1
|
Mansouri FA, Kievit RA, Buckley MJ. Executive control fluctuations underlie behavioral variability in anthropoids. Trends Cogn Sci 2025; 29:331-343. [PMID: 39562262 DOI: 10.1016/j.tics.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
In complex tasks requiring cognitive control, humans show trial-by-trial alterations in response time (RT), which are evident even when sensory-motor or other contextual aspects of the task remain stable. Exaggerated intra-individual RT variability is associated with brain injuries and frequently seen in aging and neuropsychological disorders. In this opinion, we discuss recent electrophysiology and imaging studies in humans and neurobiological studies in monkeys that indicate RT variability is linked with executive control fluctuation and that prefrontal cortical regions play essential, but dissociable, roles in such fluctuation of control and the resulting behavioral variability. We conclude by discussing emerging models proposing that both extremes of behavioral variability (significantly higher or lower) might reflect aberrant alterations in various aspects of decision-making processes.
Collapse
Affiliation(s)
- Farshad A Mansouri
- Department of Physiology, Biomedical Discovery Institute, Monash University, Melbourne, Australia.
| | - Rogier A Kievit
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, UK
| |
Collapse
|
2
|
Bein O, Niv Y. Schemas, reinforcement learning and the medial prefrontal cortex. Nat Rev Neurosci 2025; 26:141-157. [PMID: 39775183 DOI: 10.1038/s41583-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Schemas are rich and complex knowledge structures about the typical unfolding of events in a context; for example, a schema of a dinner at a restaurant. In this Perspective, we suggest that reinforcement learning (RL), a computational theory of learning the structure of the world and relevant goal-oriented behaviour, underlies schema learning. We synthesize literature about schemas and RL to offer that three RL principles might govern the learning of schemas: learning via prediction errors, constructing hierarchical knowledge using hierarchical RL, and dimensionality reduction through learning a simplified and abstract representation of the world. We then suggest that the orbitomedial prefrontal cortex is involved in both schemas and RL due to its involvement in dimensionality reduction and in guiding memory reactivation through interactions with posterior brain regions. Last, we hypothesize that the amount of dimensionality reduction might underlie gradients of involvement along the ventral-dorsal and posterior-anterior axes of the orbitomedial prefrontal cortex. More specific and detailed representations might engage the ventral and posterior parts, whereas abstraction might shift representations towards the dorsal and anterior parts of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Psychology Department, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Pais RC, Goldani A, Hutchison J, Mazrouei A, Khavaninzadeh M, Molina LA, Sutherland RJ, Mohajerani MH. Assessing cognitive flexibility in mice using a custom-built touchscreen chamber. Front Behav Neurosci 2025; 19:1536458. [PMID: 40017733 PMCID: PMC11865062 DOI: 10.3389/fnbeh.2025.1536458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Automated touchscreen systems have become increasingly prevalent in rodent model screening. This technology has significantly enhanced cognitive and behavioral assessments in mice and has bridged the translational gap between basic research using rodent models and human clinical research. Our study introduces a custom-built touchscreen operant conditioning chamber powered by a Raspberry Pi and a commercially available computer tablet, which effectively addresses the significant cost barriers traditionally associated with this technology. In order to test our prototype, we decided to train C57BL/6 mice on a visual discrimination serial-reversal task, and both C57BL/6 and AppNL-G-Fstrain - an Alzheimer's Disease (AD) mouse model - on a new location discrimination serial-reversal task. The results demonstrated a clear progression toward asymptotic performance, particularly in the location discrimination task, which also revealed potential genotype-specific deficits, with AppNL-G-F mice displaying an increase in the average number of errors in the first reversal as well as in perseverative errors, compared to wild-type mice. These results validate the practical utility of our touchscreen apparatus and underline its potential to provide insights into the behavioral and cognitive markers of neurobiological disorders.
Collapse
Affiliation(s)
- Rui C. Pais
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ali Goldani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jayden Hutchison
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Amirhossein Mazrouei
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Mostafa Khavaninzadeh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Leonardo A. Molina
- Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J. Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Nigro M, Tortorelli LS, Garad M, Zlebnik NE, Yang H. Locus coeruleus modulation of single-cell representation and population dynamics in the mouse prefrontal cortex during attentional switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571356. [PMID: 38168151 PMCID: PMC10760137 DOI: 10.1101/2023.12.13.571356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Behavioral flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies and internal demands, is fundamental to cognitive functions. Despite a large body of pharmacology and lesion studies, the precise neurophysiological mechanisms that underlie behavioral flexibility are still under active investigations. This work is aimed to determine the role of a brainstem-to-prefrontal cortex circuit in flexible rule switching. We trained mice to perform a set-shifting task, in which they learned to switch attention to distinguish complex sensory cues. Using chemogenetic inhibition, we selectively targeted genetically-defined locus coeruleus (LC) neurons or their input to the medial prefrontal cortex (mPFC). We revealed that suppressing either the LC or its mPFC projections severely impaired switching behavior, establishing the critical role of the LC-mPFC circuit in supporting attentional switching. To uncover the neurophysiological substrates of the behavioral deficits, we paired endoscopic calcium imaging of the mPFC with chemogenetic inhibition of the LC in task-performing mice. We found that mPFC prominently responded to attentional switching and that LC inhibition not only enhanced the engagement of mPFC neurons but also broadened single-neuron tuning in the task. At the population level, LC inhibition disrupted mPFC dynamic changes and impaired the encoding capacity for switching. Our results highlight the profound impact of the ascending LC input on modulating prefrontal dynamics and provide new insights into the cellular and circuit-level mechanisms that support behavioral flexibility.
Collapse
|
5
|
Wang Y, Liu W, Yang W, Chai X, Yu H, Ma H, Liu L, Rao J, Xu G, Hu Z. Differential Abnormality in Regional Brain Spontaneous Activity and Functional Connectivity in Patients of Non-Acute Subcortical Stroke With Versus Without Global Cognitive Functional Impairment. Brain Behav 2025; 15:e70356. [PMID: 40001287 PMCID: PMC11860280 DOI: 10.1002/brb3.70356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Cognitive impairment after a stroke significantly affects patients' quality of life, yet not all strokes lead to such impairment, and the underlying reasons remain unclear. This study employs resting-state functional magnetic resonance imaging (rs-fMRI) to compare subcortical stroke patients with and without cognitive impairment. Our goal is to identify distinct abnormalities in regional brain spontaneous activity and functional connectivity (FC) to better understand the neural basis of post-stroke cognitive outcomes. METHODS A total of 62 first-ever non-acute subcortical stroke patients were classified into post-stroke with abnormal cognition (PSAC) and with normal cognition (PSNC) groups. Rs-MRI was utilized to assess regional homogeneity (ReHo) in 32 PSAC, 30 PSNC, and 62 age- and sex-matched healthy controls (HC). Then we performed the seed-based whole-brain FC analysis based on the ReHo results. A partial correlation analysis examined the relationship between altered ReHo or FC and Montreal Cognitive Assessment (MoCA) scores. RESULTS It showed varied activity in cognitive-related brain regions in both stroke groups compared to HC, such as the right superior frontal gyrus, the right middle temporal gyrus, the right postcentral gyrus, and the left cerebellar lobules. The PSAC group had increased activity in the bilateral inferior temporal gyrus as well. Significant differences in activity were also found between PSAC and PSNC groups, with the PSAC group showing decreased activity in the left gyrus rectus (REC) and increased activity in cerebellar lobules. FC analysis revealed decreased connections in the PSAC group, particularly involving the left REC. Activity and FC in left REC and cerebellum also significantly correlated with MoCA scores. CONCLUSIONS These findings suggest unique patterns of brain activity and connectivity in non-acute subcortical stroke patients with cognitive impairment, shedding light on potential neural mechanisms underlying post-stroke cognitive impairment. While the left REC may be a potential neural regulatory stimulus target in clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Rehabilitation MedicineThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Wan Liu
- Department of Rehabilitation MedicineThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Wenjie Yang
- Department of Rehabilitation MedicineThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Xue Chai
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Institution of Brain Functional ImagingNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Hao Yu
- Department of Biostatistics, School of Public HealthNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Li Liu
- Department of Rehabilitation MedicineThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Jiang Rao
- Department of Rehabilitation MedicineThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Guangxu Xu
- Rehabilitation Medicine CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
6
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Samandra R, Rosa MGP, Mansouri FA. How Do Common Marmosets Maintain the Balance Between Response Execution and Action Inhibition? Am J Primatol 2025; 87:e23717. [PMID: 39783787 PMCID: PMC11714342 DOI: 10.1002/ajp.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Socio-dynamic situations require a balance between response execution and action inhibition. Nonadaptive imbalance between response inhibition and execution exists in neurodevelopmental and neuropsychological disorders. To investigate the underlying neural mechanisms of cognitive control and the related deficits, comparative studies in human and nonhuman primates are crucial. Previous stop-signal tasks in humans and macaque monkeys have examined response execution (response time (RT) and accuracy in Go trials) and action inhibition (stop-signal reaction time (SSRT)). Even though marmosets are generally considered suitable translational animal models for research on social and cognitive deficits, their ability to inhibit behavior remains poorly characterized. We developed a marmoset stop-signal task, in which RT could be measured at millisecond resolution. All four marmosets performed many repeated Go trials with high accuracy (≥ 70%). Additionally, all marmosets successfully performed Stop trials. Using a performance-dependent tracking procedure, the accuracy in Stop trials was maintained around 50%, which enabled reliable SSRT estimates in marmosets for the first time. The mean SSRT values across sessions ranged between 677 and 1464 ms across the four marmosets. We also validated the suitability and practicality of this novel task for examining executive functions by testing the effects of a natural hormone, oxytocin, on response execution and action inhibition in marmosets. This marmoset model, for reliable (millisecond resolution) assessment of the balance between response execution and inhibition, will further facilitate studying the developmental alterations in inhibition ability and examining the effects of various contextual and environmental factors on marmosets' executive functions.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Marcello G. P. Rosa
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Farshad A. Mansouri
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
8
|
O'Connor S, Godfrey K, Reed S, Peill J, Rohani-Shukla C, Healy M, Robbins T, Frota Lisboa Pereira de Souza A, Tyacke R, Papasyrou M, Stenbæk D, Castro-Rodrigues P, Chiera M, Lee H, Martell J, Carhart-Harris R, Pellegrini L, Fineberg NA, Nutt D, Erritzoe D. Study Protocol for 'PsilOCD: A Pharmacological Challenge Study Evaluating the Effects of the 5-HT2A Agonist Psilocybin on the Neurocognitive and Clinical Correlates of Compulsivity'. Cureus 2025; 17:e78171. [PMID: 39882198 PMCID: PMC11775745 DOI: 10.7759/cureus.78171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a complex condition marked by persistent distressing thoughts and repetitive behaviours. Despite its prevalence, the mechanisms behind OCD remain elusive, and current treatments are limited. This protocol outlines an investigative study for individuals with OCD, exploring the potential of psilocybin to improve key components of cognition implicated in the disorder. The PsilOCD study strives to assess the effects of low-moderate psilocybin treatment (10 mg) alongside non-interventional therapy on several facets of OCD. The main focus points of PsilOCD are cognitive flexibility, measured with cognitive tests, and neuroplasticity, assessed through electroencephalography (EEG). METHODS 20 blinded participants with OCD will complete two dosing sessions, separated by four weeks, where they will receive 1 mg of psilocybin on the first and 10 mg on the second. The first dose serves as an active placebo, and the latter is a low-moderate dose that induces relatively mild-moderate emotional and perceptual effects. Participants will be supported by trained psychedelic therapists, who will sit with them during each dosing session and provide virtual preparation and integration sessions over the 12-week study period. Therapeutic support will be the same for both the 1 mg and 10 mg sessions. PsilOCD's primary outcomes include scores in the intradimensional-extradimensional (ID-ED) shift task, which is an established measure of cognitive flexibility, and neuroplasticity as quantified by a visual long-term potentiation (vLTP) task. This task is delivered as part of an EEG paradigm and measures acute quantified changes in neuroplasticity in the brain's visual system. The ID-ED task will be conducted twice, two days after each dosing session, and the EEG recordings will also be taken twice, immediately after each session. Secondary outcome assessments will include OCD and affective symptom severity, as well as an array of patient-reported outcome measures (PROMs), in the form of questionnaires designed to assess well-being, dissociable and well-established mood-related (affective) measures, and participants' subjective experience of the psilocybin experience. DISCUSSION This study's results are expected to offer critical insights into the neural mechanisms underlying the effects of psilocybin-assisted therapy in treating OCD, and whether these correlate with changes in the cognitive features of the condition. As a secondary aim, it will ascertain whether a low, tolerable dose is a feasible and efficacious clinical treatment, and will provide crucial data to guide the design of a potential follow-up randomised control trial (RCT).
Collapse
Affiliation(s)
- Sorcha O'Connor
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - Kate Godfrey
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - Sara Reed
- Department of Brain Sciences, Faculty of Medicine, Imperial College Lonson, London, GBR
| | - Joseph Peill
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - Cyrus Rohani-Shukla
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - Mairead Healy
- Department of Psychology, University of Cambridge, Cambridge, GBR
| | - Trevor Robbins
- Department of Psychology, University of Cambridge, Cambridge, GBR
| | | | - Robin Tyacke
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - Maria Papasyrou
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - Dea Stenbæk
- Department of Psychology, University of Copenhagen, Copenhagen, DNK
| | | | - Martina Chiera
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, ITA
| | - Hakjun Lee
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - Jonny Martell
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | | | - Luca Pellegrini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, ITA
- Department of Mental Health, Psychiatric Clinic, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), Trieste, ITA
| | - Naomi A Fineberg
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, GBR
- General Adult Psychiatry, Hertfordshire Partnership University NHS Foundation Trust, Hertfordshire, GBR
- Department of Psychiatry, Cambridge University Clinical Medical School, Cambridge, GBR
| | - David Nutt
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| | - David Erritzoe
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR
| |
Collapse
|
9
|
Drazan TM, Bradley SP, Jones AM, Allen‐Worthington KH, Chudasama Y. Improving Reproductive Success in Captive Marmosets Through Active Female Choice. Am J Primatol 2025; 87:e23689. [PMID: 39513469 PMCID: PMC11650941 DOI: 10.1002/ajp.23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
The recent upsurge in the use of common marmosets (Callithrix jacchus) as a desirable model for high-priority biomedical research has challenged local and global suppliers struggling to provide sufficient numbers of marmosets for large-scale projects. In laboratories, random male-female pairings are often unsuccessful, with intervals of several months before attempting alternate pairings. Here we address this challenge through a behavioral task that promotes self-directed female selection of potential mates to increase the efficiency of breeding in captive marmosets. We created a partner preference test in which nulliparous females (n = 12) had the opportunity to select between two eligible males (n = 23) at a time, in a forced choice test. In this test, both males and females displayed sexual solicitations. However, the females displayed a clear preference for one male by directing affiliative behaviors toward him including proceptive tongue-flicking, approach, and grooming. Her preference remained consistent across three consecutive test sessions. This method resulted in a 2.5-fold improvement in breeding success within 90 days compared to random pairings. This cost-effective and straightforward pairing practice can be used to enhance breeding efficiency in both small and large marmoset colonies.
Collapse
Affiliation(s)
- Taylor M. Drazan
- Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Sean P. Bradley
- Rodent Behavioral Core, National Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Aikeen M. Jones
- Veterinary Medicine and Resources Branch, National Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Krystal H. Allen‐Worthington
- Veterinary Medicine and Resources Branch, National Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Yogita Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
- Rodent Behavioral Core, National Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
10
|
Kosciessa JQ, Mayr U, Lindenberger U, Garrett DD. Broadscale dampening of uncertainty adjustment in the aging brain. Nat Commun 2024; 15:10717. [PMID: 39715747 DOI: 10.1038/s41467-024-55416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The ability to prioritize among input features according to relevance enables adaptive behaviors across the human lifespan. However, relevance often remains ambiguous, and such uncertainty increases demands for dynamic control. While both cognitive stability and flexibility decline during healthy ageing, it is unknown whether aging alters how uncertainty impacts perception and decision-making, and if so, via which neural mechanisms. Here, we assess uncertainty adjustment across the adult lifespan (N = 100; cross-sectional) via behavioral modeling and a theoretically informed set of EEG-, fMRI-, and pupil-based signatures. On the group level, older adults show a broad dampening of uncertainty adjustment relative to younger adults. At the individual level, older individuals whose modulation more closely resembled that of younger adults also exhibit better maintenance of cognitive control. Our results highlight neural mechanisms whose maintenance plausibly enables flexible task-set, perception, and decision computations across the adult lifespan.
Collapse
Affiliation(s)
- Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
11
|
Nippert KE, Rowland CP, Vazey EM, Moorman DE. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024; 260:110114. [PMID: 39134298 PMCID: PMC11694314 DOI: 10.1016/j.neuropharm.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Cognitive flexibility enables individuals to alter their behavior in response to changing environmental demands, facilitating optimal behavior in a dynamic world. The inability to do this, called behavioral inflexibility, is a pervasive behavioral phenotype in alcohol use disorder (AUD), driven by disruptions in cognitive flexibility. Research has repeatedly shown that behavioral inflexibility not only results from alcohol exposure across species but can itself be predictive of future drinking. Like many high-level executive functions, flexible behavior requires healthy functioning of the prefrontal cortex (PFC). The scope of this review addresses two primary themes: first, we outline tasks that have been used to investigate flexibility in the context of AUD or AUD models. We characterize these based on the task features and underlying cognitive processes that differentiate them from one another. We highlight the neural basis of flexibility measures, focusing on the PFC, and how acute or chronic alcohol in humans and non-human animal models impacts flexibility. Second, we consolidate findings on the molecular, physiological and functional changes in the PFC elicited by alcohol, that may contribute to cognitive flexibility deficits seen in AUD. Collectively, this approach identifies several key avenues for future research that will facilitate effective treatments to promote flexible behavior in the context of AUD, to reduce the risk of alcohol related harm, and to improve outcomes following AUD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn E Nippert
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Courtney P Rowland
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elena M Vazey
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Yu L, Liu MM, Guan MQ, Wang R, Yang XR, Zhang XM, Wei JJ, Wu SF, Gu H, Fu Q, Guo JH, Li YL. Peripheral CD4 + T cell phenotype and brain microglial activation associated with cognitive heterogeneity in aged rats. Immun Ageing 2024; 21:81. [PMID: 39543616 PMCID: PMC11562703 DOI: 10.1186/s12979-024-00486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Cognitive decline is a critical hallmark of brain aging. Although aging is a natural process, there is significant heterogeneity in cognition levels among individuals; however, the underlying mechanisms remain uncertain. In our study, we classified aged male Sprague‒Dawley rats into aged cognition-unimpaired (AU) group and aged cognition-impaired (AI) group by using an attentional set-shifting task. The transcriptome sequencing results of medial prefrontal cortex (mPFC) demonstrated significant differences in microglial activation and inflammatory response pathways between the two groups. Specifically, compared to AU rats, AI rats exhibited a greater presence of CD86-positive microglia and major histocompatibility complex class II (MHC-II)-positive microglia, along with elevated inflammatory molecules, in mPFC. Conversely, AI rats exhibited a reduction in the percentage of microglia expressing CD200R and the anti-inflammatory molecules Arg-1 and TGF-β. Additionally, peripheral blood analysis of AI rats demonstrated elevated levels of Th17 and Th1 cells, along with proinflammatory molecules; however, decreased levels of Treg cells, along with anti-inflammatory molecules, were observed in AI rats. Our research suggested that peripheral Th17/Treg cells and central microglial activation were associated with cognitive heterogeneity in aged rats. These findings may provide a new target for healthy aging.
Collapse
Affiliation(s)
- Lian Yu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Miao-Miao Liu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mei-Qi Guan
- Department of Pediatrics, Shanxi Medical University, Taiyuan, 030001, China
| | - Rui Wang
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Rong Yang
- The Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiu-Min Zhang
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing-Jing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, 030001, China
| | - Shu-Fen Wu
- Department of Pediatrics, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Gu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qiang Fu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jun-Hong Guo
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yan-Li Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
13
|
Manssuer L, Ding Q, Feng Y, Yang R, Liu W, Sun B, Zhan S, Voon V. Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings. Nat Commun 2024; 15:9518. [PMID: 39496589 PMCID: PMC11535001 DOI: 10.1038/s41467-024-53521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Adaptive behavior requires the ability to shift responding within (intra-dimensional) or between (extra-dimensional) stimulus dimensions when reward contingencies change. Studies of shifting in humans have focused mainly on the prefrontal cortex and/ or have been restricted to indirect measures of neural activity such as fMRI and lesions. Here, we demonstrate the importance of the amygdala and hippocampus by recording local field potentials directly from these regions intracranially in human epilepsy patients. Reward signals were coded in the high frequency gamma activity (HFG; 60-250 Hz) of both regions and synchronised via low frequency (3-5 Hz) phase-locking only after a shift when patients did not already know the rule and it signalled to stop shifting ("Win-Stay"). In contrast, HFG punishment signals were only seen in the amygdala when the rule then changed and it signalled to start shifting ("Lose-Shift"). During decision-making, hippocampal HFG was more inhibited on non-shift relative to shift trials, suggesting a role in preventing interference in rule representation and amygdala HFG was sensitive to stimulus novelty. The findings expand our understanding of human amygdala-hippocampal function and shifting processes, the disruption of which could contribute to shifting deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luis Manssuer
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Qiong Ding
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Yashu Feng
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ruoqi Yang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Valerie Voon
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Britten RA, Fesshaye AS, Tidmore A, Tamgue EN, Alvarado-Arriaga PA. Different spectrum of space radiation induced cognitive impairments in radiation-naïve and adapted rats. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:68-74. [PMID: 39521496 DOI: 10.1016/j.lssr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
NASA's decision to resume manned deep space mission, first to the Moon and then Mars, necessitated a detailed assessment of the potential health effects that astronauts may experience on long-duration missions. Multiple studies suggest that there may be significant space radiation (SR)-induced impairment of neurocognitive processes, including advanced executive functions. However, given the multitude of SR-induced changes in the CNS, it is possible that completely different SR-induced sequelae will be induced in previously exposed individuals. Thus, current risk estimates are likely to be pertinent only for the early stages of a deep space mission, and even then only for astronauts that have no previous experience in space. In this study, rats that maintained high attentional set shifting (ATSET) performance after an initial exposure to 10 cGy of SR (either 250 MeV/n He or GCRsim), were exposed to an additional dose of 10 cGy GCRsim and their ATSET performance reassessed. The re-irradiated rats exhibited significant impairment of ATSET performance, however, the performance decrements differed in two important aspects from those typically observed after single exposures. First, the decrements were manifested when the rats were required to perform set shifting, specifically in the IDR and EDS stages of the ATSET test. Secondly, the main performance decrement was in a loss of processing speed, which in the IDR stage resulted in the re-irradiated rats taking 2-fold more time to solve the problem than did Sham rats. The functional consequence of this decrement was that compared to Sham rats, 20 % fewer SR-exposed rats solved the IDS and EDR problems within 20 s. These data suggests that prior SR exposure alters nature of ATSET impairments from that observed in radiation-naïve individuals. Risk estimates derived from studies that use radiation naïve rats may thus not fully reflect the incidence and nature of ATSET performance deficits that could occur over the entire duration of a mission to Mars, or in astronauts who return to deep space on multiple occasions. It would thus be germane to conduct in-flight monitoring for cognitive performance decrements observed in both radiation naïve and exposed rats during the mission, and ensure that the crew has sufficient overlapping skill sets to minimize the operational impact of these additional cognitive impairments.
Collapse
Affiliation(s)
- Richard A Britten
- Radiation Oncology, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA. 23507, USA.
| | | | | | | | | |
Collapse
|
15
|
Bouret S, Paradis E, Prat S, Castro L, Perez P, Gilissen E, Garcia C. Linking the evolution of two prefrontal brain regions to social and foraging challenges in primates. eLife 2024; 12:RP87780. [PMID: 39468920 PMCID: PMC11521368 DOI: 10.7554/elife.87780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The diversity of cognitive skills across primates remains both a fascinating and a controversial issue. Recent comparative studies provided conflicting results regarding the contribution of social vs ecological constraints to the evolution of cognition. Here, we used an interdisciplinary approach combining comparative cognitive neurosciences and behavioral ecology. Using brain imaging data from 16 primate species, we measured the size of two prefrontal brain regions, the frontal pole (FP) and the dorso-lateral prefrontal cortex (DLPFC), respectively, involved in metacognition and working memory, and examined their relation to a combination of socio-ecological variables. The size of these prefrontal regions, as well as the whole brain, was best explained by three variables: body mass, daily traveled distance (an index of ecological constraints), and population density (an index of social constraints). The strong influence of ecological constraints on FP and DLPFC volumes suggests that both metacognition and working memory are critical for foraging in primates. Interestingly, FP volume was much more sensitive to social constraints than DLPFC volume, in line with laboratory studies showing an implication of FP in complex social interactions. Thus, our data highlights the relative weight of social vs ecological constraints on the evolution of specific prefrontal brain regions and their associated cognitive operations in primates.
Collapse
Affiliation(s)
- Sebastien Bouret
- Team Motivation Brain & Behavior, ICM – Brain and Spine InstituteParisFrance
| | | | - Sandrine Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Musée de l’HommeParisFrance
| | - Laurie Castro
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Musée de l’HommeParisFrance
- UMR 7206 Eco-anthropologie, CNRS – MNHN – Univ. Paris Cité, Musée de l'HommeParisFrance
| | - Pauline Perez
- Team Motivation Brain & Behavior, ICM – Brain and Spine InstituteParisFrance
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central AfricaTervurenBelgium
- Université Libre de Bruxelles, Laboratory of Histology and NeuropathologyBrusselsBelgium
| | - Cecile Garcia
- UMR 7206 Eco-anthropologie, CNRS – MNHN – Univ. Paris Cité, Musée de l'HommeParisFrance
| |
Collapse
|
16
|
Khamassi M, Peyrache A, Benchenane K, Hopkins DA, Lebas N, Douchamps V, Droulez J, Battaglia FP, Wiener SI. Rat anterior cingulate neurons responsive to rule or strategy changes are modulated by the hippocampal theta rhythm and sharp-wave ripples. Eur J Neurosci 2024; 60:5300-5327. [PMID: 39161082 DOI: 10.1111/ejn.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.
Collapse
Affiliation(s)
- M Khamassi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - A Peyrache
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - K Benchenane
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - D A Hopkins
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - N Lebas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - V Douchamps
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - J Droulez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - F P Battaglia
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Donders Institute for Brain, Cognition, and Behavior, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - S I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
17
|
Fineberg NA, Pellegrini L, Solly JE, Mpavaenda DN, Chamberlain SR, Grant JE. How to Treat Compulsive Facets of Behavioural Addictions. CURRENT ADDICTION REPORTS 2024; 11:994-1005. [DOI: 10.1007/s40429-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 01/03/2025]
|
18
|
Zhang Y, Liao Y, Chen W, Zhang X, Huang L. Emotion recognition of EEG signals based on contrastive learning graph convolutional model. J Neural Eng 2024; 21:046060. [PMID: 39151459 DOI: 10.1088/1741-2552/ad7060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Objective.Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects' EEG data.Approach.We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals' emotional states. Specifically, CLGCN merges the dual benefits of CL's synchronous multisubject data learning and the GCN's proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset's learning process.Main results.Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model's efficacy.Significance.This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.
Collapse
Affiliation(s)
- Yiling Zhang
- College of electronic and optical engineering & college of flexible electronics (future technology), Nanjing University of Posts and Telecommunications, Jiangsu 210023, People's Republic of China
| | - Yuan Liao
- College of electronic and optical engineering & college of flexible electronics (future technology), Nanjing University of Posts and Telecommunications, Jiangsu 210023, People's Republic of China
| | - Wei Chen
- College of electronic and optical engineering & college of flexible electronics (future technology), Nanjing University of Posts and Telecommunications, Jiangsu 210023, People's Republic of China
| | - Xiruo Zhang
- College of electronic and optical engineering & college of flexible electronics (future technology), Nanjing University of Posts and Telecommunications, Jiangsu 210023, People's Republic of China
| | - Liya Huang
- College of electronic and optical engineering & college of flexible electronics (future technology), Nanjing University of Posts and Telecommunications, Jiangsu 210023, People's Republic of China
| |
Collapse
|
19
|
Oyama K, Majima K, Nagai Y, Hori Y, Hirabayashi T, Eldridge MAG, Mimura K, Miyakawa N, Fujimoto A, Hori Y, Iwaoki H, Inoue KI, Saunders RC, Takada M, Yahata N, Higuchi M, Richmond BJ, Minamimoto T. Distinct roles of monkey OFC-subcortical pathways in adaptive behavior. Nat Commun 2024; 15:6487. [PMID: 39198415 PMCID: PMC11358305 DOI: 10.1038/s41467-024-50505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/10/2024] [Indexed: 09/01/2024] Open
Abstract
Primates must adapt to changing environments by optimizing their behavior to make beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which two male macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate dissociable contributions of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.
Collapse
Affiliation(s)
- Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kei Majima
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tachikawa, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Atsushi Fujimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Noriaki Yahata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Barry J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
20
|
Nigro M, Tortorelli LS, Yang H. Distinct roles of prefrontal cortex neurons in set shifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608808. [PMID: 39229035 PMCID: PMC11370324 DOI: 10.1101/2024.08.20.608808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies, requires adaptive processing of internal states and contextual cues to guide goal-oriented behavior, and is dependent on prefrontal cortex (PFC) functions. However, the neurophysiological underpinning of how the PFC supports cognitive flexibility is not well understood and has been under active investigation. We recorded spiking activity from single PFC neurons in mice performing the attentional set-shifting task, where mice learned to associate different contextually relevant sensory stimuli to reward. We identified subgroups of PFC neurons encoding task context, choice and trial outcome. Putative fast-spiking neurons were more involved in representing outcome and choice than putative regular-spiking neurons. Regression model further revealed that task context and trial outcome modulated the activity of choice-encoding neurons in rule-dependent and cell type-dependent manners. Together, our data provide new evidence to elucidate PFC's role in cognitive flexibility, suggesting differential cell type-specific engagement during set shifting, and that both contextual rule representation and trial outcome monitoring underlie PFC's unique capacity to support flexible behavioral switching.
Collapse
Affiliation(s)
- Marco Nigro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Wang Z, Jiang T, Xu H, Wang C, Tang R. Circadian rhythm sleep loss impairs motor inhibition more than motor execution in continuous action. Sci Rep 2024; 14:18668. [PMID: 39134656 PMCID: PMC11319480 DOI: 10.1038/s41598-024-69242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Under total sleep deprivation, both inhibitory and motor control are impaired. However, how circadian rhythm sleep loss caused by irregular sleep pattern affects motor inhibition and execution in continuous actions remains unknown. This study utilized a pointing task to investigate the question over 30 days. During regular trials, participants were instructed to tap on a specified location, while in countermanding trials, they were required to countermand their current action. Additionally, there was a control group performed the same task following a normal 24-h rhythm. The results indicated that the decrease in accuracy and the increase in movement time in countermanding trials were more prominent in the shift work group. In contrast, there was no significant difference in reaction time between the two groups. Notably, the shift work group outperformed the control group in terms of movement time in regular trials and radial displacement in countermanding trials. Overall, these results show that circadian rhythm sleep loss predominantly affects inhibitory control, rather than motor control, underscoring the nuanced impacts of sleep disruption on differential aspects of cognitive and motor functions.
Collapse
Affiliation(s)
- Ziying Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China
| | - Tingwei Jiang
- School of Social and Behavioral Sciences, Department of Psychology, Nanjing University, Nanjing, 210023, China
| | - Haodan Xu
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China.
| | - Rixin Tang
- School of Social and Behavioral Sciences, Department of Psychology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Porras C, Olliviere H, Bradley SP, Graham AM, Chudasama Y, Rouault TA. Ablation of Iron Regulatory Protein 2 produces a neurological disorder characterized by motor, somatosensory, and executive dysfunction in mice. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100136. [PMID: 39239479 PMCID: PMC11372806 DOI: 10.1016/j.crneur.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Iron is an important cofactor for many proteins and is used to create Fe-S clusters and heme prosthetic groups that enzymes use to catalyze enzymatic reactions. Proteins involved in the import, export, and sequestration of iron are regulated by Iron Regulatory Proteins (IRPs). Recently, a patient with bi-allelic loss of function mutations in IREB2 leading to the absence of IRP2 protein was discovered. The patient failed to achieve developmental milestones and was diagnosed with dystonic cerebral palsy, epilepsy, microcytic hypochromic anemia, and frontal lobe atrophy. Several more IREB2 deficient patients subsequently identified manifested similar neurological problems. To better understand the manifestations of this novel neurological disease, we subjected an Irp2-null mouse model to extensive behavioral testing. Irp2-null mice had a significant motor deficit demonstrated by reduced performance on rotarod and hanging wire tests. Somatosensory function was also compromised in hot and cold plate assays. Their spatial search strategy was impaired in the Barnes maze and they exhibited a difficulty in flexibly adapting their response in the operant touchscreen reversal learning task. The latter is a cognitive behavior known to require an intact prefrontal cortex. These results suggest that loss of Irp2 in mice causes motor and behavioral deficits that faithfully reflect the IREB2 patient's neurodegenerative disorder.
Collapse
Affiliation(s)
- Christina Porras
- National Institute of Child Health and Development, Section on Human Iron Metabolism, USA
| | - Hayden Olliviere
- National Institute of Child Health and Development, Section on Human Iron Metabolism, USA
| | - Sean P Bradley
- National Institute of Mental Health, Rodent Behavioral Core, USA
| | - Alice M Graham
- National Institute of Mental Health, Rodent Behavioral Core, USA
| | - Yogita Chudasama
- National Institute of Mental Health, Rodent Behavioral Core, USA
- National Institute of Mental Health, Section on Behavioral Neuroscience, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- National Institute of Child Health and Development, Section on Human Iron Metabolism, USA
| |
Collapse
|
23
|
Hervig MES, Zühlsdorff K, Olesen SF, Phillips B, Božič T, Dalley JW, Cardinal RN, Alsiö J, Robbins TW. 5-HT 2A and 5-HT 2C receptor antagonism differentially modulate reinforcement learning and cognitive flexibility: behavioural and computational evidence. Psychopharmacology (Berl) 2024; 241:1631-1644. [PMID: 38594515 PMCID: PMC11269483 DOI: 10.1007/s00213-024-06586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
RATIONALE Cognitive flexibility, the ability to adapt behaviour in response to a changing environment, is disrupted in several neuropsychiatric disorders, including obsessive-compulsive disorder and major depressive disorder. Evidence suggests that flexibility, which can be operationalised using reversal learning tasks, is modulated by serotonergic transmission. However, how exactly flexible behaviour and associated reinforcement learning (RL) processes are modulated by 5-HT action on specific receptors is unknown. OBJECTIVES We investigated the effects of 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) antagonism on flexibility and underlying RL mechanisms. METHODS Thirty-six male Lister hooded rats were trained on a touchscreen visual discrimination and reversal task. We evaluated the effects of systemic treatments with the 5-HT2AR and 5-HT2CR antagonists M100907 and SB-242084, respectively, on reversal learning and performance on probe trials where correct and incorrect stimuli were presented with a third, probabilistically rewarded, stimulus. Computational models were fitted to task choice data to extract RL parameters, including a novel model designed specifically for this task. RESULTS 5-HT2AR antagonism impaired reversal learning only after an initial perseverative phase, during a period of random choice and then new learning. 5-HT2CR antagonism, on the other hand, impaired learning from positive feedback. RL models further differentiated these effects. 5-HT2AR antagonism decreased punishment learning rate (i.e. negative feedback) at high and low doses. The low dose also decreased reinforcement sensitivity (beta) and increased stimulus and side stickiness (i.e., the tendency to repeat a choice regardless of outcome). 5-HT2CR antagonism also decreased beta, but reduced side stickiness. CONCLUSIONS These data indicate that 5-HT2A and 5-HT2CRs both modulate different aspects of flexibility, with 5-HT2ARs modulating learning from negative feedback as measured using RL parameters and 5-HT2CRs for learning from positive feedback assessed through conventional measures.
Collapse
Affiliation(s)
- Mona El-Sayed Hervig
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- The Alan Turing Institute, British Library, London, NW1 2DVB, UK.
| | - Sarah F Olesen
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK
| | - Benjamin Phillips
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Tadej Božič
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building, Cambridge, CB2 0SZ, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building, Cambridge, CB2 0SZ, UK
- Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Biomedical Campus, Box 190, Cambridge, CB2 0QQ, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
24
|
Dong J, Wei X, Huang Z, Tian J, Zhang W. Age-related changes of dopamine D1 and D2 receptors expression in parvalbumin-positive cells of the orbitofrontal and prelimbic cortices of mice. Front Neurosci 2024; 18:1364067. [PMID: 38903598 PMCID: PMC11187244 DOI: 10.3389/fnins.2024.1364067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Dopamine (DA) plays a pivotal role in reward processing, cognitive functions, and emotional regulation. The prefrontal cortex (PFC) is a critical brain region for these processes. Parvalbumin-positive (PV+) neurons are one of the major classes of inhibitory GABAergic neurons in the cortex, they modulate the activity of neighboring neurons, influencing various brain functions. While DA receptor expression exhibits age-related changes, the age-related changes of these receptors in PV+ neurons, especially in the PFC, remain unclear. To address this, we investigated the expression of DA D1 (D1R) and D2 (D2R) receptors in PV+ neurons within the orbitofrontal (OFC) and prelimbic (PrL) cortices at different postnatal ages (P28, P42, P56, and P365). We found that the expression of D1R and D2R in PV+ neurons showed both age- and region-related changes. PV+ neurons in the OFC expressed a higher abundance of D1 than those in the PrL, and those neurons in the OFC also showed higher co-expression of D1R and D2R than those in the PrL. In the OFC and PrL, D1R in PV+ neurons increased from P28 and reached a plateau at P42, then receded to express at P365. Meanwhile, D2R did not show significant age-related changes between the two regions except at P56. These results showed dopamine receptors in the prefrontal cortex exhibit age- and region-specific changes, which may contribute to the difference of these brain regions in reward-related brain functions.
Collapse
Affiliation(s)
- Jihui Dong
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Xiaoyan Wei
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ziran Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jing Tian
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
25
|
Rouse MA, Binney RJ, Patterson K, Rowe JB, Lambon Ralph MA. A neuroanatomical and cognitive model of impaired social behaviour in frontotemporal dementia. Brain 2024; 147:1953-1966. [PMID: 38334506 PMCID: PMC11146431 DOI: 10.1093/brain/awae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
Impaired social cognition is a core deficit in frontotemporal dementia (FTD). It is most commonly associated with the behavioural-variant of FTD, with atrophy of the orbitofrontal and ventromedial prefrontal cortex. Social cognitive changes are also common in semantic dementia, with atrophy centred on the anterior temporal lobes. The impairment of social behaviour in FTD has typically been attributed to damage to the orbitofrontal cortex and/or temporal poles and/or the uncinate fasciculus that connects them. However, the relative contributions of each region are unresolved. In this review, we present a unified neurocognitive model of controlled social behaviour that not only explains the observed impairment of social behaviours in FTD, but also assimilates both consistent and potentially contradictory findings from other patient groups, comparative neurology and normative cognitive neuroscience. We propose that impaired social behaviour results from damage to two cognitively- and anatomically-distinct components. The first component is social-semantic knowledge, a part of the general semantic-conceptual system supported by the anterior temporal lobes bilaterally. The second component is social control, supported by the orbitofrontal cortex, medial frontal cortex and ventrolateral frontal cortex, which interacts with social-semantic knowledge to guide and shape social behaviour.
Collapse
Affiliation(s)
- Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Bangor LL57 2AS, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0SZ, UK
| | | |
Collapse
|
26
|
Drazan TM, Bradley SP, Jones A, Allen-Worthington K, Chudasama Y. Improving reproductive success in captive marmosets through active female choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593247. [PMID: 38766181 PMCID: PMC11100743 DOI: 10.1101/2024.05.08.593247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The recent upsurge in the use of common marmosets (Callithrix jacchus) as a desirable model for high priority biomedical research has challenged local and global suppliers struggling to provide sufficient numbers of marmosets for large scale projects. Scientific research laboratories are increasingly establishing institutional breeding colonies, in part to combat the resulting shortage and high cost of commercially available animals, and in part to have maximum control over research lines involving reproduction and development. For such laboratories, efficient marmoset breeding can be challenging and time consuming. Random male/female pairings are often unsuccessful, with intervals of several months before attempting alternate pairings. Here we address this challenge through a behavioral task that promotes self-directed female selection of potential mates to increase the efficiency of breeding in captive marmosets. We created a partner preference test ('love maze') in which nulliparous females (n=12) had the opportunity to select between two eligible males (n=23) at a time, in a forced choice test. In this test, both males usually displayed sexual solicitations. However, the female would clearly indicate her preference for one. Most commonly, the female actively ignored the non-preferred male and directed overt prosocial behaviors (e.g. proceptive tongue-flicking, approach and grooming) to the preferred male. Moreover, once a male was selected in this context, the female would continue to prefer him over other males in three consecutive testing sessions. Compared with random pairings, this directed female choice showed a 2.5-fold improvement in breeding within 90 days compared to random pairings. This cost-effective and straightforward pairing practice can be used to enhance breeding efficiency in both small and large marmoset colonies.
Collapse
|
27
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
28
|
Pickenhan L, Milton AL. Opening new vistas on obsessive-compulsive disorder with the observing response task. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:249-265. [PMID: 38316708 PMCID: PMC11039534 DOI: 10.3758/s13415-023-01153-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/07/2024]
Abstract
Obsessive-compulsive disorder (OCD), a highly prevalent and debilitating disorder, is incompletely understood in terms of underpinning behavioural, psychological, and neural mechanisms. This is attributable to high symptomatic heterogeneity; cardinal features comprise obsessions and compulsions, including clinical subcategories. While obsessive and intrusive thoughts are arguably unique to humans, dysfunctional behaviours analogous to those seen in clinical OCD have been examined in nonhuman animals. Genetic, ethological, pharmacological, and neurobehavioural approaches all contribute to understanding the emergence and persistence of compulsive behaviour. One behaviour of particular interest is maladaptive checking, whereby human patients excessively perform checking rituals despite these serving no purpose. Dysfunctional and excessive checking is the most common symptom associated with OCD and can be readily operationalised in rodents. This review considers animal models of OCD, the neural circuitries associated with impairments in habit-based and goal-directed behaviour, and how these may link to the compulsions observed in OCD. We further review the Observing Response Task (ORT), an appetitive instrumental learning procedure that distinguishes between functional and dysfunctional checking, with translational application in humans and rodents. By shedding light on the psychological and neural bases of compulsive-like checking, the ORT has potential to offer translational insights into the underlying mechanisms of OCD, in addition to being a platform for testing psychological and neurochemical treatment approaches.
Collapse
Affiliation(s)
- Luise Pickenhan
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| |
Collapse
|
29
|
Ma F, Zhang L, Zhou J. Event-specific and persistent representations for contextual states in orbitofrontal neurons. Curr Biol 2024; 34:1023-1033.e5. [PMID: 38366594 DOI: 10.1016/j.cub.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
Flexible and context-dependent behaviors require animals, including humans, to identify their current contextual state for proper rules to apply, especially when information that defines these states is partially observable. Depending on behavioral needs, contextual states usually persist for prolonged periods and across other events, including sensory stimuli, actions, and rewards, highlighting prominent challenges of holding a reliable state representation. The orbitofrontal cortex (OFC) is crucial in behaviors requiring the identification of the current context (e.g., reversal learning); however, how single units in the OFC accomplish this function has not been assessed. Do they maintain such information persistently, in separate populations from those responding phasically to events within a task, or is contextual information dynamic and embedded in these phasic responses? Here, we investigated this question by recording single units from OFC in rats performing a task that required them to identify the current contextual state related to estimated proximity to future reward with distracting olfactory cues. We found that while some OFC neurons encode contextual states, most change their selectivity upon the transition of task events. Nevertheless, despite dynamic activities in single neurons, the neural populations maintain persistent representations regarding current contextual states within particular neural subspaces.
Collapse
Affiliation(s)
- Fengjun Ma
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Lingwei Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jingfeng Zhou
- Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
30
|
Berger JI, Billig AJ, Sedley W, Kumar S, Griffiths TD, Gander PE. What is the role of the hippocampus and parahippocampal gyrus in the persistence of tinnitus? Hum Brain Mapp 2024; 45:e26627. [PMID: 38376166 PMCID: PMC10878198 DOI: 10.1002/hbm.26627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
The hippocampus and parahippocampal gyrus have been implicated as part of a tinnitus network by a number of studies. These structures are usually considered in the context of a "limbic system," a concept typically invoked to explain the emotional response to tinnitus. Despite this common framing, it is not apparent from current literature that this is necessarily the main functional role of these structures in persistent tinnitus. Here, we highlight a different role that encompasses their most commonly implicated functional position within the brain-that is, as a memory system. We consider tinnitus as an auditory object that is held in memory, which may be made persistent by associated activity from the hippocampus and parahippocampal gyrus. Evidence from animal and human studies implicating these structures in tinnitus is reviewed and used as an anchor for this hypothesis. We highlight the potential for the hippocampus/parahippocampal gyrus to facilitate maintenance of the memory of the tinnitus percept via communication with auditory cortex, rather than (or in addition to) mediating emotional responses to this percept.
Collapse
Affiliation(s)
- Joel I. Berger
- Department of NeurosurgeryUniversity of IowaIowa CityIowaUSA
| | | | | | | | | | - Phillip E. Gander
- Department of NeurosurgeryUniversity of IowaIowa CityIowaUSA
- Department of RadiologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
31
|
Chandrasekaran J, Caldwell KK, Brigman JL. Dynamic regulation of corticostriatal glutamatergic synaptic expression during reversal learning in male mice. Neurobiol Learn Mem 2024; 208:107892. [PMID: 38242226 PMCID: PMC10936219 DOI: 10.1016/j.nlm.2024.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Behavioral flexibility, one of the core executive functions of the brain, has been shown to be an essential skill for survival across species. Corticostriatal circuits play a critical role in mediating behavioral flexibility. The molecular mechanisms underlying these processes are still unclear. Here, we measured how synaptic glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartic acid receptor (NMDAR) expression dynamically changed during specific stages of learning and reversal. Following training to well-established stages of discrimination and reversal learning on a touchscreen visual task, lateral orbitofrontal cortex (OFC), dorsal striatum (dS) as well as medial prefrontal cortex (mPFC), basolateral amygdala (BLA) and piriform cortex (Pir) were micro dissected from male mouse brain and the expression of glutamatergic receptor subunits in the synaptic fraction were measured via immunoblotting. We found that the GluN2B subunit of NMDAR in the OFC remained stable during initial discrimination learning but significantly increased in the synaptic fraction during mid-reversal stages, the period during which the OFC has been shown to play a critical role in updating outcome expectancies. In contrast, both GluA1 and GluA2 subunits of the AMPAR significantly increased in the dS synaptic fraction as new associations were learned late in reversal. Expression of NMDAR and AMPAR subunits did not significantly differ across learning stages in any other brain region. Together, these findings further support the involvement of OFC-dS circuits in moderating well-learned associations and flexible behavior and suggest that dynamic synaptic expression of NMDAR and AMPAR in these circuits may play a role in mediating efficient learning during discrimination and the ability to update previously learned associations as environmental contingencies change.
Collapse
Affiliation(s)
- Jayapriya Chandrasekaran
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kevin K Caldwell
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA.
| |
Collapse
|
32
|
Cisler JM, Dunsmoor JE, Fonzo GA, Nemeroff CB. Latent-state and model-based learning in PTSD. Trends Neurosci 2024; 47:150-162. [PMID: 38212163 PMCID: PMC10923154 DOI: 10.1016/j.tins.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by altered emotional and behavioral responding following a traumatic event. In this article, we review the concepts of latent-state and model-based learning (i.e., learning and inferring abstract task representations) and discuss their relevance for clinical and neuroscience models of PTSD. Recent data demonstrate evidence for brain and behavioral biases in these learning processes in PTSD. These new data potentially recast excessive fear towards trauma cues as a problem in learning and updating abstract task representations, as opposed to traditional conceptualizations focused on stimulus-specific learning. Biases in latent-state and model-based learning may also be a common mechanism targeted in common therapies for PTSD. We highlight key knowledge gaps that need to be addressed to further elaborate how latent-state learning and its associated neurocircuitry mechanisms function in PTSD and how to optimize treatments to target these processes.
Collapse
Affiliation(s)
- Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA.
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
33
|
Alizadeh Mansouri F, Buckley MJ, Tanaka K. Mapping causal links between prefrontal cortical regions and intra-individual behavioral variability. Nat Commun 2024; 15:140. [PMID: 38168052 PMCID: PMC10762061 DOI: 10.1038/s41467-023-44341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Intra-individual behavioral variability is significantly heightened by aging or neuropsychological disorders, however it is unknown which brain regions are causally linked to such variabilities. We examine response time (RT) variability in 21 macaque monkeys performing a rule-guided decision-making task. In monkeys with selective-bilateral lesions in the anterior cingulate cortex (ACC) or in the dorsolateral prefrontal cortex, cognitive flexibility is impaired, but the RT variability is significantly diminished. Bilateral lesions within the frontopolar cortex or within the mid-dorsolateral prefrontal cortex, has no significant effect on cognitive flexibility or RT variability. In monkeys with lesions in the posterior cingulate cortex, the RT variability significantly increases without any deficit in cognitive flexibility. The effect of lesions in the orbitofrontal cortex (OFC) is unique in that it leads to deficits in cognitive flexibility and a significant increase in RT variability. Our findings indicate remarkable dissociations in contribution of frontal cortical regions to behavioral variability. They suggest that the altered variability in OFC-lesioned monkeys is related to deficits in assessing and accumulating evidence to inform a rule-guided decision, whereas in ACC-lesioned monkeys it results from a non-adaptive decrease in decision threshold and consequently immature impulsive responses.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, OX1 3UD, UK
| | - Keiji Tanaka
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
34
|
Iravani MM, Shoaib M. Executive dysfunction and cognitive decline, a non-motor symptom of Parkinson's disease captured in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:231-255. [PMID: 38341231 DOI: 10.1016/bs.irn.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The non-motor symptoms of Parkinson's disease (PD) have gained increasing attention in recent years due to their significant impact on patients' quality of life. Among these non-motor symptoms, cognitive dysfunction has emerged as an area of particular interest where the clinical aspects are covered in Chapter 2 of this volume. This chapter explores the rationale for investigating the underlying neurobiology of cognitive dysfunction by utilising translational animal models of PD, from rodents to non-human primates. The objective of this chapter is to review the various animal models of cognition that have explored the dysfunction in animal models of Parkinson's disease. Some of the more advanced pharmacological studies aimed at restoring these cognitive deficits are reviewed, although this chapter highlights the lack of systematic approaches in dealing with this non-motor symptom at the pre-clinical stages.
Collapse
|
35
|
Suzuki M, Pennartz CMA, Aru J. How deep is the brain? The shallow brain hypothesis. Nat Rev Neurosci 2023; 24:778-791. [PMID: 37891398 DOI: 10.1038/s41583-023-00756-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today's dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
36
|
Abstract
OBJECTIVE Problems with cognitive flexibility have been associated with multiple psychiatric disorders, but there has been little understanding of how cognitive flexibility compares across these disorders. This study examined problems of cognitive flexibility in young adults across a range of psychiatric disorders using a validated computerized trans-diagnostic flexibility paradigm. We hypothesized that obsessive-compulsive spectrum disorders (eg, obsessive-compulsive disorder, trichotillomania, and skin-picking disorder) would be associated with pronounced flexibility problems as they are most often associated with irrational or purposeless repetitive behaviors. METHODS A total of 576 nontreatment seeking participants (aged 18-29 years) were enrolled from general community settings, provided demographic information, and underwent structured clinical assessments. Each participant undertook the intra-extra-dimensional task, a validated computerized test measuring set-shifting ability. The specific measures of interest were total errors on the task and performance on the extra-dimensional (ED) shift, which reflects the ability to inhibit and shift attention away from one stimulus dimension to another. RESULTS Participants with depression and PTSD had elevated total errors on the task with moderate effect sizes; and those with the following had deficits of small effect size: generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), antisocial personality disorder, and binge-eating disorder. For ED errors, participants with PTSD, GAD, and binge-eating disorder exhibited deficits with medium effect sizes; those with the following had small effect size deficits: depression, social anxiety disorder, OCD, substance dependence, antisocial personality disorder, and gambling disorder. CONCLUSIONS These data indicate cognitive flexibility deficits occur across a range of mental disorders. Future work should explore whether these deficits can be ameliorated with novel treatment interventions.
Collapse
Affiliation(s)
- Jon E Grant
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Samuel R Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
- Southern Health NHS Foundation Trust, Southampton, UK
| |
Collapse
|
37
|
Oyama K, Majima K, Nagai Y, Hori Y, Hirabayashi T, Eldridge MAG, Mimura K, Miyakawa N, Fujimoto A, Hori Y, Iwaoki H, Inoue KI, Saunders RC, Takada M, Yahata N, Higuchi M, Richmond BJ, Minamimoto T. Distinct roles of monkey OFC-subcortical pathways in adaptive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567492. [PMID: 38076986 PMCID: PMC10705585 DOI: 10.1101/2023.11.17.567492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.
Collapse
Affiliation(s)
- Kei Oyama
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kei Majima
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tachikawa, Japan
| | - Naohisa Miyakawa
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Atsushi Fujimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuki Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Haruhiko Iwaoki
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Noriaki Yahata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Barry J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
38
|
Watson MR, Traczewski N, Dunghana S, Boroujeni KB, Neumann A, Wen X, Womelsdorf T. A Multi-task Platform for Profiling Cognitive and Motivational Constructs in Humans and Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566422. [PMID: 38014107 PMCID: PMC10680597 DOI: 10.1101/2023.11.09.566422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Understanding the neurobiological substrates of psychiatric disorders requires comprehensive evaluations of cognitive and motivational functions in preclinical research settings. The translational validity of such evaluations will be supported by (1) tasks with high construct validity that are engaging and easy to teach to human and nonhuman participants, (2) software that enables efficient switching between multiple tasks in single sessions, (3) software that supports tasks across a broad range of physical experimental setups, and (4) by platform architectures that are easily extendable and customizable to encourage future optimization and development. New Method We describe the Multi-task Universal Suite for Experiments ( M-USE ), a software platform designed to meet these requirements. It leverages the Unity video game engine and C# programming language to (1) support immersive and engaging tasks for humans and nonhuman primates, (2) allow experimenters or participants to switch between multiple tasks within-session, (3) generate builds that function across computers, tablets, and websites, and (4) is freely available online with documentation and tutorials for users and developers. M-USE includes a task library with seven pre-existing tasks assessing cognitive and motivational constructs of perception, attention, working memory, cognitive flexibility, motivational and affective self-control, relational long-term memory, and visuo-spatial problem solving. Results M-USE was used to test NHPs on up to six tasks per session, all available as part of the Task Library, and to extract performance metrics for all major cognitive and motivational constructs spanning the Research Domain Criteria (RDoC) of the National Institutes of Mental Health. Comparison with Existing Methods Other experiment design and control systems exist, but do not provide the full range of features available in M-USE, including a pre-existing task library for cross-species assessments; the ability to switch seamlessly between tasks in individual sessions; cross-platform build capabilities; license-free availability; and its leveraging of video-engine capabilities used to gamify tasks. Conclusions The new multi-task platform facilitates cross-species translational research for understanding the neurobiological substrates of higher cognitive and motivational functions.
Collapse
|
39
|
Rozzi S, Gravante A, Basile C, Cappellaro G, Gerbella M, Fogassi L. Ventrolateral prefrontal neurons of the monkey encode instructions in the 'pragmatic' format of the associated behavioral outcomes. Prog Neurobiol 2023; 229:102499. [PMID: 37429374 DOI: 10.1016/j.pneurobio.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
The prefrontal cortex plays an important role in coding rules and producing context-appropriate behaviors. These processes necessarily require the generation of goals based on current context. Indeed, instructing stimuli are prospectively encoded in prefrontal cortex in relation to behavioral demands, but the coding format of this neural representation is, to date, largely unknown. In order to study how instructions and behaviors are encoded in prefrontal cortex, we recorded the activity of monkeys (Macaca mulatta) ventrolateral prefrontal neurons in a task requiring to perform (Action condition) or withhold (Inaction condition) grasping actions on real objects. Our data show that there are neurons responding in different task phases, and that the neuronal population discharge is stronger in the Inaction condition when the instructing cue is presented, and in the Action condition in the subsequent phases, from object presentation to action execution. Decoding analyses performed on neuronal populations showed that the neural activity recorded during the initial phases of the task shares the same type of format with that recorded during the final phases. We propose that this format has a pragmatic nature, that is instructions and goals are encoded by prefrontal neurons as predictions of the behavioral outcome.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Alfonso Gravante
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Claudio Basile
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Giorgio Cappellaro
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
40
|
van Zeeland YRA, Schoemaker NJ, Lumeij JT. Contrafreeloading Indicating the Behavioural Need to Forage in Healthy and Feather Damaging Grey Parrots. Animals (Basel) 2023; 13:2635. [PMID: 37627426 PMCID: PMC10451555 DOI: 10.3390/ani13162635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Contrafreeloading (CFL) is a concept that describes the preference of an animal to work for food even when identical food is freely available, and reflects an intrinsic motivation to engage in foraging-related activities. However, altered brain neurochemistry, which can be induced by chronic exposure to a suboptimal living environment, may affect this intrinsic motivation in animals with abnormal repetitive behaviours (ARBs), including parrots with feather damaging behaviour. To determine whether this was the case, we evaluated CFL activity in healthy (n = 11) and feather damaging (n = 10) Grey parrots (Psittacus erithacus) by offering them a free choice to obtain identical food from a food bowl or from a foraging device. Differences in CFL activity were observed, with feather damaging Grey parrots displaying less CFL (as indicated by shorter foraging times and lower amounts of food consumed from the foraging devices) compared to healthy conspecifics, indicating altered 'motivation' and time allocation, for which the underlying mechanism needs to be clarified further. Nevertheless, despite the variable level, all birds displayed CFL, which, together with a seemingly positive correlation between CFL activity and the plumage condition of the birds, suggests that parrots are intrinsically motivated to forage and highlights the importance of providing foraging opportunities to captive parrots.
Collapse
Affiliation(s)
- Yvonne R. A. van Zeeland
- Division of Zoological Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | | |
Collapse
|
41
|
Chamberlin LA, Yang SS, McEachern EP, Lucas JTM, McLeod Ii OW, Rolland CA, Mack NR, Ferguson BR, Gao WJ. Pharmacogenetic activation of parvalbumin interneurons in the prefrontal cortex rescues cognitive deficits induced by adolescent MK801 administration. Neuropsychopharmacology 2023; 48:1267-1276. [PMID: 37041206 PMCID: PMC10353985 DOI: 10.1038/s41386-023-01576-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/13/2023]
Abstract
The cognitive symptoms of schizophrenia (SZ) present a significant clinical burden. They are treatment resistant and are the primary predictor of functional outcomes. Although the neural mechanisms underlying these deficits remain unclear, pathological GABAergic signaling likely plays an essential role. Perturbations with parvalbumin (PV)-expressing fast-spiking (FS) interneurons in the prefrontal cortex (PFC) are consistently found in post-mortem studies of patients with SZ, as well as in animal models. Our studies have shown decreased prefrontal synaptic inhibition and PV immunostaining, along with working memory and cognitive flexibility deficits in the MK801 model. To test the hypothesized association between PV cell perturbations and impaired cognition in SZ, we activated prefrontal PV cells by using an excitatory DREADD viral vector with a PV promoter to rescue the cognitive deficits induced by adolescent MK801 administration in female rats. We found that targeted pharmacogenetic upregulation of prefrontal PV interneuron activity can restore E/I balance and improve cognition in the MK801 model. Our findings support the hypothesis that the reduced PV cell activity levels disrupt GABA transmission, resulting in the disinhibition of excitatory pyramidal cells. This disinhibition leads to an elevated prefrontal excitation/inhibition (E/I) balance that could be causal for cognitive impairments. Our study provides novel insights into the causal role of PV cells in cognitive function and has clinical implications for understanding the pathophysiology and management of SZ.
Collapse
Affiliation(s)
- Linda A Chamberlin
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- MD/PhD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sha-Sha Yang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- Institute for Translational Brain Research, Department of Neurology, Fudan University, Shanghai, 200032, China
| | - Erin P McEachern
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joshua T M Lucas
- MD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Owen W McLeod Ii
- Interdisciplinary Health Sciences Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Claire A Rolland
- Interdisciplinary Health Sciences Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nancy R Mack
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brielle R Ferguson
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
- 2 Blackfan circle, Cetern for Life Science, Boston, MA, 02115, USA.
| | - Wen-Jun Gao
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Torrado Pacheco A, Olson RJ, Garza G, Moghaddam B. Acute psilocybin enhances cognitive flexibility in rats. Neuropsychopharmacology 2023; 48:1011-1020. [PMID: 36807609 PMCID: PMC10209151 DOI: 10.1038/s41386-023-01545-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Psilocybin has been shown to improve symptoms of depression and anxiety when combined with psychotherapy or other clinician-guided interventions. To understand the neural basis for this pattern of clinical efficacy, experimental and conceptual approaches that are different than traditional laboratory models of anxiety and depression are needed. A potential novel mechanism is that acute psilocybin improves cognitive flexibility, which then enhances the impact of clinician-assisted interventions. Consistent with this idea, we find that acute psilocybin robustly improves cognitive flexibility in male and female rats using a task where animals switched between previously learned strategies in response to uncued changes in the environment. Psilocybin did not influence Pavlovian reversal learning, suggesting that its cognitive effects are selective to enhanced switching between previously learned behavioral strategies. The serotonin (5HT) 2 A receptor antagonist ketanserin blocked psilocybin's effect on set-shifting, while a 5HT2C-selective antagonist did not. Ketanserin alone also improved set-shifting performance, suggesting a complex relationship between psilocybin's pharmacology and its impact on flexibility. Further, the psychedelic drug 2,5-Dimethoxy-4-iodoamphetamine (DOI) impaired cognitive flexibility in the same task, suggesting that this effect of psilocybin does not generalize to all other serotonergic psychedelics. We conclude that the acute impact of psilocybin on cognitive flexibility provides a useful behavioral model to investigate its neuronal effects relevant to its positive clinical outcome.
Collapse
Affiliation(s)
- Alejandro Torrado Pacheco
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Randall J Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Gabriela Garza
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
43
|
Zühlsdorff K, Dalley JW, Robbins TW, Morein-Zamir S. Cognitive flexibility: neurobehavioral correlates of changing one's mind. Cereb Cortex 2023; 33:5436-5446. [PMID: 36368894 PMCID: PMC10152092 DOI: 10.1093/cercor/bhac431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Behavioral and cognitive flexibility allow adaptation to a changing environment. Most tasks used to investigate flexibility require switching reactively in response to deterministic task-response rules. In daily life, flexibility often involves a volitional decision to change behavior. This can be instigated by environmental signals, but these are frequently unreliable. We report results from a novel "change your mind" task, which assesses volitional switching under uncertainty without the need for rule-based learning. Participants completed a two-alternative choice task, and following spurious feedback, were presented with the same stimulus again. Subjects had the opportunity to repeat or change their response. Forty healthy participants completed the task while undergoing a functional magnetic resonance imaging scan. Participants predominantly repeated their choice but changed more when their first response was incorrect or when the feedback was negative. Greater activations for changing were found in the inferior frontal junction, anterior insula (AI), anterior cingulate, and dorsolateral prefrontal cortex. Changing responses were also accompanied by reduced connectivity from the AI and orbitofrontal cortices to the occipital cortex. Using multivariate pattern analysis of brain activity, we predicted with 77% reliability whether participants would change their mind. These findings extend our understanding of cognitive flexibility in daily life by assessing volitional decision-making.
Collapse
Affiliation(s)
- Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, Downing Place, Cambridge, CB2 3EB, United Kingdom
- The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Downing Place, Cambridge, CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge, CB2 0SZ, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Place, Cambridge, CB2 3EB, United Kingdom
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
| | - Sharon Morein-Zamir
- School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, United Kingdom
| |
Collapse
|
44
|
Morgan AA, Alves ND, Stevens GS, Yeasmin TT, Mackay A, Power S, Sargin D, Hanna C, Adib AL, Ziolkowski-Blake A, Lambe EK, Ansorge MS. Medial Prefrontal Cortex Serotonin Input Regulates Cognitive Flexibility in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534775. [PMID: 37034804 PMCID: PMC10081203 DOI: 10.1101/2023.03.30.534775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.
Collapse
|
45
|
Wu X, Yang Q, Xu C, Huo H, Seger CA, Peng Z, Chen Q. Connectome-based predictive modeling of compulsion in obsessive-compulsive disorder. Cereb Cortex 2023; 33:1412-1425. [PMID: 35443038 DOI: 10.1093/cercor/bhac145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Compulsion is one of core symptoms of obsessive-compulsive disorder (OCD). Although many studies have investigated the neural mechanism of compulsion, no study has used brain-based measures to predict compulsion. Here, we used connectome-based predictive modeling (CPM) to identify networks that could predict the levels of compulsion based on whole-brain functional connectivity in 57 OCD patients. We then applied a computational lesion version of CPM to examine the importance of specific brain areas. We also compared the predictive network strength in OCD with unaffected first-degree relatives (UFDR) of patients and healthy controls. CPM successfully predicted individual level of compulsion and identified networks positively (primarily subcortical areas of the striatum and limbic regions of the hippocampus) and negatively (primarily frontoparietal regions) correlated with compulsion. The prediction power of the negative model significantly decreased when simulating lesions to the prefrontal cortex and cerebellum, supporting the importance of these regions for compulsion prediction. We found a similar pattern of network strength in the negative predictive network for OCD patients and their UFDR, demonstrating the potential of CPM to identify vulnerability markers for psychopathology.
Collapse
Affiliation(s)
- Xiangshu Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Qiong Yang
- Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, China
| | - Chuanyong Xu
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518047, China
| | - Hangfeng Huo
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.,Department of Psychology, Colorado State University, Fort Collins, CO 80523, United States
| | - Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.,Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen 518061, China
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
46
|
Arnsten AFT, Joyce MKP, Roberts AC. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. Neurosci Biobehav Rev 2023; 145:105000. [PMID: 36529312 PMCID: PMC9898199 DOI: 10.1016/j.neubiorev.2022.105000] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
ARNSTEN, A.F.T., M.K.P. Joyce and A.C. Roberts. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. NEUROSCI BIOBEHAV REV XXX-XXX, 2022. The symptoms of major-depressive-disorder include psychic pain and anhedonia, i.e. seeing the world through an "aversive lens". The neurobiology underlying this shift in worldview is emerging. Here these data are reviewed, focusing on how activation of subgenual cingulate (BA25) induces an "aversive lens", and how higher prefrontal cortical (PFC) areas (BA46/10/32) provide top-down regulation of BA25 but are weakened by excessive dopamine and norepinephrine release during stress exposure, and dendritic spine loss with chronic stress exposure. These changes may generate an attractor state, which maintains the brain under the control of BA25, requiring medication or neuromodulatory treatments to return connectivity to a more flexible state. In line with this hypothesis, effective anti-depressant treatments reduce the activity of BA25 and restore top-down regulation by higher circuits, e.g. as seen with SSRI medications, ketamine, deep brain stimulation of BA25, or rTMS to strengthen dorsolateral PFC. This research has special relevance in an era of chronic stress caused by the COVID19 pandemic, political unrest and threat of climate change.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Angela C Roberts
- Department Physiology, Development and Neuroscience, and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
47
|
Kell AJ, Bokor SL, Jeon YN, Toosi T, Issa EB. Marmoset core visual object recognition behavior is comparable to that of macaques and humans. iScience 2023; 26:105788. [PMID: 36594035 PMCID: PMC9804140 DOI: 10.1016/j.isci.2022.105788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Among the smallest simian primates, the common marmoset offers promise as an experimentally tractable primate model for neuroscience with translational potential to humans. However, given its exceedingly small brain and body, the gap in perceptual and cognitive abilities between marmosets and humans requires study. Here, we performed a comparison of marmoset behavior to that of three other species in the domain of high-level vision. We first found that marmosets outperformed rats - a marmoset-sized rodent - on a simple recognition task, with marmosets robustly recognizing objects across views. On a more challenging invariant object recognition task used previously in humans, marmosets also achieved high performance. Notably, across hundreds of images, marmosets' image-by-image behavior was highly similar to that of humans - nearly as human-like as macaque behavior. Thus, core aspects of visual perception are conserved across monkeys and humans, and marmosets present salient behavioral advantages over other small model organisms for visual neuroscience.
Collapse
Affiliation(s)
- Alexander J.E. Kell
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sophie L. Bokor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - You-Nah Jeon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tahereh Toosi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Elias B. Issa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
48
|
Torrado Pacheco A, Olson RJ, Garza G, Moghaddam B. Acute psilocybin enhances cognitive flexibility in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523291. [PMID: 36712091 PMCID: PMC9881983 DOI: 10.1101/2023.01.09.523291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Psilocybin has been shown to improve symptoms of depression and anxiety when combined with psychotherapy or other clinician-guided interventions. To understand the neural basis for this pattern of clinical efficacy, experimental and conceptual approaches that are different than traditional laboratory models of anxiety and depression are needed. A potential novel mechanism is that acute psilocybin improves cognitive flexibility, which then enhances the impact of clinician-assisted interventions. Consistent with this idea, we find that acute psilocybin robustly improves cognitive flexibility in male and female rats using a task where animals switched between previously learned strategies in response to uncued changes in the environment. Psilocybin did not influence Pavlovian reversal learning, suggesting that its cognitive effects are selective to enhanced switching between previously learned behavioral strategies. The serotonin (5HT) 2A receptor antagonist ketanserin blocked psilocybin's effect on set-shifting, while a 5HT2C-selective antagonist did not. Ketanserin alone also improved set-shifting performance, suggesting a complex relationship between psilocybin's pharmacology and its impact on flexibility. Further, the psychedelic drug 2,5-Dimethoxy-4-iodoamphetamine (DOI) impaired cognitive flexibility in the same task, suggesting that this effect of psilocybin does not generalize to all other serotonergic psychedelics. We conclude that the acute impact of psilocybin on cognitive flexibility provides a useful behavioral model to investigate its neuronal effects relevant to its positive clinical outcome.
Collapse
Affiliation(s)
| | - Randall J. Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239
| | - Gabriela Garza
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239
- Current address: Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
49
|
Yurt P, Calapai A, Mundry R, Treue S. Assessing cognitive flexibility in humans and rhesus macaques with visual motion and neutral distractors. Front Psychol 2022; 13:1047292. [PMID: 36605264 PMCID: PMC9807625 DOI: 10.3389/fpsyg.2022.1047292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Cognitive flexibility is the ability of an individual to make behavioral adjustments in response to internal and/or external changes. While it has been reported in a wide variety of species, established paradigms to assess cognitive flexibility vary between humans and non-human animals, making systematic comparisons difficult to interpret. Methods We developed a computer-based paradigm to assess cognitive flexibility in humans and non-human primates. Our paradigm (1) uses a classical reversal learning structure in combination with a set-shifting approach (4 stimuli and 3 rules) to assess flexibility at various levels; (2) it employs the use of motion as one of three possible contextual rules; (3) it comprises elements that allow a foraging-like and random interaction, i.e., instances where the animals operate the task without following a strategy, to potentially minimize frustration in favor of a more positive engagement. Results and Discussion We show that motion can be used as a feature dimension (in addition to commonly used shape and color) to assess cognitive flexibility. Due to the way motion is processed in the primate brain, we argue that this dimension is an ideal candidate in situations where a non-binary rule set is needed and where participants might not be able to fully grasp other visual information of the stimulus (e.g., quantity in Wisconsin Card Sorting Test). All participants in our experiment flexibly shifted to and from motion-based rules as well as color- and shape-based rules, but did so with different proficiencies. Overall, we believe that with such approach it is possible to better characterize the evolution of cognitive flexibility in primates, as well as to develop more efficient tools to diagnose and treat various executive function deficits.
Collapse
Affiliation(s)
- Pinar Yurt
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany,Georg-August University School of Science, Goettingen, Germany
| | - Antonino Calapai
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany,LeibnizScienceCampus Primate Cognition, Goettingen, Germany,*Correspondence: Antonino Calapai,
| | - Roger Mundry
- LeibnizScienceCampus Primate Cognition, Goettingen, Germany,Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany,Department for Primate Cognition, Georg-August University, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany,LeibnizScienceCampus Primate Cognition, Goettingen, Germany
| |
Collapse
|
50
|
Barch DM, Boudewyn MA, Carter CC, Erickson M, Frank MJ, Gold JM, Luck SJ, MacDonald AW, Ragland JD, Ranganath C, Silverstein SM, Yonelinas A. Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. Curr Top Behav Neurosci 2022; 63:19-60. [PMID: 36173600 DOI: 10.1007/7854_2022_391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of treatments for impaired cognition in schizophrenia has been characterized as the most important challenge facing psychiatry at the beginning of the twenty-first century. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) project was designed to build on the potential benefits of using tasks and tools from cognitive neuroscience to better understanding and treat cognitive impairments in psychosis. These benefits include: (1) the use of fine-grained tasks that measure discrete cognitive processes; (2) the ability to design tasks that distinguish between specific cognitive domain deficits and poor performance due to generalized deficits resulting from sedation, low motivation, poor test taking skills, etc.; and (3) the ability to link cognitive deficits to specific neural systems, using animal models, neuropsychology, and functional imaging. CNTRICS convened a series of meetings to identify paradigms from cognitive neuroscience that maximize these benefits and identified the steps need for translation into use in clinical populations. The Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRaCS) Consortium was developed to help carry out these steps. CNTRaCS consists of investigators at five different sites across the country with diverse expertise relevant to a wide range of the cognitive systems identified as critical as part of CNTRICs. This work reports on the progress and current directions in the evaluation and optimization carried out by CNTRaCS of the tasks identified as part of the original CNTRICs process, as well as subsequent extensions into the Positive Valence systems domain of Research Domain Criteria (RDoC). We also describe the current focus of CNTRaCS, which involves taking a computational psychiatry approach to measuring cognitive and motivational function across the spectrum of psychosis. Specifically, the current iteration of CNTRaCS is using computational modeling to isolate parameters reflecting potentially more specific cognitive and visual processes that may provide greater interpretability in understanding shared and distinct impairments across psychiatric disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | | | | | | | | | - James M Gold
- Maryland Psychiatric Research Center, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|