1
|
Yang J, Zhong B, Yang L, Luo Z, Jia L, Zheng K, Tang W, Shang W, Jiang X, Lyu Z, Gai Q, Chen J, Chen G. Ulp1 Regulates Cell Proliferation Through INO1 in Pichia pastoris. Genes (Basel) 2024; 15:1459. [PMID: 39596659 PMCID: PMC11593471 DOI: 10.3390/genes15111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ulp1 is a vital regulator of the cell cycle, with its absence leading to G2/M phase arrest in Saccharomyces cerevisiae. This study aims to investigate the role of Ulp1 in cell cycle regulation in Pichia pastoris and to elucidate its mechanisms of action, particularly through the modulation of the gene INO1. METHODS We generated Ulp1 knockout strains in Pichia pastoris using the FLP-FRT system and performed RNA sequencing (RNA-seq) to analyze gene expression changes. We assessed cell proliferation in Ulp1 knockout and INO1 overexpressing strains, as well as the effects of inositol supplementation. RESULTS Our findings revealed significant downregulation of INO1 and other genes in Ulp1 knockout strains. Importantly, overexpression of INO1 restored cell proliferation, indicating that Ulp1 regulates this process via INO1. Notably, supplementation with exogenous inositol did not rescue cell proliferation, suggesting that the enzymatic activity of INO1 is not required for Ulp1's regulatory function. CONCLUSIONS This study demonstrates that Ulp1 modulates cell proliferation in Pichia pastoris through INO1, independent of its enzymatic activity. These insights enhance our understanding of Ulp1's role in cell cycle regulation and open new avenues for exploring the molecular mechanisms governing yeast cell division. Further investigations are warranted to delineate the intricate regulatory pathways involved in this process.
Collapse
Affiliation(s)
- Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Bo Zhong
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Lan Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Wenjie Tang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Wenna Shang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
| | - Qijing Gai
- Zhejiang Q-Peptide Biotechnology Co., Ltd., Shaoxing 312366, China;
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
- Zhejiang Q-Peptide Biotechnology Co., Ltd., Shaoxing 312366, China;
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
2
|
Becchetti A. Interplay of Ca 2+ and K + signals in cell physiology and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:15-46. [PMID: 38007266 DOI: 10.1016/bs.ctm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
3
|
Nugues C, Helassa N, Haynes LP. Mitosis, Focus on Calcium. Front Physiol 2022; 13:951979. [PMID: 35784871 PMCID: PMC9247304 DOI: 10.3389/fphys.2022.951979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied. This regulation is designed to ensure accurate segregation of chromosomes into each new daughter cell since errors in this process can lead to genetic imbalances, aneuploidy, that can lead to diseases including cancer. Understanding how mitosis operates and the molecular mechanisms that ensure its fidelity are therefore not only of significant intellectual value but provide unique insights into disease pathology. The purpose of this review is to revisit historical evidence that mitosis can be influenced by the ubiquitous second messenger calcium and to discuss this in the context of new findings revealing exciting new information about its role in cell division.
Collapse
Affiliation(s)
- Charlotte Nugues
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Zhao H, Pan X. Mitochondrial Ca 2+ and cell cycle regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:171-207. [PMID: 34253295 DOI: 10.1016/bs.ircmb.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been demonstrated for more than 40 years that intracellular calcium (Ca2+) controls a variety of cellular functions, including mitochondrial metabolism and cell proliferation. Cytosolic Ca2+ fluctuation during key stages of the cell cycle can lead to mitochondrial Ca2+ uptake and subsequent activation of mitochondrial oxidative phosphorylation and a range of signaling. However, the relationship between mitochondrial Ca2+ and cell cycle progression has long been neglected because the molecule responsible for Ca2+ uptake has been unknown. Recently, the identification of the mitochondrial Ca2+ uniporter (MCU) has led to key advances. With improved Ca2+ imaging and detection, effects of MCU-mediated mitochondrial Ca2+ have been observed at different stages of the cell cycle. Elevated Ca2+ signaling boosts ATP and ROS production, remodels cytosolic Ca2+ pathways and reprograms cell fate-determining networks. These findings suggest that manipulating mitochondrial Ca2+ signaling may serve as a potential strategy in the control of many crucial biological events, such as tumor development and cell division in hematopoietic stem cells (HSCs). In this review, we summarize the current understanding of the role of mitochondrial Ca2+ signaling during different stages of the cell cycle and highlight the potential physiological and pathological significance of mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
- Haixin Zhao
- State Key Laboratory of Experimental Haematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
5
|
Lagos-Cabré R, Ivanova A, Taylor CW. Ca 2+ Release by IP 3 Receptors Is Required to Orient the Mitotic Spindle. Cell Rep 2020; 33:108483. [PMID: 33326774 PMCID: PMC7758162 DOI: 10.1016/j.celrep.2020.108483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
The mitotic spindle distributes chromosomes evenly to daughter cells during mitosis. The orientation of the spindle, guided by internal and external cues, determines the axis of cell division and thereby contributes to tissue morphogenesis. Progression through mitosis requires local Ca2+ signals at critical steps, and because store-operated Ca2+ entry is inhibited during mitosis, those signals probably require Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs). In cells without IP3Rs, astral microtubules around the daughter centrosome are shorter than those at the mother centrosome, and the mitotic spindle fails to align with the substratum during metaphase. The misalignment is due to the spindle ineffectively detecting internal cues rather than a failure of cells to recognize the substratum. Expression of type 3 IP3R is sufficient to rescue spindle alignment, but only if the IP3R has a functional pore. We conclude that Ca2+ signals evoked by IP3Rs are required to orient the mitotic spindle. IP3 receptors are required for mitotic spindle orientation Only IP3 receptors with a functional channel restore spindle orientation Ca2+ release through IP3 receptors is required for spindle orientation
Collapse
Affiliation(s)
- Raul Lagos-Cabré
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
6
|
Ueasilamongkol P, Khamphaya T, Guerra MT, Rodrigues M, Gomes DA, Kong Y, Wei W, Jain D, Trampert DC, Ananthanarayanan M, Banales JM, Roberts LR, Farshidfar F, Nathanson MH, Weerachayaphorn J. Type 3 Inositol 1,4,5-Trisphosphate Receptor Is Increased and Enhances Malignant Properties in Cholangiocarcinoma. Hepatology 2020; 71:583-599. [PMID: 31251815 PMCID: PMC6934938 DOI: 10.1002/hep.30839] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common malignancy arising in the liver. It carries a poor prognosis, in part because its pathogenesis is not well understood. The type 3 inositol 1,4,5-trisphosphate receptor (ITPR3) is the principal intracellular calcium ion (Ca2+ ) release channel in cholangiocytes, and its increased expression has been related to the pathogenesis of malignancies in other types of tissues, so we investigated its role in CCA. ITPR3 expression was increased in both hilar and intrahepatic CCA samples as well as in CCA cell lines. Deletion of ITPR3 from CCA cells impaired proliferation and cell migration. A bioinformatic analysis suggested that overexpression of ITPR3 in CCA would have a mitochondrial phenotype, so this was also examined. ITPR3 normally is concentrated in a subapical region of endoplasmic reticulum (ER) in cholangiocytes, but both immunogold electron microscopy and super-resolution microscopy showed that ITPR3 in CCA cells was also in regions of ER in close association with mitochondria. Deletion of ITPR3 from these cells impaired mitochondrial Ca2+ signaling and led to cell death. Conclusion: ITPR3 expression in cholangiocytes becomes enhanced in CCA. This contributes to malignant features, including cell proliferation and migration and enhanced mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
| | - Tanaporn Khamphaya
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mateus T. Guerra
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michele Rodrigues
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dawidson A. Gomes
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yong Kong
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Wei Wei
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David C. Trampert
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Lewis R. Roberts
- Divisions of Gastroenterology and Hepatology and Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Farshad Farshidfar
- Department of Oncology, Cumming School of Medicine, University of Calgary, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Michael H. Nathanson
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Remodeling of ER-plasma membrane contact sites but not STIM1 phosphorylation inhibits Ca 2+ influx in mitosis. Proc Natl Acad Sci U S A 2019; 116:10392-10401. [PMID: 31064875 PMCID: PMC6535005 DOI: 10.1073/pnas.1821399116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanisms blocking Ca2+ influx in mitosis are complex and involve a decrease in stable endoplasmic reticulum (ER)–plasma membrane (PM) contact sites and degradation of the ER Ca2+ sensor stromal interaction molecule 1 (STIM1) but not its phosphorylation. This challenges the current view that STIM1 phosphorylation is essential for mitotic store-operated Ca2+ entry inhibition and sheds light on the dynamics of ER–PM contact sites and of Ca2+ influx in mitosis. Store-operated Ca2+ entry (SOCE), mediated by the endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) and the plasma membrane (PM) channel Orai1, is inhibited during mitosis. STIM1 phosphorylation has been suggested to mediate this inhibition, but it is unclear whether additional pathways are involved. Here, we demonstrate using various approaches, including a nonphosphorylatable STIM1 knock-in mouse, that STIM1 phosphorylation is not required for SOCE inhibition in mitosis. Rather, multiple pathways converge to inhibit Ca2+ influx in mitosis. STIM1 interacts with the cochaperone BAG3 and localizes to autophagosomes in mitosis, and STIM1 protein levels are reduced. The density of ER–PM contact sites (CSs) is also dramatically reduced in mitosis, thus physically preventing STIM1 and Orai1 from interacting to activate SOCE. Our findings provide insights into ER–PM CS remodeling during mitosis and a mechanistic explanation of the inhibition of Ca2+ influx that is required for cell cycle progression.
Collapse
|
8
|
Singh N, Adlakha N. Three dimensional coupled reaction–diffusion modeling of calcium and inositol 1,4,5-trisphosphate dynamics in cardiomyocytes. RSC Adv 2019; 9:42459-42469. [PMID: 35542883 PMCID: PMC9076935 DOI: 10.1039/c9ra06929a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022] Open
Abstract
Nanoparticles have shown great promise in improving cancer treatment efficacy by changing the intracellular calcium level through activation of intracellular mechanisms. One of the mechanisms of the killing of the cancerous cell by a nanoparticle is through elevation of the intracellular calcium level. Evidence accumulated over the past decade indicates a pivotal role for the IP3 receptor mediated Ca2+ release in the regulation of the cytosolic and the nuclear Ca2+ signals. There have been various studies done suggesting the role of IP3 receptors (IP3R) and IP3 production and degradation in cardiomyocytes. In the present work, we have proposed a three-dimensional unsteady-state mathematical model to describe the mechanism of cardiomyocytes which focuses on evaluation of various parameters that affect these coupled dynamics and elevate the cytosolic calcium concentration which can be helpful to search for novel therapies to cure these malignancies by targeting the complex calcium signaling process in cardiomyocytes. Our study suggests that there are other factors involved in this signaling which can increase the calcium level, which can help in finding treatment for cancer. The cytosolic calcium level may be controlled by IP3 signaling, leak, source influx of calcium (σ) and maximum production of IP3 (VP). We believe that the proposed model suggests new insight into finding treatment for cancer in cardiomyocytes through elevation of the cytosolic Ca2+ concentration by various parameters like leak, σ, VP and especially by other complex cell signaling dynamics, namely IP3 dynamics. We propose a three-dimensional unsteady-state mathematical model to describe the mechanism of cardiomyocytes.![]()
Collapse
Affiliation(s)
- Nisha Singh
- Applied Mathematics and Humanities Department
- SVNIT
- Surat
- India
| | - Neeru Adlakha
- Applied Mathematics and Humanities Department
- SVNIT
- Surat
- India
| |
Collapse
|
9
|
Ren Y, Yang N, Yue Y, Jin H, Tao K, Hou T. Investigation of novel pyrazole carboxamides as new apoptosis inducers on neuronal cells in Helicoverpa zea. Bioorg Med Chem 2018; 26:2280-2286. [DOI: 10.1016/j.bmc.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
|
10
|
Chidrawar VR, Imran M. "Comparative Experimental Studies of Few L-Type and T-Type Ca+2 Channel Blockers Against In-Ovo and In-Vitro Models of Angiogenesis". ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2017. [DOI: 10.18311/ajprhc/2018/19587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Ca 2+ Signalling and Membrane Dynamics During Cytokinesis in Animal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:389-412. [PMID: 29594869 DOI: 10.1007/978-3-319-55858-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Interest in the role of Ca2+ signalling as a possible regulator of the combinatorial processes that result in the separation of the daughter cells during cytokinesis, extend back almost a 100 years. One of the key processes required for the successful completion of cytokinesis in animal cells (especially in the large holoblastically and meroblastically dividing embryonic cells of a number of amphibian and fish species), is the dynamic remodelling of the plasma membrane. Ca2+ signalling was subsequently demonstrated to regulate various different aspects of cytokinesis in animal cells, and so here we focus specifically on the role of Ca2+ signalling in the remodelling of the plasma membrane. We begin by providing a brief history of the animal models used and the research accomplished by the early twentieth century investigators, with regards to this aspect of animal cell cytokinesis. We then review the most recent progress made (i.e., in the last 10 years), which has significantly advanced our current understanding on the role of cytokinetic Ca2+ signalling in membrane remodelling. To this end, we initially summarize what is currently known about the Ca2+ transients generated during animal cell cytokinesis, and then we describe the latest findings regarding the source of Ca2+ generating these transients. Finally, we review the current evidence about the possible targets of the different cytokinetic Ca2+ transients with a particular emphasis on those that either directly or indirectly affect plasma membrane dynamics. With regards to the latter, we discuss the possible role of the early Ca2+ signalling events in the deformation of the plasma membrane at the start of cytokinesis (i.e., during furrow positioning), as well as the role of the subsequent Ca2+ signals in the trafficking and fusion of vesicles, which help to remodel the plasma membrane during the final stages of cell division. As it is becoming clear that each of the cytokinetic Ca2+ transients might have multiple, integrated targets, deciphering the precise role of each transient represents a significant (and ongoing) challenge.
Collapse
|
12
|
Phengchat R, Takata H, Morii K, Inada N, Murakoshi H, Uchiyama S, Fukui K. Calcium ions function as a booster of chromosome condensation. Sci Rep 2016; 6:38281. [PMID: 27910894 PMCID: PMC5133622 DOI: 10.1038/srep38281] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca2+, to chromosome condensation in vitro and in vivo. Ca2+ depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca2+. Chromosomes had compact globular structures when exposed to Ca2+ and expanded fibrous structures without Ca2+. Therefore, we have clearly demonstrated a role for Ca2+ in the compaction of chromatin fibres.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hideaki Takata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Kenichi Morii
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-Cho Ikoma-shi, Nara 630-0192, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Kiichi Fukui
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
13
|
Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F, Bustos G, Urra F, Smith N, Molgó J, Diehl JA, Ridky TW, Foskett JK. Selective Vulnerability of Cancer Cells by Inhibition of Ca(2+) Transfer from Endoplasmic Reticulum to Mitochondria. Cell Rep 2016; 14:2313-24. [PMID: 26947070 PMCID: PMC4794382 DOI: 10.1016/j.celrep.2016.02.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022] Open
Abstract
In the absence of low-level ER-to-mitochondrial Ca(2+) transfer, ATP levels fall, and AMPK-dependent, mTOR-independent autophagy is induced as an essential survival mechanism in many cell types. Here, we demonstrate that tumorigenic cancer cell lines, transformed primary human fibroblasts, and tumors in vivo respond similarly but that autophagy is insufficient for survival, and cancer cells die while their normal counterparts are spared. Cancer cell death is due to compromised bioenergetics that can be rescued with metabolic substrates or nucleotides and caused by necrosis associated with mitotic catastrophe during their proliferation. Our findings reveal an unexpected dependency on constitutive Ca(2+) transfer to mitochondria for viability of tumorigenic cells and suggest that mitochondrial Ca(2+) addiction is a feature of cancer cells.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Acetylcysteine/pharmacology
- Adenosine Triphosphate/metabolism
- Antineoplastic Agents/pharmacology
- Autophagy/drug effects
- Blotting, Western
- Calcium/metabolism
- Cell Line, Tumor
- Endoplasmic Reticulum/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Macrocyclic Compounds/pharmacology
- Microscopy, Video
- Mitochondria/metabolism
- Oxazoles/pharmacology
- Phosphorylation
- RNA Interference
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile.
| | - Marioly Müller
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andrew McNeal
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alenka Lovy
- Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Fabian Jaňa
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Galdo Bustos
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Felix Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Natalia Smith
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Jordi Molgó
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Bâtiment 152, Courrier Number 24, 91191 Gif-sur-Yvette, France
| | - J Alan Diehl
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:462363. [PMID: 26504486 PMCID: PMC4609422 DOI: 10.1155/2015/462363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer.
Collapse
|
15
|
Hwang SU, Jeon Y, Yoon JD, Cai L, Kim E, Yoo H, Kim KJ, Park KM, Jin M, Kim H, Hyun SH. Effect of ganglioside GT1b on the in vitro maturation of porcine oocytes and embryonic development. J Reprod Dev 2015; 61:549-57. [PMID: 26370787 PMCID: PMC4685221 DOI: 10.1262/jrd.2015-049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ganglioside is an acidic glycosphingolipid with sialic acids residues. This study was performed to investigate the effect and mechanism of ganglioside GT1b in porcine oocytes in the process of in vitro maturation (IVM) and preimplantation development. Metaphase II (MII) rates were significantly (P < 0.05) different between the control group and the 5 nM GT1b treatment group. Intracellular glutathione (GSH) levels in oocytes matured with 5 nM and 20 nM and GT1b decreased significantly (P < 0.05). The 10 nM group showed a significant (P < 0.05) decrease in intracellular reactive oxygen species (ROS) levels compared with the control group. Subsequently, the level of intracellular Ca(2+) in oocytes treated with different concentrations of GT1b was measured. Intracellular Ca(2+) was significantly (P < 0.05) increased with a higher concentration of GT1b in a dose-dependent manner. Real-time PCR was performed and showed that the expression of bradykinin 2 receptor (B2R) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) in cumulus cells was significantly (P < 0.05) decreased in the 20 nM GT1b treatment group. Treatment with 5 nM GT1b significantly (P < 0.05) decreased the expression of CaMKIIδ. In oocytes, treatment with 5 nM GT1b significantly (P < 0.05) decreased CaMKIIγ and POU5F1 (POU domain, class 5, transcription factor 1). However, treatment with 20 nM GT1b significantly (P < 0.05) increased the expression of POU5F1. Finally, embryonic developmental data showed no significant differences in the two experiments (parthenogenesis and in vitro fertilization). In conclusion, the results of the present study indicated that GT1b plays an important role in increasing the nuclear maturation rate and decreasing the intracellular ROS levels during IVM. However, GT1b inhibited maturation of the cytoplasm by maintaining intracellular Ca(2+) in the process of oocyte maturation regardless of the cell cycle stage. Therefore, GT1b is thought to act on another mechanism that controls intracellular Ca(2+).
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 362-763, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fahrenholtz CD, Greene AM, Beltran PJ, Burnstein KL. A novel calcium-dependent mechanism of acquired resistance to IGF-1 receptor inhibition in prostate cancer cells. Oncotarget 2015; 5:9007-21. [PMID: 25344862 PMCID: PMC4253414 DOI: 10.18632/oncotarget.2346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Inhibition of the mitogenic insulin-like growth factor receptor 1 (IGF-1R) signaling axis is a compelling treatment strategy for prostate cancer. Combining the IGF-1R inhibitor ganitumab (formerly AMG 479) with standard of care androgen-deprivation therapy greatly delays prostate cancer recurrence in xenograft models; however, a significant proportion of these tumors ultimately acquire resistance to ganitumab. Here we describe the development of a stable and reproducible ganitumab-resistant VCaP human prostate cancer cell derivative termed VCaP/GanR to investigate the mechanism of acquired resistance to IGF-1R inhibition. Unlike parental VCaP, VCaP/GanR did not undergo apoptosis following ganitumab treatment. VCaP/GanR did not express increased levels of IGF-1R, insulin receptor, or phospho-AKT compared to parental VCaP. VCaP/GanR exhibited increased levels of phospho-S6 indicative of increased mTOR activity. However, acquired resistance to ganitumab was not dependent on increased mTOR activity in VCaP/GanR. Phospho-proteomic arrays revealed alterations in several calcium-regulated signaling components in VCaP/GanR compared to VCaP. Reduction of intracellular calcium using cell-permeable calcium-specific chelators restored ganitumab sensitivity to VCaP/GanR through inhibition of cell-cycle progression. These data suggest a new mechanism of resistance to IGF-1R inhibition involving calcium-mediated proliferation effects. Such pathways should be considered in future clinical studies of IGF-1R inhibitors in prostate cancer.
Collapse
Affiliation(s)
- Cale D Fahrenholtz
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ann M Greene
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Huang W, Lu C, Wu Y, Ouyang S, Chen Y. T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:54. [PMID: 25989794 PMCID: PMC4443536 DOI: 10.1186/s13046-015-0171-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022]
Abstract
Background T-type Ca2+ channels are often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation and death. Methods: RT-PCR, Q-PCR, western blotting and whole-cell patch-clamp recording were employed to assess the expression of T-type Ca2+ channels in leukemia cell lines. The function of T-type Ca2+ channels in leukemia cell growth and the possible mechanism of the effect of T-type Ca2+ channel antagonists on cell proliferation and apoptosis were examined in T-lymphoma cell lines. Results We show that leukemia cell lines exhibited reduced cell growth when treated with T-type Ca2+ channel inhibitors, mibefradil and NNC-55-0396 in a concentration-dependent manner. Mechanistically, these inhibitors played a dual role on cell viability: (i) blunting proliferation, through a halt in the progression to the G1-S phase; and (ii) promoting cell apoptosis, partially dependent on the endoplasmic reticulum Ca2+ release. In addition, we observed a reduced phosphorylation of ERK1/2 in MOLT-4 cells in response to mibefradil and NNC-55-0396 treatment. Conclusions These results indicate that mibefradil and NNC-55-0396 regulate proliferation and apoptosis in T-type Ca2+ channel expressing leukemia cell lines and suggest a potential therapeutic target for leukemia. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0171-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weifeng Huang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, 350004, People's Republic of China.
| | - Chunjing Lu
- Department of Blood Transfusion, Maternal and Child Health Hospital of Xiamen, Xiamen, 361003, People's Republic of China.
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, 350004, People's Republic of China.
| | - Shou Ouyang
- Xiamen Medical Research Institute, Xiamen, 361008, People's Republic of China.
| | - Yuanzhong Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, 350004, People's Republic of China.
| |
Collapse
|
18
|
Ranzato E, Magnelli V, Martinotti S, Waheed Z, Cain SM, Snutch TP, Marchetti C, Burlando B. Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: essential role of Cav3.2 channels. Cell Calcium 2014; 56:285-95. [PMID: 25260713 DOI: 10.1016/j.ceca.2014.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/29/2014] [Accepted: 09/01/2014] [Indexed: 12/26/2022]
Abstract
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca(2+) channels toward a mechanistic study on the effect of EGCG on [Ca(2+)]i. Confocal Ca(2+) imaging showed that EGCG induces a [Ca(2+)]i spike which is due to extracellular Ca(2+) entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca(2+)channel blockers. siRNA knockdown of T-type Ca(2+) channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K(+) currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K(+) channel induced a reduction of the EGCG [Ca(2+)]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K(+) current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca(2+)]i by EGCG may be relevant in breast cancer treatment.
Collapse
Affiliation(s)
- Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Valeria Magnelli
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Zeina Waheed
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Stuart M Cain
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Carla Marchetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy
| | - Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy.
| |
Collapse
|
19
|
Zhang Y, Wang H, Qian Z, Feng B, Zhao X, Jiang X, Tao J. Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma: the role of endostatin. Pflugers Arch 2014; 466:811-8. [PMID: 24407946 DOI: 10.1007/s00424-013-1427-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/25/2022]
Abstract
Ca(2+) plays a key role in intracellular signaling and controls various cellular processes such as proliferation, differentiation, cell growth, death, and apoptosis. Aberrant changes in intracellular Ca(2+) levels can promote undesired cell proliferation and migration and are therefore associated with certain tumor types. Many research groups have suggested a potential role for voltage-gated Ca(2+) channels in the regulation of tumor growth and progression, particularly T-type channels due to their unique biophysical properties. T-type channels are expressed in normal tissues throughout the body and in different types of tumors such as breast carcinoma, retinoblastoma, neuroblastoma, and glioma. It has been demonstrated that increased functional expression of the α1 subunit of T-type channels plays a role in the abnormal proliferation of glioblastoma cells. As such, siRNA-mediated knockdown of the expression of the α1 subunit of T-type channels decreases the proliferation of these cells. Moreover, pharmacological blockade of T-type channels significantly decreases tumor growth. In this review, we focus on the use of T-type channel blockers for the potential treatment of cancers, particularly highly proliferative tumors such as glioblastoma. We conclude that T-type channel blockers such as endostatin can serve as a potential therapeutic tool for tumors whose proliferation depends on increased T-type channel expression.
Collapse
Affiliation(s)
- Yuan Zhang
- The Special Procurement Ward, Department of Geriatrics & Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Growing oocytes are arrested at the first prophase of meiosis which is morphologically identified by the presence of a large and vesicular nucleus, called the germinal vesicle. The dissolution of the germinal vesicle marks the resumption of meiosis during which the oocyte undergoes massive modifications up to the second meiotic block, which is removed at fertilization. The interval between the first and the second meiotic block is defined as maturation and the events occurring during this period are crucial for ovulation, fertilization, and embryo development. Oocytes are excitable cells that react to stimuli by modifying their electrical properties as a consequence of ion currents flowing through ion channels on the plasma membrane. These electrical changes have been largely described at fertilization whereas little information is available during oocyte maturation. The aim of this review is to give an overview on the involvement of ion channels and ion currents during oocyte maturation in species from invertebrates to mammals. The results summarized here point to the possible functional role of ion channels underlying oocyte growth and maturation.
Collapse
|
21
|
Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, Tao J. Inhibition of T-type Ca²⁺ channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 2012; 166:1247-60. [PMID: 22233416 DOI: 10.1111/j.1476-5381.2012.01852.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Endostatin (ES) is a c-terminal proteolytic fragment of collagen XVIII with promising antitumour properties in several tumour models, including human glioblastoma. We hypothesized that this peptide could interact with plasma membrane ion channels and modulate their functions. EXPERIMENTAL APPROACH Using cell proliferation and migration assays, patch clamp and Western blot analysis, we studied the effects of ES on the proliferation and migration of human glioblastoma U87 cells, mediated by T-type Ca²⁺ channels. KEY RESULTS Extracellular application of ES reversibly inhibited T-type Ca²⁺ channel currents (T-currents) in U87 cells, whereas L-type Ca²⁺ currents were not affected. This inhibitory effect was associated with a hyperpolarizing shift in the voltage-dependence of inactivation but was independent of G-protein and protein tyrosine kinase-mediated pathways. All three α₁ subunits of T-type Ca²⁺ channels (Ca(V) 3), α(1G) (Ca(V) 3.1), α(1H) (Ca(V) 3.2) and α(1I) (Ca(V) 3.3), were endogenously expressed in U87 cells. Using transfected HEK293 or CHO cells, we showed that only Ca(V) 3.1 and Ca(V) 3.2, but not Ca(V) 3.3 or Ca(V) 1.2 (L-type), channel currents were significantly inhibited. More interestingly, ES inhibited the proliferation and migration of U87 cells in a dose-dependent manner. Pretreatment of the cells with the specific T-type Ca²⁺ channel blocker mibefradil occluded these inhibitory effects of ES. CONCLUSION AND IMPLICATIONS This study provides the first evidence that the antitumour effects of ES on glioblastoma cells is through direct inhibition of T-type Ca²⁺ channels and gives new insights into the future development of a new class of antiglioblastoma agents that target the proliferation and migration of these cells.
Collapse
Affiliation(s)
- Yuan Zhang
- The Special Procurement Ward & Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol 2011; 301:C255-65. [DOI: 10.1152/ajpcell.00047.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progress through the cell mitotic cycle requires precise timing of the intrinsic molecular steps and tight coordination with the environmental signals that maintain a cell into the proper physiological context. Because of their great functional flexibility, ion channels coordinate the upstream and downstream signals that converge on the cell cycle machinery. Both voltage- and ligand-gated channels have been implicated in the control of different cell cycle checkpoints in normal as well as neoplastic cells. Ion channels mediate the calcium signals that punctuate the mitotic process, the cell volume oscillations typical of cycling cells, and the exocytosis of autocrine or angiogenetic factors. Other functions of ion channels in proliferation are still matter of debate. These may or may not depend on ion transport, as the channel proteins can form macromolecular complexes with growth factor and cell adhesion receptors. Direct conformational coupling with the cytoplasmic regulatory proteins is also possible. Derangement or relaxed control of the above processes can promote neoplasia. Specific types of ion channels have turned out to participate in the different stages of the tumor progression, in which cell heterogeneity is increased by the selection of malignant cell clones expressing the ion channel types that better support unrestrained growth. However, a comprehensive mechanistic picture of the functional relations between ion channels and cell proliferation is yet not available, partly because of the considerable experimental challenges offered by studying these processes in living mammalian cells. No doubt, such studies will constitute one of the most fruitful research fields for the next generation of cell physiologists.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
23
|
|
24
|
Mikoshiba K. Role of IP3 receptor in development. Cell Calcium 2011; 49:331-40. [DOI: 10.1016/j.ceca.2010.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 12/01/2022]
|
25
|
Kim NH, Park KS, Sohn JH, Yeh BI, Ko CM, Kong ID. Functional Expression of P2Y Receptors in WERI-Rb1 Retinoblastoma Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:61-6. [PMID: 21461242 DOI: 10.4196/kjpp.2011.15.1.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 01/28/2023]
Abstract
P2Y receptors are metabotropic G-protein-coupled receptors, which are involved in many important biologic functions in the central nervous system including retina. Subtypes of P2Y receptors in retinal tissue vary according to the species and the cell types. We examined the molecular and pharmacologic profiles of P2Y purinoceptors in retinoblastoma cell, which has not been identified yet. To achieve this goal, we used Ca(2+) imaging technique and western blot analysis in WERI-Rb-1 cell, a human retinoblastoma cell line. ATP (10 µM) elicited strong but transient [Ca(2+)](i) increase in a concentration-dependent manner from more than 80% of the WERI-Rb-1 cells (n=46). Orders of potency of P2Y agonists in evoking [Ca(2+)](i) transients were 2MeS-ATP>ATP>>UTP=αβ-MeATP, which was compatible with the subclass of P2Y(1) receptor. The [Ca(2+)](i) transients evoked by applications of 2MeS-ATP and/or ATP were also profoundly suppressed in the presence of P2Y(1) selective blocker (MRS 2179; 30 µM). P2Y(1) receptor expression in WERI-Rb-1 cells was also identified by using western blot. Taken together, P2Y(1) receptor is mainly expressed in a retinoblastoma cell, which elicits Ca(2+) release from internal Ca(2+) storage sites via the phospholipase C-mediated pathway. P2Y(1) receptor activation in retinoblastoma cell could be a useful model to investigate the role of purinergic [Ca(2+)](i) signaling in neural tissue as well as to find a novel therapeutic target to this lethal cancer.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Basic Nursing Science and Institute for Nursing Science, Keimyung University, Daegu 704-701, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Machaca K. Ca(2+) signaling, genes and the cell cycle. Cell Calcium 2010; 48:243-50. [PMID: 21084120 DOI: 10.1016/j.ceca.2010.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Changes in the concentration and spatial distribution of Ca(2+) ions in the cytoplasm constitute a ubiquitous intracellular signaling module in cellular physiology. With the advent of Ca(2+) dyes that allow direct visualization of Ca(2+) transients, combined with powerful experimental tools such as electrophysiological recordings, intracellular Ca(2+) transients have been implicated in practically every aspect of cellular physiology, including cellular proliferation. Ca(2+) signals are associated with different phases of the cell cycle and interfering with Ca(2+) signaling or downstream pathways often disrupts progression of the cell cycle. Although there exists a dependence between Ca(2+) signals and the cell cycle the mechanisms involved are not well defined and given the cross-talk between Ca(2+) and other signaling modules, it is difficult to assess the exact role of Ca(2+) signals in cell cycle progression. Two exceptions however, include fertilization and T-cell activation, where well-defined roles for Ca(2+) signals in mediating progression through specific stages of the cell cycle have been clearly established. In the case of T-cell activation Ca(2+) regulates entry into the cell cycle through the induction of gene transcription.
Collapse
Affiliation(s)
- Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), PO Box 24144, Education City - Qatar Foundation, Doha, Qatar.
| |
Collapse
|
27
|
Arredouani A, Yu F, Sun L, Machaca K. Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 2010; 123:2155-62. [PMID: 20554894 DOI: 10.1242/jcs.069690] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Doha, Qatar
| | | | | | | |
Collapse
|
28
|
New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 2010; 23:65-134. [PMID: 20565994 DOI: 10.1017/s0954422410000041] [Citation(s) in RCA: 609] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have clearly shown that whole-grain cereals can protect against obesity, diabetes, CVD and cancers. The specific effects of food structure (increased satiety, reduced transit time and glycaemic response), fibre (improved faecal bulking and satiety, viscosity and SCFA production, and/or reduced glycaemic response) and Mg (better glycaemic homeostasis through increased insulin secretion), together with the antioxidant and anti-carcinogenic properties of numerous bioactive compounds, especially those in the bran and germ (minerals, trace elements, vitamins, carotenoids, polyphenols and alkylresorcinols), are today well-recognised mechanisms in this protection. Recent findings, the exhaustive listing of bioactive compounds found in whole-grain wheat, their content in whole-grain, bran and germ fractions and their estimated bioavailability, have led to new hypotheses. The involvement of polyphenols in cell signalling and gene regulation, and of sulfur compounds, lignin and phytic acid should be considered in antioxidant protection. Whole-grain wheat is also a rich source of methyl donors and lipotropes (methionine, betaine, choline, inositol and folates) that may be involved in cardiovascular and/or hepatic protection, lipid metabolism and DNA methylation. Potential protective effects of bound phenolic acids within the colon, of the B-complex vitamins on the nervous system and mental health, of oligosaccharides as prebiotics, of compounds associated with skeleton health, and of other compounds such as alpha-linolenic acid, policosanol, melatonin, phytosterols and para-aminobenzoic acid also deserve to be studied in more depth. Finally, benefits of nutrigenomics to study complex physiological effects of the 'whole-grain package', and the most promising ways for improving the nutritional quality of cereal products are discussed.
Collapse
|
29
|
Young SZ, Platel JC, Nielsen JV, Jensen NA, Bordey A. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels. Front Cell Neurosci 2010; 4:8. [PMID: 20422045 PMCID: PMC2857959 DOI: 10.3389/fncel.2010.00008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/10/2010] [Indexed: 11/24/2022] Open
Abstract
In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca2+ levels and tonic GABAA receptor activation. However, it is unknown whether, and if so how, GABAA receptor activity regulates intracellular Ca2+ dynamics in SVZ astrocytes. To monitor Ca2+ activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABAA receptor activation induced Ca2+ increases in 40–50% of SVZ astrocytes. GABAA-induced Ca2+ increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC). The L-type Ca2+ channel activator BayK 8644 increased the percentage of GABAA-responding astrocyte-like cells to 75%, suggesting that the majority of SVZ astrocytes express functional VGCCs. SVZ astrocytes also displayed spontaneous Ca2+ activity, the frequency of which was regulated by tonic GABAA receptor activation. These data support a role for ambient GABA in tonically regulating intracellular Ca2+ dynamics through GABAA receptors and VGCC in a subpopulation of astrocyte-like cells in the postnatal SVZ.
Collapse
Affiliation(s)
- Stephanie Z Young
- Departments of Neurosurgery and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | | | | | | | | |
Collapse
|
30
|
Atilla-Gokcumen GE, Castoreno AB, Sasse S, Eggert US. Making the cut: the chemical biology of cytokinesis. ACS Chem Biol 2010; 5:79-90. [PMID: 20014865 DOI: 10.1021/cb900256m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis. In this review, we discuss the use of small molecule probes to perturb cytokinesis, as well as the role naturally occurring small molecule metabolites such as lipids play during cytokinesis.
Collapse
Affiliation(s)
- G. Ekin Atilla-Gokcumen
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Adam B. Castoreno
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sofia Sasse
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
- Westfälische Wilhelms-Universität Münster, Germany
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Resende RR, Adhikari A, da Costa JL, Lorençon E, Ladeira MS, Guatimosim S, Kihara AH, Ladeira LO. Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:246-60. [PMID: 19958796 DOI: 10.1016/j.bbamcr.2009.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/28/2009] [Accepted: 11/18/2009] [Indexed: 01/11/2023]
Abstract
Spontaneous Ca(2+) events have been observed in diverse stem cell lines, including carcinoma and mesenchymal stem cells. Interestingly, during cell cycle progression, cells exhibit Ca(2+) transients during the G(1) to S transition, suggesting that these oscillations may play a role in cell cycle progression. We aimed to study the influence of promoting and blocking calcium oscillations in cell proliferation and cell cycle progression, both in neural progenitor and undifferentiated cells. We also identified which calcium stores are required for maintaining these oscillations. Both in neural progenitor and undifferentiated cells calcium oscillations were restricted to the G1/S transition, suggesting a role for these events in progression of the cell cycle. Maintenance of the oscillations required calcium influx only through inositol 1,4,5-triphosphate receptors (IP(3)Rs) and L-type channels in undifferentiated cells, while neural progenitor cells also utilized ryanodine-sensitive stores. Interestingly, promoting calcium oscillations through IP(3)R agonists increased both proliferation and levels of cell cycle regulators such as cyclins A and E. Conversely, blocking calcium events with IP(3)R antagonists had the opposite effect in both undifferentiated and neural progenitor cells. This suggests that calcium events created by IP(3)Rs may be involved in cell cycle progression and proliferation, possibly due to regulation of cyclin levels, both in undifferentiated cells and in neural progenitor cells.
Collapse
Affiliation(s)
- R R Resende
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tang F, Liu W. An age-dependent feedback control model of calcium dynamics in yeast cells. J Math Biol 2009; 60:849-79. [DOI: 10.1007/s00285-009-0289-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 07/24/2009] [Indexed: 12/12/2022]
|
33
|
Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M. In vitro Neurogenesis from Neural Progenitor Cells Isolated from the Hippocampus Region of the Brain of Adult Rats Exposed to Ethanol during Early Development through Their Alcohol-Drinking Mothers. Alcohol Alcohol 2009; 44:185-98. [DOI: 10.1093/alcalc/agn109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
34
|
Masgrau R, Hurel C, Papastefanaki F, Georgopoulou N, Thomaidou D, Matsas R. BM88/Cend1 regulates stimuli-induced intracellular calcium mobilization. Neuropharmacology 2008; 56:598-609. [PMID: 19061903 DOI: 10.1016/j.neuropharm.2008.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022]
Abstract
In neurogenesis, little is known about signal transduction pathways upstream of gene expression however, mounting evidence suggests that calcium release from internal stores plays a critical role. We have previously demonstrated that BM88 is a neuronal lineage-specific regulator of cell cycle exit and differentiation; we now report a link between BM88 and calcium signaling. Calcium imaging experiments revealed that P2Y-induced calcium mobilization is diminished in mouse neuroblastoma Neuro 2a cells stably transfected with BM88 (N2A-BM88 cells) as compared with N2A cells or N2A cells differentiated with retinoic acid. This effect is not restricted to N2A cells but is also observed in HeLa cells that are transiently transfected with BM88, indicating that cells of both neural and non-neural origin respond similarly. Further, activation of P2Y1 but not purinergic P2X receptors induces proliferation of N2A and to a lesser extent of N2A-BM88 cells. Conversely, knockdown of BM88 facilitates N2A cell proliferation both under stimulating and non-stimulating conditions. Importantly, N2A-BM88 cells are less susceptible to apoptosis triggered by C2-ceramide and exhibit reduced C2-ceramide-induced intracellular calcium release. Higher calcium uptake from mitochondria and/or lower calcium levels inside the endoplasmic reticulum may explain the reduced calcium mobilization in response to BM88. Overall, our data reveal a novel signaling mechanism by which BM88 interferes with calcium release from inositol 1,4,5-trisphosphate-sensitive stores and exerts anti-proliferative and anti-apoptotic functions.
Collapse
Affiliation(s)
- Roser Masgrau
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
35
|
Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JAS, Sikka SS, Li M. Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 2008; 14:4984-91. [PMID: 18763278 PMCID: PMC2742923 DOI: 10.3748/wjg.14.4984] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells, free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear; however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel is minimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers.
Collapse
|
36
|
Li WM, Webb SE, Chan CM, Miller AL. Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos. Dev Biol 2008; 316:228-48. [PMID: 18313658 DOI: 10.1016/j.ydbio.2008.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/16/2023]
Abstract
The generation of a required series of localized Ca(2+) transients during cytokinesis in zebrafish embryos suggests that Ca(2+) plays a necessary role in regulating this process. Here, we report that cortical actin remodeling, characterized by the reorganization of the contractile band and the formation during furrow deepening of pericleavage F-actin enrichments (PAEs), requires a localized increase in intracellular Ca(2+), which is released from IP(3)-sensitive stores. We demonstrate that VAMP-2 vesicle fusion at the deepening furrow also requires Ca(2+) released via IP(3) receptors, as well as the presence of PAEs and the action of calpains. Finally, by expressing a dominant-negative form of the kinesin-like protein, kif23, we demonstrate that its recruitment to the furrow region is required for VAMP-2 vesicle transport; and via FRAP analysis, that kif23 localization is also Ca(2+)-dependent. Collectively, our data demonstrate that a localized increase in intracellular Ca(2+) is involved in regulating several key events during furrow deepening and subsequent apposition.
Collapse
Affiliation(s)
- Wai Ming Li
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
37
|
Kim DR, Rah SH, Sohn JH, Yeh BI, Ko CM, Park JS, Kim MJ, Lee JW, Kong ID. Calcium mobilization by activation of M(3)/M(5) muscarinic receptors in the human retinoblastoma. J Pharmacol Sci 2007; 105:184-92. [PMID: 17951979 DOI: 10.1254/jphs.fp0070877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Activation of muscarinic acetylcholine receptors (mAChR) is one of the most important signal transduction pathways in the human body. In this study, we investigated the role of mAChR activation in relation to its subtypes in human retinoblastoma cell-lines (WERI-Rb-1) using Ca(2+) measurement, real-time PCR, and Western Blot techniques. Acetylcholine (ACh) produced prominent [Ca(2+)](i) transients in a repeated manner in WERI-Rb-1 cells. The maximal amplitude of the [Ca(2+)](i) transient was almost completely suppressed by 97.3 +/- 0.8% after atropine (1 microM) pretreatment. Similar suppressions were noted after pretreatments with thapsigargin (1 microM), an ER Ca(2+)-ATPase (SERCA) inhibitor, whereas the ACh-induced [Ca(2+)](i) transient was not affected even in the absence of extracellular calcium. U-73122 (1 microM), a PLC inhibitor, and xestospongin C (2 microM), an IP(3)-receptor antagonist, elicited 11.5 +/- 2.9% and 17.8 +/- 1.9% suppressions, respectively. The 50% inhibitory concentration of (IC(50)) values for blockade of a 100 microM ACh response by pirenzepine and 4-DAMP were 315.8 and 9.1 nM, respectively. Moreover, both M(3) and M(5) mAChRs were prominent in quantitative real-time-PCR. Taken together, the M(3)/M(5) subtypes appear to be the major contributor, leading to intracellular calcium mobilization from the internal store via an IP(3)-dependent pathway in the undifferentiated retinoblastoma cells.
Collapse
Affiliation(s)
- Dae-Ran Kim
- Department of Basic Nursing Science and Institute for Nursing Science, Keimyung University College of Nursing, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cytokinesis is the process by which cells physically separate after the duplication and spatial segregation of the genetic material. A number of general principles apply to this process. First the microtubule cytoskeleton plays an important role in the choice and positioning of the division site. Once the site is chosen, the local assembly of the actomyosin contractile ring remodels the plasma membrane. Finally, membrane trafficking to and membrane fusion at the division site cause the physical separation of the daughter cells, a process termed abscission. Here we will discuss recent advances in our understanding of the mechanisms of cytokinesis in animals, yeast, and plants.
Collapse
Affiliation(s)
- Francis A Barr
- University of Liverpool, Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK.
| | | |
Collapse
|
39
|
Webb SE, Miller AL. Ca2+SIGNALLING AND EARLY EMBRYONIC PATTERNING DURING ZEBRAFISH DEVELOPMENT. Clin Exp Pharmacol Physiol 2007; 34:897-904. [PMID: 17645637 DOI: 10.1111/j.1440-1681.2007.04709.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
40
|
Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM, Nathanson MH. Nucleoplasmic calcium is required for cell proliferation. J Biol Chem 2007; 282:17061-8. [PMID: 17420246 PMCID: PMC2825877 DOI: 10.1074/jbc.m700490200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ca(2+) signals regulate cell proliferation, but the spatial and temporal specificity of these signals is unknown. Here we use selective buffers of nucleoplasmic or cytoplasmic Ca(2+) to determine that cell proliferation depends upon Ca(2+) signals within the nucleus rather than in the cytoplasm. Nuclear Ca(2+) signals stimulate cell growth rather than inhibit apoptosis and specifically permit cells to advance through early prophase. Selective buffering of nuclear but not cytoplasmic Ca(2+) signals also impairs growth of tumors in vivo. These findings reveal a major physiological and potential pathophysiological role for nucleoplasmic Ca(2+) signals and suggest that this information can be used to design novel therapeutic strategies to regulate conditions of abnormal cell growth.
Collapse
Affiliation(s)
- Michele A. Rodrigues
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Dawidson A. Gomes
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - M. Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Wayne Grant
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Lei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Michael H. Nathanson
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
- To whom correspondence should be addressed: Digestive Diseases, Rm. TAC S241D, Yale University School of Medicine, New Haven, CT 06520-8019. Tel.: 203-785-7312; Fax: 203-785-4306;
| |
Collapse
|
41
|
Kapur N, Mignery GA, Banach K. Cell cycle-dependent calcium oscillations in mouse embryonic stem cells. Am J Physiol Cell Physiol 2007; 292:C1510-8. [PMID: 17092997 DOI: 10.1152/ajpcell.00181.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During cell cycle progression, somatic cells exhibit different patterns of intracellular Ca2+signals during the G0phase, the transition from G1to S, and from G2to M. Because pluripotent embryonic stem (ES) cells progress through cell cycle without the gap phases G1and G2, we aimed to determine whether mouse ES (mES) cells still exhibit characteristic changes of intracellular Ca2+concentration during cell cycle progression. With confocal imaging of the Ca2+-sensitive dye fluo-4 AM, we identified that undifferentiated mES cells exhibit spontaneous Ca2+oscillations. In control cultures where 50.4% of the cells reside in the S phase of the cell cycle, oscillations appeared in 36% of the cells within a colony. Oscillations were not initiated by Ca2+influx but depended on inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+release and the refilling of intracellular stores by a store-operated Ca2+influx (SOC) mechanism. Using cell cycle synchronization, we determined that Ca2+oscillations were confined to the G1/S phase (∼70% oscillating cells vs. G2/M with ∼15% oscillating cells) of the cell cycle. ATP induced Ca2+oscillations, and activation of SOC could be induced in G1/S and G2/M synchronized cells. Intracellular Ca2+stores were not depleted, and all three IP3receptor isoforms were present throughout the cell cycle. Cell cycle analysis after EGTA, BAPTA-AM, 2-aminoethoxydiphenyl borate, thapsigargin, or U-73122 treatment emphasized that IP3-mediated Ca2+release is necessary for cell cycle progression through G1/S. Because the IP3receptor sensitizer thimerosal induced Ca2+oscillations only in G1/S, we propose that changes in IP3receptor sensitivity or basal levels of IP3could be the basis for the G1/S-confined Ca2+oscillations.
Collapse
Affiliation(s)
- Nidhi Kapur
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153, USA
| | | | | |
Collapse
|
42
|
Afroze T, Sadi AM, Momen MA, Gu S, Heximer S, Husain M. c-Myb-dependent inositol 1,4,5-trisphosphate receptor type-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2007; 27:1305-11. [PMID: 17363689 DOI: 10.1161/atvbaha.107.142059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The IP3 receptor-1 (IP3R1) mediates Ca2+ signals critical to vascular smooth muscle cell (VSMC) proliferation. The cell cycle-associated transcription factor c-Myb increases Ca2+ at the G1/S transition. Here we show the mechanism through which c-Myb regulates expression of IP3R1. METHODS & RESULTS Ribonuclease protection confirmed transcriptional start (TS), and qRT-PCR revealed a 6-fold increase in IP3R1 mRNA as immortalized VSMC progress from G0 to G1/S. A c-Myb neutralizing antibody decreased IP3R1 mRNA expression 3-fold, and abolished the 3.4-fold increase in IP3R1 protein observed at G1/S. Primary aortic VSMCs in culture and proliferating carotid VSMCs in vivo showed similar regulation of IP3R1 mRNA and protein. Sequence analysis of a 3.1-Kb mouse IP3R1 promoter revealed 17 putative c-Myb binding sites. Reporter assays demonstrated a 2-fold increase in promoter activity in G1/S- versus G0-synchronized VSMCs, which was abolished by functional c-Myb knockdown or deletion of promoter sequences upstream and downstream of TS. Point mutations in Myb sites-13 or -15 significantly blunted G1/S-specific promoter induction in both immortalized and primary VSMCs. Gel shift and ChIP confirmed binding of c-Myb to sites-13 and -15 in G1/S stage VSMCs. CONCLUSION c-Myb regulates cell cycle-associated IP3R1 transcription in VSMCs via specific highly conserved Myb-binding sites in the IP3R1 promoter.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Carotid Arteries/surgery
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/physiopathology
- Cell Cycle/physiology
- Cell Line
- Cell Proliferation
- Chromatin Immunoprecipitation
- Conserved Sequence
- DNA/metabolism
- Disease Models, Animal
- Electrophoretic Mobility Shift Assay
- Genes, Reporter
- Inositol 1,4,5-Trisphosphate Receptors
- Luciferases
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-myb/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Talat Afroze
- Division of Cell and Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Ca2+ signaling during embryonic cytokinesis in animal systems. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Tani D, Monteilh-Zoller MK, Fleig A, Penner R. Cell cycle-dependent regulation of store-operated I(CRAC) and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell Calcium 2006; 41:249-60. [PMID: 17064762 PMCID: PMC5663638 DOI: 10.1016/j.ceca.2006.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/07/2006] [Accepted: 07/07/2006] [Indexed: 12/30/2022]
Abstract
Calcium signaling is a central mechanism for numerous cellular functions and particularly relevant for immune cell proliferation. However, the role of calcium influx in mitotic cell cycle progression is largely unknown. We here report that proliferating rat mast cells RBL-2H3 tightly control their major store-operated calcium influx pathway, I(CRAC), during cell cycle progression. While I(CRAC) is maintained at control levels during the first gap phase (G1), the current is significantly up-regulated in preparation for and during chromatin duplication. However, mitosis strongly suppresses I(CRAC). Non-proliferating cells deprived of growth hormones strongly down-regulate I(CRAC) while increasing cell volume. We further show that the other known calcium (and magnesium) influx pathway in mast cells, the TRPM7-like magnesium-nucleotide-regulated metal (MagNuM) current, is largely uncoupled from cell cycle regulation except in G1. Taken together, our results demonstrate that both store-operated calcium influx via I(CRAC) and MagNuM are regulated at crucial checkpoints during cell cycle progression.
Collapse
Affiliation(s)
| | | | | | - Reinhold Penner
- Corresponding author. Tel.: +1 808 585 5366; fax: +1 808 585 5377. (R. Penner)
| |
Collapse
|
45
|
Abstract
The cell division cycle comprises successive rounds of genome replication and segregation that are never error-free. A complex signalling network chaperones cell cycle events to ensure that cell cycle progression does not occur until any errors detected are put right. The signalling network consists of cell cycle control proteins that are phosphorylated and dephosphorylated, synthesized and degraded interactively to generate a set of sensors and molecular switches that are thrown at appropriate times to permit or trigger cell cycle progression. In early embryos, discrete calcium signals have been shown to be a key component of the molecular switch mechanism. In somatic cells in contrast, the participation of calcium signals in cell cycle control is far from clear. Recent experiments in syncytial Drosophila embryos have shown that localised calcium signals in the nucleus and mitotic spindle can be detected. It appears that the nucleus comprises a calcium signalling microdomain bounded by endoplasmic reticulum that isolates the nucleus and spindle. These findings offer a possible explanation for the apparent absence of calcium signals in somatic cells during mitosis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biosciences, Medical School, Framlington Place, Newcastle upon Tyne, UK.
| |
Collapse
|
46
|
Zhang WL, Huitorel P, Geneviere AM, Chiri S, Ciapa B. Inactivation of MAPK in mature oocytes triggers progression into mitosis via a Ca2+-dependent pathway but without completion of S phase. J Cell Sci 2006; 119:3491-501. [PMID: 16912079 DOI: 10.1242/jcs.03082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unfertilized sea urchin eggs that are arrested at G1 phase after completion of meiosis contain a highly phosphorylated mitogen-activated protein (MAP) kinase (MAPK), the ERK-like protein (ERK-LP). Several data including our previous results show that ERK-LP is inactivated after fertilization, which agrees with results obtained in other species including Xenopus, starfish and mammals. The question is to elucidate the function of a high MAPK activity in sea urchin eggs. We report here that dephosphorylation of ERK-LP with very low concentrations of two MEK inhibitors, PD98059 or U0126, triggers entry into mitosis. Under these conditions, recurrent oscillations of the phosphorylation of ERK-LP and of a tyrosine residue in Cdc2 occur, and the intracellular Ca2+ level (Ca2+i) progressively and slowly increases. Nuclear envelope breakdown and all mitotic events initiated after dephosphorylation of ERK-LP are inhibited when changes in Ca2+i are prevented; however, they are independent of the intracellular pH. These results suggest that inactivation of a MEK-ERK pathway, normally induced after fertilization of sea urchin eggs, triggers entry into mitosis by altering Ca2+i but cannot trigger full DNA replication. We discuss the hypothesis that neither inactivation nor activation of a MEK-ERK pathway is required for S phase completion in sea urchin egg.
Collapse
Affiliation(s)
- Wen Ling Zhang
- UMR 7622 CNRS, Université Paris 6, 9 Quai St Bernard, Case 24, 75252 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
47
|
Parry H, McDougall A, Whitaker M. Endoplasmic reticulum generates calcium signalling microdomains around the nucleus and spindle in syncytial Drosophila embryos. Biochem Soc Trans 2006; 34:385-8. [PMID: 16709168 DOI: 10.1042/bst0340385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell cycle calcium signals are generated by inositol trisphosphate-mediated release of calcium from internal stores [Ciapa, Pesando, Wilding and Whitaker (1994) Nature (London) 368, 875–878; Groigno and Whitaker (1998) Cell 92, 193–204]. The major internal calcium store is the ER (endoplasmic reticulum): the spatial organization of the ER during mitosis is important in defining a microdomain around the nucleus and mitotic spindle in early Drosophila embryos [Parry, McDougall and Whitaker (2005) J. Cell Biol. 171, 47–59]. Nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Mitosis is prevented by the InsP3 antagonists Xestospongin C and heparin. Nuclear-localized transients and cortical transients rely on extraembryonic calcium, suggesting that ER calcium levels are maintained by calcium influx.
Collapse
Affiliation(s)
- H Parry
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, UK
| | | | | |
Collapse
|
48
|
Zeng X, Keyser B, Li M, Sikka SC. T-type (alpha1G) low voltage-activated calcium channel interactions with nitric oxide-cyclic guanosine monophosphate pathway and regulation of calcium homeostasis in human cavernosal cells. J Sex Med 2006; 2:620-30; discussion 630-3. [PMID: 16422819 DOI: 10.1111/j.1743-6109.2005.00115.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Nitric oxide-cyclic guanosine monophosphate (NO-cGMP)-mediated relaxation of cavernosal smooth muscle during erection is accompanied by a decrease in intracellular calcium concentrations ([Ca2+](i)). However, it is not known whether and how an increase in [Ca2+](i) is responsible for (i) initiating smooth muscle contraction/detumescence following relaxation; and (ii) maintaining the penis in a flaccid state under nonstimulating conditions. AIM To elucidate (i) the mechanism(s) of [Ca2+](i) homeostasis regulation in human cavernosal smooth muscle cells (HCSMC); and (ii) how NO-cGMP interacts with such [Ca2+](i) homeostasis. METHODS We evaluated the expression and function of both T-type and L-type Ca2+ channels in HCSMC by employing selective probes/inhibitors using various cellular and molecular techniques (e.g., reverse transcriptase and real-time polymerase chain reaction, cell proliferation assay, fura-2 Ca2+ fluorescence spectroscopy, enzyme-linked immuno-absorbent assay (ELISA)). MAIN OUTCOME MEASURE We have demonstrated for the first time significant interactions of NO-cGMP with the T-type (alpha1G) Ca2+ channel in HCSMC. RESULTS Our results suggest that in addition to NO-induced rapid and transient decrease in [Ca2+](i) that results in smooth muscle relaxation, NO-cGMP also enhanced mRNA expression of the T-type (alpha1G) Ca2+ channel resulting in delayed elevation of [Ca2+](i). This could be abolished by a selective T-channel blocker, NNC 55-0396. Another unique finding of this study is that dose-dependent HCSMC proliferation in vitro by NO is associated with the activation of the T-type (alpha1G) Ca2+ channel that regulates [Ca2+](i) homeostasis in these cells. CONCLUSIONS Human cavernosal cells express T-type (alpha1G) Ca2+ channels that are involved in maintaining [Ca2+](i) homeostasis and regulation of NO-cGMP-induced smooth muscle relaxation-contraction responsible for penile erection, flaccidity, and tonicity. Targeting these Ca2+ channels may (i) associate various comorbidities with the onset of erectile dysfunction; (ii) provide a biochemical basis for differences between therapeutic profiles of various phosphodiesterase type 5 inhibitors, especially in nonresponders to current therapy; and (iii) provide biochemical basis in understanding mechanism(s) of drug tolerance.
Collapse
Affiliation(s)
- Xiangbin Zeng
- Department of Urology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
50
|
Parry H, McDougall A, Whitaker M. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. ACTA ACUST UNITED AC 2005; 171:47-59. [PMID: 16216922 PMCID: PMC2171230 DOI: 10.1083/jcb.200503139] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell cycle calcium signals are generated by the inositol trisphosphate (InsP3)–mediated release of calcium from internal stores (Ciapa, B., D. Pesando, M. Wilding, and M. Whitaker. 1994. Nature. 368:875–878; Groigno, L., and M. Whitaker. 1998. Cell. 92:193–204). The major internal calcium store is the endoplasmic reticulum (ER); thus, the spatial organization of the ER during mitosis may be important in shaping and defining calcium signals. In early Drosophila melanogaster embryos, ER surrounds the nucleus and mitotic spindle during mitosis, offering an opportunity to determine whether perinuclear localization of ER conditions calcium signaling during mitosis. We establish that the nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Constructs that chelate InsP3 also prevent nuclear division. An analysis of nuclear calcium concentrations demonstrates that they are differentially regulated. These observations demonstrate that mitotic calcium signals in Drosophila embryos are confined to mitotic microdomains and offer an explanation for the apparent absence of detectable global calcium signals during mitosis in some cell types.
Collapse
Affiliation(s)
- Huw Parry
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne Medical School, Newcastle upon Tyne NE2 4HH, England, UK
| | | | | |
Collapse
|