian cells. TD-NEM (transcription-dependent nuclear export motif), a newly characterized nuclear export signal, mediates efficient nuclear export of several proteins including the von Hippel-Lindau (VHL) tumor suppressor and the poly(A)-binding protein (PABP1) in a manner that is dependent on ongoing RNA polymerase II (RNA PolII)-dependent transcription. eEF1A interacts specifically with TD-NEM of VHL and PABP1 and disrupting this interaction, by point mutations of key TD-NEM residues or treatment with actinomycin D, an inhibitor of RNA PolII-dependent transcription, prevents assembly and nuclear export. siRNA-induced knockdown or antibody-mediated depletion of eEF1A prevents in vivo and in vitro nuclear export of TD-NEM-containing proteins. Nuclear retention experiments and inhibition of the Exportin-5 pathway suggest that eEF1A stimulates nuclear export of proteins from the cytoplasmic side of the nuclear envelope, without entering the nucleus. Together, these data identify a role for eEF1A, a cytoplasmic mediator of tRNA export in yeast, in the nuclear export of proteins in mammalian cells. These results also provide a link between the translational apparatus and subcellular trafficking machinery demonstrating that these two central pathways in basic metabolism can act cooperatively.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| | | |
Collapse
|
32
|
Ahn HJ, Kim S, Kim HE, Nam HW. Interactions between secreted GRA proteins and host cell proteins across the paratitophorous vacuolar membrane in the parasitism of Toxoplasma gondii. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 44:303-12. [PMID: 17170572 PMCID: PMC2559129 DOI: 10.3347/kjp.2006.44.4.303] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interactions between GRA proteins of dense granules in Toxoplasma gondii and host cell proteins were analyzed by yeast two-hybrid technique. The cMyc-GRA fusion proteins expressed from pGBKT7 plasmid in Y187 yeast were bound to host cell proteins from pGADT7-Rec-HeLa cDNA library transformed to AH109 yeast by mating method. By the selection procedures, a total of 939 colonies of the SD/-AHLT culture, 348 colonies of the X-alpha-gal positive and PCR, 157 colonies of the X-beta-gal assay were chosen for sequencing the cDNA and finally 90 colonies containing ORF were selected to analyze the interactions. GRA proteins interacted with a variety of host cell proteins such as enzymes, structural and functional proteins of organellar proteins of broad spectrum. Several specific bindings of each GRA protein to host proteins were discussed presumptively the role of GRA proteins after secreting into the parasitophorous vacuoles (PV) and the PV membrane in the parasitism of this parasite.
Collapse
Affiliation(s)
- Hye-Jin Ahn
- Department of Parasitology and the Catholic Institute of Parasitic Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | |
Collapse
|
33
|
Abstract
In eukaryotic cells, segregation of DNA replication and RNA biogenesis in the nucleus and protein synthesis in the cytoplasm poses the requirement of transporting thousands of macromolecules between the two cellular compartments. Transport between nucleus and cytoplasm is mediated by soluble receptors that recognize specific cargoes and carry them through the nuclear pore complex (NPC), the sole gateway between the two compartments at interphase. Nucleocytoplasmic transport is specific not only in terms of cargo recognition, but also in terms of directionality, with nuclear proteins imported into the nucleus and RNAs exported from it. How is directionality achieved? How can the receptors be both specific and versatile in recognizing a multitude of cargoes? And how can their interaction with NPCs allow fast translocation? We describe the molecular mechanisms underlying nucleocytoplasmic transport as they have been revealed by structural studies of the receptors and regulators in different steps of transport cycles.
Collapse
Affiliation(s)
- Atlanta Cook
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
34
|
Abstract
Although many components and reaction steps necessary for bidirectional transport across the nuclear envelope (NE) have been characterized, the mechanism and control of cargo migration through nuclear pore complexes (NPCs) remain poorly understood. Single-molecule fluorescence microscopy was used to track the movement of cargos before, during, and after their interactions with NPCs. At low importin β concentrations, about half of the signal-dependent cargos that interacted with an NPC were translocated across the NE, indicating a nuclear import efficiency of ∼50%. At high importin β concentrations, the import efficiency increased to ∼80% and the transit speed increased approximately sevenfold. The transit speed and import efficiency of a signal-independent cargo was also increased by high importin β concentrations. These results demonstrate that maximum nucleocytoplasmic transport velocities can be modulated by at least ∼10-fold by the importin β concentration and therefore suggest a potential mechanism for regulating the speed of cargo traffic across the NE.
Collapse
Affiliation(s)
- Weidong Yang
- Department of Molecular and Cellular Medicine, The Texas A&M University System Health Science Center, College Station, TX 77843, USA
| | | |
Collapse
|
35
|
Klucevsek K, Daley J, Darshan MS, Bordeaux J, Moroianu J. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein. Virology 2006; 352:200-8. [PMID: 16733063 DOI: 10.1016/j.virol.2006.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/21/2006] [Accepted: 04/06/2006] [Indexed: 11/21/2022]
Abstract
We have investigated the nuclear import strategies of high-risk HPV18 L2 minor capsid protein. HPV18 L2 interacts with Kap alpha2 adapter, and Kap beta2 and Kap beta3 nuclear import receptors. Moreover, binding of RanGTP to either Kap beta2 or Kap beta3 inhibits their interaction with L2, suggesting that these Kap beta/L2 complexes are import competent. Mapping studies show that HPV18 L2 contains two NLSs: in the N-terminus (nNLS) and in the C-terminus (cNLS), both of which can independently mediate nuclear import. Both nNLS and cNLS form a complex with Kap alpha2beta1 heterodimer and mediate nuclear import via a classical pathway. The nNLS is also essential for the interaction of HPV18 L2 with Kap beta2 and Kap beta3. Interestingly, both nNLS and cNLS interact with the viral DNA and this DNA binding occurs without nucleotide sequence specificity. Together, the data suggest that HPV18 L2 can interact via its NLSs with several Kaps and the viral DNA and may enter the nucleus via multiple import pathways mediated by Kap alpha2beta1 heterodimers, Kap beta2 and Kap beta3.
Collapse
Affiliation(s)
- K Klucevsek
- Biology Department, Boston College, Higgins Hall, Room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
36
|
Silverman-Gavrila RV, Wilde A. Ran is required before metaphase for spindle assembly and chromosome alignment and after metaphase for chromosome segregation and spindle midbody organization. Mol Biol Cell 2006; 17:2069-80. [PMID: 16481399 PMCID: PMC1415283 DOI: 10.1091/mbc.e05-10-0991] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Ran pathway has been shown to have a role in spindle assembly. However, the extent of the role of the Ran pathway in mitosis in vivo is unclear. We report that perturbation of the Ran pathway disrupted multiple steps of mitosis in syncytial Drosophila embryos and uncovered new mitotic processes that are regulated by Ran. During the onset of mitosis, the Ran pathway is required for the production, organization, and targeting of centrosomally nucleated microtubules to chromosomes. However, the role of Ran is not restricted to microtubule organization, because Ran is also required for the alignment of chromosomes at the metaphase plate. In addition, the Ran pathway is required for postmetaphase events, including chromosome segregation and the assembly of the microtubule midbody. The Ran pathway mediates these mitotic events, in part, by facilitating the correct targeting of the kinase Aurora A and the kinesins KLP61F and KLP3A to spindles.
Collapse
|
37
|
An J, Yuan Q, Wang C, Liu L, Tang K, Tian HY, Jing NH, Zhao FK. Differential display of proteins involved in the neural differentiation of mouse embryonic carcinoma P19 cells by comparative proteomic analysis. Proteomics 2005; 5:1656-68. [PMID: 15789344 DOI: 10.1002/pmic.200401049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mouse embryonic carcinoma P19 cell has been used extensively as a model to study molecular mechanisms of neural differentiation in vitro. After retinoic acid (RA) treatment and aggregation, P19 cells can differentiate into neural cells including neurons and glial cells. In this study, comparative proteomic analysis is utilized to approach the protein profiles associated with the RA-induced neural differentiation of P19 cells. Image analysis of silver stained two-dimensional gels indicated that 28 protein spots had significantly differential expression patterns in both quantity and quality. With mass spectrometry analysis and protein functional exploration, many proteins demonstrated an association with distinct aspects of neural differentiation. These proteins were gag polyprotein, rod cGMP-specific 3',5'-cyclic phosphodiesterase, 53 kDa BRG1-associated factor A, N-myc downstream regulated 1, Vitamin D receptor associated factor 1, stromal cell derived factor receptor 1, phosphoglycerate mutase, Ran-specific GTPase-activating protein, and retinoic acid (RA)-binding protein. While some cytoskeleton-related proteins such as beta cytoskeletal actin, gamma-actin, actin-related protein 1, tropomyosin 1, and cofilin 1 are related to cell migration and aggregation, other proteins have shown a relationship with distinct aspects of neural differentiation including energy production and utilization, protein synthesis and folding, cell signaling transduction, and self-protection. The differential expression patterns of these 28 proteins indicate their different roles during the neural differentiation of P19 cells. As an initial step toward unveiling the regulations involved in the commitment of pluripotent cells to a neural fate, information from this study may be helpful to uncover the molecular mechanisms of neural differentiation.
Collapse
Affiliation(s)
- Jie An
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bibak N, Paul RMJ, Freymann DM, Yaseen NR. Purification of RanGDP, RanGTP, and RanGMPPNP by ion exchange chromatography. Anal Biochem 2005; 333:57-64. [PMID: 15351280 DOI: 10.1016/j.ab.2004.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Indexed: 11/29/2022]
Abstract
Ran is a small GTPase that cycles between a guanosine diphosphate (GDP)-bound form (RanGDP) and a guanosine triphosphate (GTP)-bound form (RanGTP) and plays important roles in nuclear transport and mitosis. For studies of Ran function and its interactions with partner proteins, pure RanGDP and RanGTP complexes are critical. Ran complexed with the nonhydrolyzable GTP analog, GMPPNP (RanGMPPNP), is used instead of RanGTP when inhibition of hydrolysis is required. In this study, we demonstrate that the binding of Ran to a UNO Q ion exchange column is remarkably sensitive to small shifts in MgCl(2) concentration, and we use this property to purify recombinant RanGTP, RanGMPPNP, and RanGDP complexes. At 10 mM MgCl(2), Ran was found predominantly in the flow-through and, thus, was separated from the vast majority of bacterial proteins. After reducing the concentration of MgCl(2) to 5 mM, further purification of RanGTP, RanGMPPNP, and RanGDP was achieved by loading onto ion exchange columns and elution with an NaCl gradient. Purity of the resulting preparations was confirmed by releasing the bound nucleotide and checking it against a known nucleotide by high-performance liquid chromatography (HPLC). To further confirm the purity and function of the Ran preparations, appropriate protein-binding, enzymatic, and nuclear import assays were carried out. These methods should facilitate studies of cellular processes involving Ran by providing pure functional Ran-nucleotide complexes.
Collapse
Affiliation(s)
- Niloufar Bibak
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
39
|
Dickmanns A, Ficner R. Role of the 5’-cap in the biogenesis of spliceosomal snRNPs. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Abstract
Importin beta, once thought to be exclusively a nuclear transport receptor, is emerging as a global regulator of diverse cellular functions. Importin beta acts positively in multiple interphase roles: in nuclear import, as a chaperone for highly charged nuclear proteins, and as a potential motor adaptor for movement along microtubules. In contrast, importin beta plays a negative regulatory role in mitotic spindle assembly, centrosome dynamics, nuclear membrane formation, and nuclear pore assembly. In most of these, importin beta is counteracted by its regulator, Ran-GTP. In light of this, the recent discovery of Ran's involvement in spindle checkpoint control suggested a potential new arena for importin beta action, although it is also possible that one of importin beta's relatives, the karyopherin family of proteins, manages this checkpoint. Lastly, importin beta plays a role in transducing damage signals from the axons of injured neurons back to the cell body.
Collapse
Affiliation(s)
- Amnon Harel
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California, San Diego, 9500 Gilman Drive, Room 2124A, Pacific Hall, La Jolla, CA 92093, USA
| | | |
Collapse
|
41
|
Fay A, Yutzy WH, Roden RBS, Moroianu J. The positively charged termini of L2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and DNA binding. J Virol 2004; 78:13447-54. [PMID: 15564455 PMCID: PMC533947 DOI: 10.1128/jvi.78.24.13447-13454.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/29/2004] [Indexed: 11/20/2022] Open
Abstract
During the papillomavirus (PV) life cycle, the L2 minor capsid protein enters the nucleus twice: in the initial phase after entry of virions into cells and in the productive phase to mediate encapsidation of the newly replicated viral genome. Therefore, we investigated the interactions of the L2 protein of bovine PV type 1 (BPV1) with the nuclear import machinery and the viral DNA. We found that BPV1 L2 bound to the karyopherin alpha2 (Kap alpha2) adapter and formed a complex with Kap alpha2beta1 heterodimers. Previous data have shown that the positively charged termini of BPV1 L2 are required for BPV1 infection after the binding of the virions to the cell surface. We determined that these BPV1 L2 termini function as nuclear localization signals (NLSs). Both the N-terminal NLS (nNLS) and the C-terminal NLS (cNLS) interacted with Kap alpha2, formed a complex with Kap alpha2beta1 heterodimers, and mediated nuclear import via a Kap alpha2beta1 pathway. Interestingly, the cNLS was also the major DNA binding site of BPV1 L2. Consistent with the promiscuous DNA encapsidation by BPV1 pseudovirions, this DNA binding occurred without nucleotide sequence specificity. Moreover, an L2 mutant encoding a scrambled version of the cNLS, which supports production of virions, rescued the DNA binding but not the Kap alpha2 interaction. These data support a model in which BPV1 L2 functions as an adapter between the viral DNA via the cNLS and the Kaps via the nNLS and facilitates nuclear import of the DNA during infection.
Collapse
Affiliation(s)
- Alyson Fay
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
42
|
Darshan MS, Lucchi J, Harding E, Moroianu J. The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J Virol 2004; 78:12179-88. [PMID: 15507604 PMCID: PMC525100 DOI: 10.1128/jvi.78.22.12179-12188.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The L2 minor capsid proteins enter the nucleus twice during viral infection: in the initial phase after virion disassembly and in the productive phase when, together with the L1 major capsid proteins, they assemble the replicated viral DNA into virions. In this study we investigated the interactions between the L2 protein of high-risk human papillomavirus type 16 (HPV16) and nuclear import receptors. We discovered that HPV16 L2 interacts directly with both Kapbeta(2) and Kapbeta(3). Moreover, binding of Ran-GTP to either Kapbeta(2) or Kapbeta(3) inhibits its interaction with L2, suggesting that the Kapbeta/L2 complex is import competent. In addition, we found that L2 forms a complex with the Kapalpha(2)beta(1) heterodimer via interaction with the Kapalpha(2) adapter. In agreement with the binding data, nuclear import of L2 in digitonin-permeabilized cells could be mediated by either Kapalpha(2)beta(1) heterodimers, Kapbeta(2), or Kapbeta(3). Mapping studies revealed that HPV16 L2 contains two nuclear localization signals (NLSs), in the N terminus (nNLS) and C terminus (cNLS), that could mediate its nuclear import. Together the data suggest that HPV16 L2 interacts via its NLSs with a network of karyopherins and can enter the nucleus via several import pathways mediated by Kapalpha(2)beta(1) heterodimers, Kapbeta(2), and Kapbeta(3).
Collapse
Affiliation(s)
- Medha S Darshan
- Biology Department, Boston College, Higgins Hall Room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
43
|
Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 2004; 118:187-202. [PMID: 15260989 DOI: 10.1016/j.cell.2004.06.026] [Citation(s) in RCA: 328] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/08/2004] [Accepted: 06/11/2004] [Indexed: 11/16/2022]
Abstract
In cells lacking centrosomes, such as those found in female meiosis, chromosomes must nucleate and stabilize microtubules in order to form a bipolar spindle. Here we report the identification of Dasra A and Dasra B, two new components of the vertebrate chromosomal passenger complex containing Incenp, Survivin, and the kinase Aurora B, and demonstrate that this complex is required for chromatin-induced microtubule stabilization and spindle formation. The failure of microtubule stabilization caused by depletion of the chromosomal passenger complex was rescued by codepletion of the microtubule-depolymerizing kinesin MCAK, whose activity is negatively regulated by Aurora B. By contrast, we present evidence that the Ran-GTP pathway of chromatin-induced microtubule nucleation does not require the chromosomal passenger complex, indicating that the mechanisms of microtubule assembly by these two pathways are distinct. We propose that the chromosomal passenger complex regulates local MCAK activity to permit spindle formation via stabilization of chromatin-associated microtubules.
Collapse
Affiliation(s)
- Srinath C Sampath
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
44
|
Solomou EE, Sfikakis PP, Kotsi P, Papaioannou M, Karali V, Vervessou E, Hoffbrand AV, Panayiotidis P. 13q deletion in chronic lymphocytic leukemia: characterization of E4.5, a novel chromosome condensation regulator-like guanine nucleotide exchange factor. Leuk Lymphoma 2004; 44:1579-85. [PMID: 14565662 DOI: 10.3109/10428190309178782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the characterization of a new gene (E4.5) that maps at chromosome band 13q14.3, a chromosomal area frequently deleted in chronic lymphocytic leukemia (CLL) and in other lymphoid malignancies. E4.5 gene encodes for a 4 kb mRNA expressed in various tissues and has an open reading frame of 531 amino acids. The predicted E4.5 protein shows strong homology with the human regulator of chromosome condensation (RCC1) protein, the principal GTP exchange factor for Ran protein. The E4.5 protein contains a BTB domain in its N-terminus, a protein-protein interaction motif. Therefore, we propose that E4.5 is a new member of the RCC1-related guanine nucleotide exchange factor (GEF) family with potent interaction with other proteins and unknown function. Until now, no tumor suppressor genes have been mapped in the 13q14.3 minimal deleted region (MDR) in patients with CLL. It has been proposed that loss of the 13q14.3 MDR may contribute to lymphoid neoplasia by altering the expression/function of genes located on 13q14.3 outside the MDR. The E4.5 is one of these genes with a potential role in the pathogenesis of CLL.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Chromosome Deletion
- Chromosomes, Human, Pair 13/genetics
- DNA, Complementary/genetics
- Genes, Tumor Suppressor
- Guanine Nucleotide Exchange Factors/chemistry
- Guanine Nucleotide Exchange Factors/deficiency
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/physiology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Molecular Sequence Data
- Multigene Family
- Open Reading Frames/genetics
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- E E Solomou
- First Department of Propedeutic Medicine, University of Athens Medical School, Laikon General Hospital, 17, Agiou Thoma St., Goudi, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Angeline M, Merle E, Moroianu J. The E7 oncoprotein of high-risk human papillomavirus type 16 enters the nucleus via a nonclassical Ran-dependent pathway. Virology 2004; 317:13-23. [PMID: 14675621 DOI: 10.1016/j.virol.2003.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
E7, the major transforming protein of high-risk human papillomavirus (HPV), type 16, binds and inactivates the retinoblastoma protein (pRb), and the Rb-related proteins p107 and p130. HPV16 E7 is a nuclear protein lacking a classical basic nuclear localization signal. In this study we investigated the nuclear import of HPV16 E7 oncoprotein in digitonin-permeabilized HeLa cells. HPV16 E7 nuclear import was independent of pRb, as an E7(DeltaDLYC) variant defective in pRb binding was imported into the nuclei of digitonin-permeabilized cells as efficiently as wild-type E7 in the presence of exogenous cytosol. Interestingly, we discovered that HPV16 E7 is imported into the nuclei via a novel pathway different from those mediated by Kap alpha2beta1 heterodimers, Kap beta1, or Kap beta2. Nuclear accumulation of E7 required Ran and was not inhibited by the RanG19V-GTP variant, an inhibitor of Kap beta mediated import pathways. Together the data suggest that HPV16 E7 translocates through the nuclear pores via a nonclassical Ran-dependent pathway, independent of the main cytosolic Kap beta import receptors.
Collapse
Affiliation(s)
- Michael Angeline
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
46
|
Seewald MJ, Kraemer A, Farkasovsky M, Körner C, Wittinghofer A, Vetter IR. Biochemical characterization of the Ran-RanBP1-RanGAP system: are RanBP proteins and the acidic tail of RanGAP required for the Ran-RanGAP GTPase reaction? Mol Cell Biol 2003; 23:8124-36. [PMID: 14585972 PMCID: PMC262373 DOI: 10.1128/mcb.23.22.8124-8136.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RanBP type proteins have been reported to increase the catalytic efficiency of the RanGAP-mediated GTPase reaction on Ran. Since the structure of the Ran-RanBP1-RanGAP complex showed RanBP1 to be located away from the active site, we reinvestigated the reaction using fluorescence spectroscopy under pre-steady-state conditions. We can show that RanBP1 indeed does not influence the rate-limiting step of the reaction, which is the cleavage of GTP and/or the release of product P(i). It does, however, influence the dynamics of the Ran-RanGAP interaction, its most dramatic effect being the 20-fold stimulation of the already very fast association reaction such that it is under diffusion control (4.5 x 10(8) M(-1) s(-1)). Having established a valuable kinetic system for the interaction analysis, we also found, in contrast to previous findings, that the highly conserved acidic C-terminal end of RanGAP is not required for the switch-off reaction. Rather, genetic experiments in Saccharomyces cerevisiae demonstrate a profound effect of the acidic tail on microtubule organization during mitosis. We propose that the acidic tail of RanGAP is required for a process during mitosis.
Collapse
Affiliation(s)
- Michael J Seewald
- Max-Planck Institut für Molekulare Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Séraphin B. Identification of transiently interacting proteins and of stable protein complexes. ADVANCES IN PROTEIN CHEMISTRY 2003; 61:99-117. [PMID: 12461822 DOI: 10.1016/s0065-3233(02)61003-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
48
|
Kim SH, Roux SJ. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization. PLANTA 2003; 216:1047-1052. [PMID: 12687374 DOI: 10.1007/s00425-002-0959-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 11/16/2002] [Indexed: 05/24/2023]
Abstract
Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
49
|
Anway MD, Li Y, Ravindranath N, Dym M, Griswold MD. Expression of testicular germ cell genes identified by differential display analysis. JOURNAL OF ANDROLOGY 2003; 24:173-84. [PMID: 12634303 DOI: 10.1002/j.1939-4640.2003.tb02660.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) we identified transcripts encoding for the RNA helicase mDEAH9, Ran binding protein 5 (RanBP5), and 3 novel complementary DNAs designated GC3, GC12, and GC14 in developing testicular germ cells. Sources of RNA for the initial DDRT-PCR screen were purified mouse type A spermatogonia, adult mouse wild-type testis, and W/W(v) mutant mouse testis. We identified cDNA fragments for mDEAH9, RanBP5, GC3, GC12, and GC14 in testis and type A spermatogonia samples from wild-type mice, but not in samples from the W/W(v) mouse testis. These same transcripts were absent in Northern blots of testis RNA from mice treated with busulfan 30 days prior, but were present in testis RNA from wild-type mice at 5, 15, 25, and 40 days of age. The mDEAH9 gene was expressed in many tissues, whereas RanBP5 and GC12 genes were expressed predominantly in the testis with much lower expression in other tissues. The expression of GC3 and GC14 were limited to the testis as evidenced by Northern blot and RT-PCR analyses. The mDEAH9 transcript was not detected in cultured interstitial cells but was found at low levels in cultured immature Sertoli cells, whereas the RanBP5, GC3, GC12, and GC14 transcripts were not detected in either cultured testicular interstitial cells or cultured Sertoli cells. RT-PCR analyses of isolated spermatogonia, pachytene spermatocytes, and round spermatids revealed that mDEAH9, RanBP5, GC3, GC12, and GC14 genes were expressed in all 3 cellular populations. In situ hybridization analyses of testis samples from 40-day-old mice localized expression of mDEAH9, RanBP5, GC3, GC12, and GC14 to the seminiferous tubules. RanBP5 expression appeared to be regulated during the cycle of the seminiferous epithelium, with the highest expression in stages III through VII. Expression of GC14 was greatest in the meiotic germ cell populations.
Collapse
Affiliation(s)
- Matthew D Anway
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
50
|
Le Roux LG, Moroianu J. Nuclear entry of high-risk human papillomavirus type 16 E6 oncoprotein occurs via several pathways. J Virol 2003; 77:2330-7. [PMID: 12551970 PMCID: PMC141087 DOI: 10.1128/jvi.77.4.2330-2337.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The E6 oncoprotein of high-risk human papillomavirus type 16 (HPV16) interacts with several nuclear transcription factors and coactivators in addition to cytoplasmic proteins, suggesting that nuclear import of HPV16 E6 plays a role in the cellular transformation process. In this study we have investigated the nuclear import pathways of HPV16 E6 in digitonin-permeabilized HeLa cells. We found that HPV16 E6 interacted with the karyopherin (Kap) alpha2 adapter and could enter the nucleus via a classical Kap alpha2beta1-mediated pathway. Interestingly, HPV16 E6 also interacted, via its basic nuclear localization signal (NLS) located at the C terminus, with both Kap beta1 and Kap beta2 import receptors. Binding of RanGTP to these Kap betas inhibited their interaction with HPV16 E6 NLS. In agreement with these binding data, nuclear import of the HPV16 E6 oncoprotein in digitonin-permeabilized HeLa cells could be mediated by either Kap beta1 or Kap beta2. Nuclear import via these pathways required RanGDP and was independent of GTP hydrolysis by Ran. Significantly, an E6(R124G) mutant had reduced nuclear import activity, and the E6 deletion mutant lacking (121)KKQR(124) was not imported into the nucleus. The data reveal that the HPV16 E6 oncoprotein interacts via its C-terminal NLS with several karyopherins and exploits these interactions to enter the nucleus of host cells via multiple pathways.
Collapse
Affiliation(s)
- Lucia G Le Roux
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | | |
Collapse
|