1
|
Zhou JS, Xu RZ, Yu XQ, Cheng FJ, Zhao WX, Du X, Wang SZ, Zhang QQ, Gu X, He SM, Li YD, Ren MQ, Ma XC, Xue QK, Chen YL, Song CL, Yang LX. Evidence for Band Renormalizations in Strong-Coupling Superconducting Alkali-Fulleride Films. PHYSICAL REVIEW LETTERS 2023; 130:216004. [PMID: 37295091 DOI: 10.1103/physrevlett.130.216004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 06/12/2023]
Abstract
There has been a long-standing debate about the mechanism of the unusual superconductivity in alkali-intercalated fullerides. In this Letter, using high-resolution angle-resolved photoemission spectroscopy, we systematically investigate the electronic structures of superconducting K_{3}C_{60} thin films. We observe a dispersive energy band crossing the Fermi level with the occupied bandwidth of about 130 meV. The measured band structure shows prominent quasiparticle kinks and a replica band involving the Jahn-Teller active phonon modes, which reflects strong electron-phonon coupling in the system. The electron-phonon coupling constant is estimated to be about 1.2, which dominates the quasiparticle mass renormalization. Moreover, we observe an isotropic nodeless superconducting gap beyond the mean-field estimation (2Δ/k_{B}T_{c}≈5). Both the large electron-phonon coupling constant and large reduced superconducting gap suggest a strong-coupling superconductivity in K_{3}C_{60}, while the electronic correlation effect is suggested by the observation of a waterfall-like band dispersion and the small bandwidth compared with the effective Coulomb interaction. Our results not only directly visualize the crucial band structure but also provide important insights into the mechanism of the unusual superconductivity of fulleride compounds.
Collapse
Affiliation(s)
- J S Zhou
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - R Z Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - X Q Yu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - F J Cheng
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - W X Zhao
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - X Du
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - S Z Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Q Q Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - X Gu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - S M He
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Y D Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - M Q Ren
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - X C Ma
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Q K Xue
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Y L Chen
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China
| | - C L Song
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - L X Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
2
|
Sobirey L, Biss H, Luick N, Bohlen M, Moritz H, Lompe T. Observing the Influence of Reduced Dimensionality on Fermionic Superfluids. PHYSICAL REVIEW LETTERS 2022; 129:083601. [PMID: 36053698 DOI: 10.1103/physrevlett.129.083601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Understanding the origins of unconventional superconductivity has been a major focus of condensed matter physics for many decades. While many questions remain unanswered, experiments have found the highest critical temperatures in layered two-dimensional materials. However, to what extent the remarkable stability of these strongly correlated 2D superfluids is affected by their reduced dimensionality is still an open question. Here, we use dilute gases of ultracold fermionic atoms as a model system to directly observe the influence of dimensionality on the stability of strongly interacting fermionic superfluids. We find that the superfluid gap follows the same universal function of the interaction strength regardless of dimensionality, which suggests that there is no inherent difference in the stability of two- and three-dimensional fermionic superfluids. Finally, we compare our data to results from solid state systems and find a similar relation between the interaction strength and the gap for a wide range of two- and three-dimensional superconductors.
Collapse
Affiliation(s)
- Lennart Sobirey
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hauke Biss
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Niclas Luick
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Markus Bohlen
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Henning Moritz
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| | - Thomas Lompe
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg
| |
Collapse
|
3
|
Cantaluppi A, Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Riccò M, Perucchi A, Di Pietro P, Cavalleri A. Pressure tuning of light-induced superconductivity in K 3C 60. NATURE PHYSICS 2018; 14:837-841. [PMID: 30079096 PMCID: PMC6071848 DOI: 10.1038/s41567-018-0134-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optical excitation at terahertz frequencies has emerged as an effective means to dynamically manipulate complex materials. In the molecular solid K3C60, short mid-infrared pulses transform the high-temperature metal into a non-equilibrium state with the optical properties of a superconductor. Here we tune this effect with hydrostatic pressure and find that the superconducting-like features gradually disappear at around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth induced by pressure is also detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesised previously, and rather extends all the way to room temperature.
Collapse
Affiliation(s)
- A. Cantaluppi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - M. Buzzi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - G. Jotzu
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - D. Nicoletti
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - M. Mitrano
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - D. Pontiroli
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parma, Italy
| | - M. Riccò
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parma, Italy
| | - A. Perucchi
- INSTM UdR Trieste-ST and Elettra–Sincrotrone Trieste, Trieste, Italy
| | - P. Di Pietro
- INSTM UdR Trieste-ST and Elettra–Sincrotrone Trieste, Trieste, Italy
| | - A. Cavalleri
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Oxford University, Clarendon Laboratory, Oxford UK
| |
Collapse
|
4
|
Arita R, Koretsune T, Sakai S, Akashi R, Nomura Y, Sano W. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28060417 DOI: 10.1002/adma.201602421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Indexed: 02/05/2023]
Abstract
Recent progress in the fully nonempirical calculation of the superconducting transition temperature (Tc ) is reviewed. Especially, this study focuses on three representative light-element high-Tc superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that Tc is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of Tc . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-Tc superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-Tc superconductors will provide a firm ground for future materials design of new superconductors.
Collapse
Affiliation(s)
- Ryotaro Arita
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- JST ERATO Isobe Degenerate π-Integration Project, Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Takashi Koretsune
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shiro Sakai
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
| | - Ryosuke Akashi
- Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Nomura
- Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128, Palaiseau, France
| | - Wataru Sano
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
5
|
Nomura Y, Sakai S, Capone M, Arita R. Exotic s-wave superconductivity in alkali-doped fullerides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:153001. [PMID: 26974650 DOI: 10.1088/0953-8984/28/15/153001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.
Collapse
Affiliation(s)
- Yusuke Nomura
- Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
6
|
Possible light-induced superconductivity in K3C60 at high temperature. Nature 2016; 530:461-4. [PMID: 26855424 PMCID: PMC4820655 DOI: 10.1038/nature16522] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022]
Abstract
The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects like the optical enhancement of superconductivity 1 . Recently, nonlinear excitation 2 , 3 of certain phonons in bilayer cuprates was shown to induce superconducting-like optical properties at temperatures far above Tc4,5,6. This effect was accompanied by the disruption of competing charge-density-wave correlations7,8, which explained some but not all of the experimental results. Here, we report a similar phenomenon in a very different compound. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. Strikingly, these same signatures are observed at equilibrium when cooling metallic K3C60 below the superconducting transition temperature (Tc = 20 K). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this scenario as a possible explanation of our results.
Collapse
|
7
|
Hesper R, Tjeng LH, Heeres A, Sawatzky GA. BCS-like density of states in superconducting A3C60 surfaces. PHYSICAL REVIEW LETTERS 2000; 85:1970-1973. [PMID: 10970660 DOI: 10.1103/physrevlett.85.1970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2000] [Indexed: 05/23/2023]
Abstract
We report on an ultrahigh resolution photoemission study on the topmost molecular layer of K3C60 and Rb3C60 films below and above the superconducting transition temperature T(C). We observed not only clear evidence for the opening of the superconducting gap, but also a modification in the photoemission line shape consistent with a change from a normal-metallic to a BCS-like density of states, including the formation of a condensation peak. The data can be accurately modeled by a BCS-type function with a gap Delta derived from T(C) in the weak-coupling limit ( 2Delta/k(B)T(C) = 3.53).
Collapse
Affiliation(s)
- R Hesper
- Solid State Physics Laboratory, Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | | | | | | |
Collapse
|
8
|
Koller D, Martin MC, Mihály L, Mihály G, Oszlányi G, Baumgartner G, Forró L. Energy Gap in Superconducting Fullerides: Optical and Tunneling Studies. PHYSICAL REVIEW LETTERS 1996; 77:4082-4085. [PMID: 10062383 DOI: 10.1103/physrevlett.77.4082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
9
|
Neminsky AM, Shovkun DV, Vyaselev OT. ac susceptibility of Rb3C60 fine powder. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:454-461. [PMID: 9984280 DOI: 10.1103/physrevb.54.454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
10
|
Choi HY. Finite bandwidth effects on the transition temperature and NMR relaxation rate of impure superconductors. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 53:8591-8598. [PMID: 9982368 DOI: 10.1103/physrevb.53.8591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Zhang GP, Ma YS, Sun X, Lee KH, Park TY. Pairing in C60: A Gutzwiller approach. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 52:6081-6086. [PMID: 9981798 DOI: 10.1103/physrevb.52.6081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Gunnarsson O, Handschuh H, Bechthold PS, Kessler B, Ganteför G, Eberhardt W. Photoemission spectra of C60-: Electron-phonon coupling, Jahn-Teller effect, and superconductivity in the fullerides. PHYSICAL REVIEW LETTERS 1995; 74:1875-1878. [PMID: 10057779 DOI: 10.1103/physrevlett.74.1875] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
13
|
Iwasa Y, Kaneyasu T. Optical study of electronic structures and phonons in alkali-metal-doped C60. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:3678-3685. [PMID: 9979183 DOI: 10.1103/physrevb.51.3678] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|