1
|
Mandal P, Saha S, Prathigadapa R. Evidence of low velocity layers at the top and bottom of the Mantle Transition Zone (MTZ) below the Uttarakhand Himalaya, India. Sci Rep 2024; 14:17239. [PMID: 39060353 PMCID: PMC11282067 DOI: 10.1038/s41598-024-67941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The Mantle Transition Zone (MTZ) beneath the Uttarakhand Himalaya has been modelled using Common Conversion Point (CCP) stacking and depth-migration of radial P-receiver functions. In the Uttarakhand Himalaya region, the depths of the 410-km discontinuity (d410) and the 660-km discontinuity (d660) are estimated to be approximately 406 ± 8 km and 659 ± 10 km, respectively. Additionally, the thickness of the mantle transition zone (MTZ) is modelled to be 255 ± 7 km. The average arrival times for d410 and d660 conversions are (44.47 ± 1.33) s and (71.08 ± 1.29) s, respectively, indicating an undisturbed slightly deeper d410 and a deformed noticeably deeper d660 in the area. The model identifies the characteristics of the d410 and d660 mantle discontinuities beneath the Lesser Himalayan region, revealing a thickening of the MTZ towards northeast, which could be due to gradual cooling or thickening of the Indian lithosphere towards its northern limit. We simulate a low-velocity layer (perhaps partially molten) above the d410 discontinuity at depths of 350 to 385 km, indicating the presence of a hydrated MTZ beneath the area. We also interpret a negative phase at d660 as a low-velocity layer between 590 and 640 km depths, which could be attributed to the accumulation of old subducted oceanic materials or increased water content at the bottom of the MTZ. Our results suggest the presence of residues from paleo-subducted lithospheric slabs in and below the mantle transition zone underlying the Uttarakhand Himalayas.
Collapse
Affiliation(s)
- Prantik Mandal
- CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad, Telangana, 500007, India.
| | - Satish Saha
- CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Raju Prathigadapa
- CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad, Telangana, 500007, India
| |
Collapse
|
2
|
Li J, Ferrand TP, Zhou T, Ritsema J, Stixrude L, Chen M. Ultra-low-velocity anomaly inside the Pacific Slab near the 410-km discontinuity. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:149. [PMID: 37193082 PMCID: PMC10155659 DOI: 10.1038/s43247-023-00756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/13/2023] [Indexed: 05/18/2023]
Abstract
The upper boundary of the mantle transition zone, known as the "410-km discontinuity", is attributed to the phase transformation of the mineral olivine (α) to wadsleyite (β olivine). Here we present observations of triplicated P-waves from dense seismic arrays that constrain the structure of the subducting Pacific slab near the 410-km discontinuity beneath the northern Sea of Japan. Our analysis of P-wave travel times and waveforms at periods as short as 2 s indicates the presence of an ultra-low-velocity layer within the cold slab, with a P-wave velocity that is at least ≈20% lower than in the ambient mantle and an apparent thickness of ≈20 km along the wave path. This ultra-low-velocity layer could contain unstable material (e.g., poirierite) with reduced grain size where diffusionless transformations are favored.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824 USA
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 USA
| | - Thomas P. Ferrand
- Institüt für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, Berlin, 12249 Germany
| | - Tong Zhou
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824 USA
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 USA
- Aramco Research Center, Beijing–Aramco Asia, Beijing, 100102 China
| | - Jeroen Ritsema
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 USA
| | - Lars Stixrude
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 USA
| | - Min Chen
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824 USA
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
3
|
Peng SX, Yin Z, Zhang T, Yang Q, Yu H, ZENG M. Vibration assisted glass-formation in zeolitic imidazolate framework. J Chem Phys 2022; 157:104501. [DOI: 10.1063/5.0109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New glass forming method is essential for broadening the scope of liquid and glassy metal-organic frameworks (MOFs) due to limitations of the conventional melt-quenching method. Herein we show that in-situ mechanical vibration can facilitate the framework melting at lower temperature and produce glassy MOFs with unique properties. Using ZIF-62 as a concept-proofing material, in-situ mechanical vibration enables low-temperature melting at 653 K, far below its melting point (713 K). The resulted vibrated ZIF-62 glass exhibited a lower glass transition temperature of 545 K, improved gas accessible porosity and pronounced short-to-medium range structures compared to the corresponding melt-quenched glass. We propose that vibration facilitated surface reconstruction facilitates pre-melting, which could be the cause of the lowered melting temperature. The vibration assisted method represents a new general method to produce MOF glasses without thermal decomposition.
Collapse
Affiliation(s)
| | - Zheng Yin
- Shaanxi University of Science and Technology, China
| | - Tao Zhang
- Huazhong University of Science and Technology, China
| | - Qun Yang
- Huazhong University of Science and Technology, China
| | - HaiBin Yu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, China
| | | |
Collapse
|
4
|
High-Pressure Sound Velocity Measurements of Liquids Using In Situ Ultrasonic Techniques in a Multianvil Apparatus. MINERALS 2020. [DOI: 10.3390/min10020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sound velocity and equation of state of liquids provide important constraints on the generation, presence, and transport of silicate and metallic melts in the Earth’s interior. Unlike their solid counterparts, these properties of liquids pose great technical challenges to high-pressure measurements and are poorly constrained. Here we present the technical developments that have been made at the GSECARS beamline 13-ID-D of the Advanced Photon Source for the past several years for determination of sound velocity of liquids using the ultrasonic techniques in a 1000-ton Kawai-type multianvil apparatus. Temperature of the sound velocity measurements has been extended to ~2400 K at 4 GPa and ~2000 K at 8 GPa to enable studies of liquids with very high melting temperatures, such as the silicate liquids.
Collapse
|
5
|
Ohtani E. The role of water in Earth's mantle. Natl Sci Rev 2020; 7:224-232. [PMID: 34692034 PMCID: PMC8288861 DOI: 10.1093/nsr/nwz071] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/01/2019] [Accepted: 06/09/2019] [Indexed: 11/30/2022] Open
Abstract
Geophysical observations suggest that the transition zone is wet locally. Continental and oceanic sediment components together with the basaltic and peridotitic components might be transported and accumulated in the transition zone. Low-velocity anomalies at the upper mantle–transition zone boundary might be caused by the existence of dense hydrous magmas. Water can be carried farther into the lower mantle by the slabs. The anomalous Q and shear wave regions locating at the uppermost part of the lower mantle could be caused by the existence of fluid or wet magmas in this region because of the water-solubility contrast between the minerals in the transition zone and those in the lower mantle. δ-H solid solution AlO2H–MgSiO4H2 carries water into the lower mantle. Hydrogen-bond symmetrization exists in high-pressure hydrous phases and thus they are stable at the high pressures of the lower mantle. Thus, the δ-H solid solution in subducting slabs carries water farther into the bottom of the lower mantle. Pyrite FeO2Hx is formed due to a reaction between the core and hydrated slabs. This phase could be a candidate for the anomalous regions at the core–mantle boundary.
Collapse
Affiliation(s)
- Eiji Ohtani
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Abstract
Recent geophysical and petrological observations indicate the presence of water and hydrous melts in and around the mantle transition zone (MTZ), for example, prominent low-velocity zones detected by seismological methods. Experimental data and computational predictions describe the influence of water on elastic properties of mantle minerals. Using thermodynamic relationships and published databases, we calculated seismic velocities and densities of mantle rocks in and around the MTZ in the presence of water for a plausible range of mantle potential temperatures. We then computed synthetic receiver functions to explore the influence of different water distribution patterns on the teleseismic signature. The results may improve our understanding and interpretation of seismic observations of the MTZ.
Collapse
|
7
|
Abstract
The Earth's mantle transition zone (MTZ) is often considered an internal reservoir for water because its major minerals wadsleyite and ringwoodite can store several oceans of structural water. Whether it is a hydrous layer or an empty reservoir is still under debate. Previous studies suggested the MTZ may be saturated with iron metal. Here we show that metallic iron reacts with hydrous wadsleyite under the pressure and temperature conditions of the MTZ to form iron hydride or molecular hydrogen and silicate with less than tens of parts per million (ppm) water, implying that water enrichment is incompatible with iron saturation in the MTZ. With the current estimate of water flux to the MTZ, the iron metal preserved from early Earth could transform a significant fraction of subducted water into reduced hydrogen species, thus limiting the hydration of silicates in the bulk MTZ. Meanwhile, the MTZ would become gradually oxidized and metal depleted. As a result, water-rich region can still exist near modern active slabs where iron metal was consumed by reaction with subducted water. Heterogeneous water distribution resolves the apparent contradiction between the extreme water enrichment indicated by the occurrence of hydrous ringwoodite and ice VII in superdeep diamonds and the relatively low water content in bulk MTZ silicates inferred from electrical conductivity studies.
Collapse
|
8
|
Solomatova N, Caracas R. Pressure-Induced Coordination Changes in a Pyrolitic Silicate Melt From Ab Initio Molecular Dynamics Simulations. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2019; 124:11232-11250. [PMID: 32025456 PMCID: PMC6988478 DOI: 10.1029/2019jb018238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
With ab initio molecular dynamics simulations on a Na-, Ca-, Fe-, Mg-, and Al-bearing silicate melt of pyrolite composition, we examine the detailed changes in elemental coordination as a function of pressure and temperature. We consider the average coordination as well as the proportion and distribution of coordination environments at pressures and temperatures encompassing the conditions at which molten silicates may exist in present-day Earth and those of the Early Earth's magma ocean. At ambient pressure and 2,000 K, we find that the average coordination of cations with respect to oxygen is 4.0 for Si-O, 4.0 for Al-O, 3.7 for Fe-O, 4.6 for Mg-O, 5.9 for Na-O, and 6.2 for Ca-O. Although the coordination for iron with respect to oxygen may be underestimated, the coordination number for all other cations are consistent with experiments. By 15 GPa (2,000 K), the average coordination for Si-O remains at 4.0 but increases to 4.1 for Al-O, 4.2 for Fe-O, 4.9 for Mg-O, 8.0 for Na-O, and 6.8 for Ca-O. The coordination environment for Na-O remains approximately constant up to core-mantle boundary conditions (135 GPa and 4000 K) but increases to about 6 for Si-O, 6.5 for Al-O, 6.5 for Fe-O, 8 for Mg-O, and 9.5 for Ca-O. We discuss our results in the context of the metal-silicate partitioning behavior of siderophile elements and the viscosity changes of silicate melts at upper mantle conditions. Our results have implications for melt properties, such as viscosity, transport coefficients, thermal conductivities, and electrical conductivities, and will help interpret experimental results on silicate glasses.
Collapse
Affiliation(s)
- N.V. Solomatova
- CNRS, École Normale Supérieure de LyonLaboratoire de Géologie de Lyon, CNRS UMR 5276LyonFrance
| | - R. Caracas
- CNRS, École Normale Supérieure de LyonLaboratoire de Géologie de Lyon, CNRS UMR 5276LyonFrance
| |
Collapse
|
9
|
Freitas D, Manthilake G, Schiavi F, Chantel J, Bolfan-Casanova N, Bouhifd MA, Andrault D. Experimental evidence supporting a global melt layer at the base of the Earth's upper mantle. Nat Commun 2017; 8:2186. [PMID: 29259159 PMCID: PMC5736617 DOI: 10.1038/s41467-017-02275-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 11/26/2022] Open
Abstract
The low-velocity layer (LVL) atop the 410-km discontinuity has been widely attributed to dehydration melting. In this study, we experimentally reproduced the wadsleyite-to-olivine phase transformation in the upwelling mantle across the 410-km discontinuity and investigated in situ the sound wave velocity during partial melting of hydrous peridotite. Our seismic velocity model indicates that the globally observed negative Vs anomaly (−4%) can be explained by a 0.7% melt fraction in peridotite at the base of the upper mantle. The produced melt is richer in FeO (~33 wt.%) and H2O (~16.5 wt.%) and its density is determined to be 3.56–3.74 g cm−3. The water content of this gravitationally stable melt in the LVL corresponds to a total water content in the mantle transition zone of 0.22 ± 0.02 wt.%. Such values agree with estimations based on magneto-telluric observations. A 56–60 km thick low velocity layer exists at the base of the Earth’s upper mantle. Here, the authors experimentally reproduced the wadsleyite-to-olivine transition in the upwelling mantle and show that the low velocity anomaly can be explained by melting of hydrous peridotite.
Collapse
Affiliation(s)
- D Freitas
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France
| | - G Manthilake
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France.
| | - F Schiavi
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France
| | - J Chantel
- Department of Earth, Environmental and Planetary Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - N Bolfan-Casanova
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France
| | - M A Bouhifd
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France
| | - D Andrault
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France
| |
Collapse
|
10
|
Prescher C, Prakapenka VB, Stefanski J, Jahn S, Skinner LB, Wang Y. Beyond sixfold coordinated Si in SiO 2 glass at ultrahigh pressures. Proc Natl Acad Sci U S A 2017; 114:10041-10046. [PMID: 28874582 PMCID: PMC5617297 DOI: 10.1073/pnas.1708882114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the structure of SiO2 glass up to 172 GPa using high-energy X-ray diffraction. The combination of a multichannel collimator with diamond anvil cells enabled the measurement of structural changes in silica glass with total X-ray diffraction to previously unachievable pressures. We show that SiO2 first undergoes a change in Si-O coordination number from fourfold to sixfold between 15 and 50 GPa, in agreement with previous investigations. Above 50 GPa, the estimated coordination number continuously increases from 6 to 6.8 at 172 GPa. Si-O bond length shows first an increase due to the fourfold to sixfold coordination change and then a smaller linear decrease up to 172 GPa. We reconcile the changes in relation to the oxygen-packing fraction, showing that oxygen packing decreases at ultrahigh pressures to accommodate the higher than sixfold Si-O coordination. These results give experimental insight into the structural changes of silicate glasses as analogue materials for silicate melts at ultrahigh pressures.
Collapse
Affiliation(s)
- Clemens Prescher
- Institut für Geologie und Mineralogie, Universität zu Köln, 50674 Köln, Germany;
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637
| | - Johannes Stefanski
- Institut für Geologie und Mineralogie, Universität zu Köln, 50674 Köln, Germany
| | - Sandro Jahn
- Institut für Geologie und Mineralogie, Universität zu Köln, 50674 Köln, Germany
| | - Lawrie B Skinner
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
- Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794-2100
| | - Yanbin Wang
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637
| |
Collapse
|
11
|
Abstract
Knowledge about the incorporation and role of carbon in silicate magmas is crucial for our understanding of the deep mantle processes. CO2 bearing silicate melting and its relevance in the upper mantle regime have been extensively explored. Here we report first-principles molecular dynamics simulations of MgSiO3 melt containing carbon in three distinct oxidation states - CO2, CO, and C at conditions relevant for the whole mantle. Our results show that at low pressures up to 15 GPa, the carbon dioxide speciation is dominated by molecular form and carbonate ions. At higher pressures, the dominant species are silicon-polyhedral bound carbonates, tetrahedral coordination, and polymerized di-carbonates. Our results also indicate that CO2 component remains soluble in the melt at high pressures and the solution is nearly ideal. However, the elemental carbon and CO components show clustering of carbon atoms in the melt at high pressures, hinting towards possible exsolution of carbon from silicate melt at reduced oxygen contents. Although carbon lowers the melt density, the effect is modest at high pressures. Hence, it is likely that silicate melt above and below the mantle transition zone, and atop the core-mantle boundary could efficiently sequester significant amounts of carbon without being gravitationally unstable.
Collapse
|
12
|
Ghosh DB, Karki BB. Solid-liquid density and spin crossovers in (Mg, Fe)O system at deep mantle conditions. Sci Rep 2016; 6:37269. [PMID: 27872491 PMCID: PMC5118715 DOI: 10.1038/srep37269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022] Open
Abstract
The low/ultralow-velocity zones in the Earth's mantle can be explained by the presence of partial melting, critically depending on density contrast between the melt and surrounding solid mantle. Here, first-principles molecular dynamics simulations of (Mg, Fe) O ferropericlase in the solid and liquid states show that their densities increasingly approach each other as pressure increases. The isochemical density difference between them diminishes from 0.78 (±0.7) g/cm3 at zero pressure (3000 K) to 0.16 (±0.04) g/cm3 at 135 GPa (4000 K) for pure and alloyed compositions containing up to 25% iron. The simulations also predict a high-spin to low-spin transition of iron in the liquid ferropericlase gradually occurring over a pressure interval centered at 55 GPa (4000 K) accompanied by a density increase of 0.14 (±0.02) g/cm3. Temperature tends to widen the transition to higher pressure. The estimated iron partition coefficient between the solid and liquid ferropericlase varies from 0.3 to 0.6 over the pressure range of 23 to 135 GPa. Based on these results, an excess of as low as 5% iron dissolved in the liquid could cause the solid-liquid density crossover at conditions of the lowermost mantle.
Collapse
Affiliation(s)
- Dipta B. Ghosh
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803
| | - Bijaya B. Karki
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
13
|
Bajgain S, Ghosh DB, Karki BB. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat Commun 2015; 6:8578. [PMID: 26450568 PMCID: PMC4633951 DOI: 10.1038/ncomms9578] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/06/2015] [Indexed: 11/11/2022] Open
Abstract
The origin and stability of deep-mantle melts, and the magmatic processes at different times of Earth's history are controlled by the physical properties of constituent silicate liquids. Here we report density functional theory-based simulations of model basalt, hydrous model basalt and near-MORB to assess the effects of iron and water on the melt structure and density, respectively. Our results suggest that as pressure increases, all types of coordination between major cations and anions strongly increase, and the water speciation changes from isolated species to extended forms. These structural changes are responsible for rapid initial melt densification on compression thereby making these basaltic melts possibly buoyantly stable at one or more depths. Our finding that the melt-water system is ideal (nearly zero volume of mixing) and miscible (negative enthalpy of mixing) over most of the mantle conditions strengthens the idea of potential water enrichment of deep-mantle melts and early magma ocean.
Collapse
Affiliation(s)
- Suraj Bajgain
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Dipta B. Ghosh
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Bijaya B. Karki
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
14
|
Influence of Water on Major Phase Transitions in the Earth's Mantle. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/168gm08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Lizarralde D, Chave A, Hirth G, Schultz A. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/95jb01244] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
|
17
|
Li C, van der Hilst RD. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jb006882] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Karki BB, Stixrude LP. Viscosity of MgSiO3 Liquid at Earth's Mantle Conditions: Implications for an Early Magma Ocean. Science 2010; 328:740-2. [DOI: 10.1126/science.1188327] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Bagley B, Revenaugh J. Upper mantle seismic shear discontinuities of the Pacific. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jb005692] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Agee CB. Compressibility of water in magma and the prediction of density crossovers in mantle differentiation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4239-4252. [PMID: 18826929 DOI: 10.1098/rsta.2008.0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt ( partial differentialV-H2O/ partial differentialP) is highly dependent on pressure regime. Thus, H2O can be thought of as the most compressible 'liquid oxide' component in silicate melt at low pressure, but at high pressure its compressibility resembles that of other liquid oxide components. A best-fit curve to the data on V-H2O from various studies allows calculation of hydrous melt compression curves relevant to high-pressure planetary differentiation. From these compression curves, crystal-liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410km discontinuity, and, although not required to be hydrous, atop the core-mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted.
Collapse
Affiliation(s)
- Carl B Agee
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
21
|
Duffy TS. Some recent advances in understanding the mineralogy of Earth's deep mantle. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4273-4293. [PMID: 18826921 DOI: 10.1098/rsta.2008.0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO3 in the CaIrO3-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).
Collapse
Affiliation(s)
- Thomas S Duffy
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
22
|
Litasov KD, Ohtani E, Nishihara Y, Suzuki A, Funakoshi K. Thermal equation of state of Al- and Fe-bearing phase D. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb004937] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Konstantin D. Litasov
- Department of Earth and Planetary Materials Science; Graduate School of Science, Tohoku University; Sendai Japan
| | - Eiji Ohtani
- Department of Earth and Planetary Materials Science; Graduate School of Science, Tohoku University; Sendai Japan
| | - Yu Nishihara
- Department of Earth and Planetary Sciences; Tokyo Institute of Technology; Tokyo Japan
| | - Akio Suzuki
- Department of Earth and Planetary Materials Science; Graduate School of Science, Tohoku University; Sendai Japan
| | - Kenichi Funakoshi
- SPring-8; Japan Synchrotron Radiation Research Insititute; Kouto, Hyogo Japan
| |
Collapse
|
23
|
Lee SK, Lin JF, Cai YQ, Hiraoka N, Eng PJ, Okuchi T, Mao HK, Meng Y, Hu MY, Chow P, Shu J, Li B, Fukui H, Lee BH, Kim HN, Yoo CS. X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth's mantle. Proc Natl Acad Sci U S A 2008; 105:7925-9. [PMID: 18535140 PMCID: PMC2413174 DOI: 10.1073/pnas.0802667105] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Indexed: 11/18/2022] Open
Abstract
Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; 3O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.
Collapse
Affiliation(s)
- Sung Keun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Toffelmier DA, Tyburczy JA. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 2007; 447:991-4. [PMID: 17581582 DOI: 10.1038/nature05922] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/10/2007] [Indexed: 11/09/2022]
Abstract
A deep-seated melt or fluid layer on top of the 410-km-deep seismic discontinuity in Earth's upper mantle, as proposed in the transition-zone 'water filter' hypothesis, may have significant bearing on mantle dynamics and chemical differentiation. The geophysical detection of such a layer has, however, proved difficult. Magnetotelluric and geomagnetic depth sounding are geophysical methods sensitive to mantle melt. Here we use these methods to search for a distinct structure near 410-km depth. We calculate one-dimensional forward models of the response of electrical conductivity depth profiles, based on mineral physics studies of the effect of incorporating hydrogen in upper-mantle and transition-zone minerals. These models indicate that a melt layer at 410-km depth is consistent with regional magnetotelluric and geomagnetic depth sounding data from the southwestern United States (Tucson). The 410-km-deep melt layer in this model has a conductance of 3.0 x 10(4) S and an estimated thickness of 5-30 km. This is the only regional data set that we have examined for which such a melt layer structure was found, consistent with regional seismic studies. We infer that the hypothesized transition-zone water filter occurs regionally, but that such a layer is unlikely to be a global feature.
Collapse
Affiliation(s)
- Daniel A Toffelmier
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404, USA
| | | |
Collapse
|
26
|
Zheng Y, Lay T, Flanagan MP, Williams Q. Pervasive Seismic Wave Reflectivity and Metasomatism of the Tonga Mantle Wedge. Science 2007; 316:855-9. [PMID: 17431138 DOI: 10.1126/science.1138074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.
Collapse
Affiliation(s)
- Yingcai Zheng
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
27
|
Sakamaki T, Suzuki A, Ohtani E. Stability of hydrous melt at the base of the Earth's upper mantle. Nature 2006; 439:192-4. [PMID: 16407950 DOI: 10.1038/nature04352] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 10/18/2005] [Indexed: 11/08/2022]
Abstract
Seismological observations have revealed the existence of low-velocity and high-attenuation zones above the discontinuity at 410 km depth, at the base of the Earth's upper mantle. It has been suggested that a small amount of melt could be responsible for such anomalies. The density of silicate melt under dry conditions has been measured at high pressure and found to be denser than the surrounding solid, thereby allowing the melt to remain at depth. But no experimental investigation of the density of hydrous melt has yet been carried out. Here we present data constraining the density of hydrous basaltic melt under pressure to examine the stability of melt above the 410-km discontinuity. We infer that hydrous magma formed by partial melting above the 410-km discontinuity may indeed be gravitationally stable, thereby supporting the idea that low-velocity or high-attentuation regions just above the mantle transition zone may result from the presence of melt.
Collapse
Affiliation(s)
- Tatsuya Sakamaki
- Department of Earth and Planetary Material Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | |
Collapse
|
28
|
Chambers K, Deuss A, Woodhouse JH. Reflectivity of the 410-km discontinuity fromPPandSSprecursors. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jb003345] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. Chambers
- Department of Earth Sciences; University of Oxford; Oxford UK
| | - A. Deuss
- Institute of Theoretical Geophysics, Department of Earth Sciences; University of Cambridge; Cambridge UK
| | - J. H. Woodhouse
- Department of Earth Sciences; University of Oxford; Oxford UK
| |
Collapse
|
29
|
Song TRA, Helmberger DV, Grand SP. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 2004; 427:530-3. [PMID: 14765192 DOI: 10.1038/nature02231] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022]
Abstract
The seismic discontinuity at 410 km depth in the Earth's mantle is generally attributed to the phase transition of (Mg,Fe)2SiO4 (refs 1, 2) from the olivine to wadsleyite structure. Variation in the depth of this discontinuity is often taken as a proxy for mantle temperature owing to its response to thermal perturbations. For example, a cold anomaly would elevate the 410-km discontinuity, because of its positive Clapeyron slope, whereas a warm anomaly would depress the discontinuity. But trade-offs between seismic wave-speed heterogeneity and discontinuity topography often inhibit detailed analysis of these discontinuities, and structure often appears very complicated. Here we simultaneously model seismic refracted waves and scattered waves from the 410-km discontinuity in the western United States to constrain structure in the region. We find a low-velocity zone, with a shear-wave velocity drop of 5%, on top of the 410-km discontinuity beneath the northwestern United States, extending from southwestern Oregon to the northern Basin and Range province. This low-velocity zone has a thickness that varies from 20 to 90 km with rapid lateral variations. Its spatial extent coincides with both an anomalous composition of overlying volcanism and seismic 'receiver-function' observations observed above the region. We interpret the low-velocity zone as a compositional anomaly, possibly due to a dense partial-melt layer, which may be linked to prior subduction of the Farallon plate and back-arc extension. The existence of such a layer could be indicative of high water content in the Earth's transition zone.
Collapse
Affiliation(s)
- Teh-Ru Alex Song
- Seismological Laboratory, Division of Geological and Planetary Science, California Institute of Technology, California 91125, USA.
| | | | | |
Collapse
|
30
|
Bercovici D, Karato SI. Whole-mantle convection and the transition-zone water filter. Nature 2003; 425:39-44. [PMID: 12955133 DOI: 10.1038/nature01918] [Citation(s) in RCA: 548] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 07/18/2003] [Indexed: 11/09/2022]
Abstract
Because of their distinct chemical signatures, ocean-island and mid-ocean-ridge basalts are traditionally inferred to arise from separate, isolated reservoirs in the Earth's mantle. Such mantle reservoir models, however, typically satisfy geochemical constraints, but not geophysical observations. Here we propose an alternative hypothesis that, rather than being divided into isolated reservoirs, the mantle is filtered at the 410-km-deep discontinuity. We propose that, as the ascending ambient mantle (forced up by the downward flux of subducting slabs) rises out of the high-water-solubility transition zone (between the 660 km and 410 km discontinuities) into the low-solubility upper mantle above 410 km, it undergoes dehydration-induced partial melting that filters out incompatible elements. The filtered, dry and depleted solid phase continues to rise to become the source material for mid-ocean-ridge basalts. The wet, enriched melt residue may be denser than the surrounding solid and accordingly trapped at the 410 km boundary until slab entrainment returns it to the deeper mantle. The filter could be suppressed for both mantle plumes (which therefore generate wetter and more enriched ocean-island basalts) as well as the hotter Archaean mantle (thereby allowing for early production of enriched continental crust). We propose that the transition-zone water-filter model can explain many geochemical observations while avoiding the major pitfalls of invoking isolated mantle reservoirs.
Collapse
Affiliation(s)
- David Bercovici
- Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520-8109, USA.
| | | |
Collapse
|
31
|
|
32
|
Karato SI. Mapping water content in the upper mantle. INSIDE THE SUBDUCTION FACTORY 2003. [DOI: 10.1029/138gm08] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
|
34
|
Flanagan MP, Shearer PM. Topography on the 410-km seismic velocity discontinuity near subduction zones from stacking ofsS,sP, andpPprecursors. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98jb00595] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Katzman R, Zhao L, Jordan TH. High-resolution, two-dimensional vertical tomography of the central Pacific mantle usingScSreverberations and frequency-dependent travel times. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98jb00504] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
|
37
|
Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 1998. [DOI: 10.1038/33663] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|