1
|
Tang R, Zhou M, Chen Y, Jiang Z, Fan X, Zhang J, Dong A, Lv L, Mao S, Chen F, Gao G, Min J, Liu K, Yuan K. H3K14ac facilitates the reinstallation of constitutive heterochromatin in Drosophila early embryos by engaging Eggless/SetDB1. Proc Natl Acad Sci U S A 2024; 121:e2321859121. [PMID: 39437264 PMCID: PMC11331121 DOI: 10.1073/pnas.2321859121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/24/2024] [Indexed: 10/25/2024] Open
Abstract
Constitutive heterochromatin, a fundamental feature of eukaryotic nucleus essential for transposon silencing and genome stability, is rebuilt on various types of repetitive DNA in the zygotic genome during early embryogenesis. However, the molecular program underlying this process remains poorly understood. Here, we show that histone H3 lysine 14 acetylation (H3K14ac) is engaged in the reinstallation of constitutive heterochromatin in Drosophila early embryos. H3K14ac partially colocalizes with H3 lysine 9 trimethylation (H3K9me3) and its methyltransferase Eggless/SetDB1 around the mid-blastula transition. Concealing H3K14ac by either antibody injection or maternal knockdown of Gcn5 diminishes Eggless/SetDB1 nuclear foci and reduces the deposition of H3K9me3. Structural analysis reveals that Eggless/SetDB1 recognizes H3K14ac via its tandem Tudor domains, and disrupting the binding interface causes defects in Eggless/SetDB1 distribution and derepression of a subset of transposons. Therefore, H3K14ac, a histone modification normally associated with active transcription, is a crucial component of the early embryonic machinery that introduces constitutive heterochromatic features to the newly formed zygotic genome.
Collapse
Affiliation(s)
- Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Mengqi Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yuwei Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Yichun Maternal and Child Health Care Hospital, Yichun, Jiangxi, China
| | - Xunan Fan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jingheng Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Hunan, China
- The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Godneeva B, Ninova M, Fejes-Toth K, Aravin A. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. eLife 2023; 12:RP89493. [PMID: 37999956 PMCID: PMC10672805 DOI: 10.7554/elife.89493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Maria Ninova
- University of California, RiversideRiversideUnited States
| | - Katalin Fejes-Toth
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Alexei Aravin
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
3
|
Godneeva B, Ninova M, Fejes Tóth K, Aravin AA. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536936. [PMID: 37645991 PMCID: PMC10461926 DOI: 10.1101/2023.04.14.536936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Ninova
- University of California, Riverside, Riverside, CA 92521, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Amoiradaki K, Bunting KR, Paine KM, Ayre JE, Hogg K, Laidlaw KME, MacDonald C. The Rpd3-Complex Regulates Expression of Multiple Cell Surface Recycling Factors in Yeast. Int J Mol Sci 2021; 22:12477. [PMID: 34830359 PMCID: PMC8617818 DOI: 10.3390/ijms222212477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking pathways control residency and bioactivity of integral membrane proteins at the cell surface. Upon internalisation, surface cargo proteins can be delivered back to the plasma membrane via endosomal recycling pathways. Recycling is thought to be controlled at the metabolic and transcriptional level, but such mechanisms are not fully understood. In yeast, recycling of surface proteins can be triggered by cargo deubiquitination and a series of molecular factors have been implicated in this trafficking. In this study, we follow up on the observation that many subunits of the Rpd3 lysine deacetylase complex are required for recycling. We validate ten Rpd3-complex subunits in recycling using two distinct assays and developed tools to quantify both. Fluorescently labelled Rpd3 localises to the nucleus and complements recycling defects, which we hypothesised were mediated by modulated expression of Rpd3 target gene(s). Bioinformatics implicated 32 candidates that function downstream of Rpd3, which were over-expressed and assessed for capacity to suppress recycling defects of rpd3∆ cells. This effort yielded three hits: Sit4, Dit1 and Ldb7, which were validated with a lipid dye recycling assay. Additionally, the essential phosphatidylinositol-4-kinase Pik1 was shown to have a role in recycling. We propose recycling is governed by Rpd3 at the transcriptional level via multiple downstream target genes.
Collapse
Affiliation(s)
- Konstantina Amoiradaki
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Kate R. Bunting
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Katherine M. Paine
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Josephine E. Ayre
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Karen Hogg
- Imaging and Cytometry Laboratory, Bioscience Technology Facility, University of York, York YO10 5DD, UK;
| | - Kamilla M. E. Laidlaw
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Chris MacDonald
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| |
Collapse
|
5
|
Kleinschmidt RA, Lyon LM, Smith SL, Rittenberry J, Lawless KM, Acosta AA, Donze D. Genetic screen for suppressors of increased silencing in rpd3 mutants in Saccharomyces cerevisiae identifies a potential role for H3K4 methylation. G3 GENES|GENOMES|GENETICS 2021; 11:6371869. [PMID: 34534290 PMCID: PMC8527511 DOI: 10.1093/g3journal/jkab309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Several studies have identified the paradoxical phenotype of increased heterochromatic gene silencing at specific loci that results from deletion or mutation of the histone deacetylase (HDAC) gene RPD3. To further understand this phenomenon, we conducted a genetic screen for suppressors of this extended silencing phenotype at the HMR locus in Saccharomyces cerevisiae. Most of the mutations that suppressed extended HMR silencing in rpd3 mutants without completely abolishing silencing were identified in the histone H3 lysine 4 methylation (H3K4me) pathway, specifically in SET1, BRE1, and BRE2. These second-site mutations retained normal HMR silencing, therefore, appear to be specific for the rpd3Δ extended silencing phenotype. As an initial assessment of the role of H3K4 methylation in extended silencing, we rule out some of the known mechanisms of Set1p/H3K4me mediated gene repression by HST1, HOS2, and HST3 encoded HDACs. Interestingly, we demonstrate that the RNA Polymerase III complex remains bound and active at the HMR-tDNA in rpd3 mutants despite silencing extending beyond the normal barrier. We discuss these results as they relate to the interplay among different chromatin-modifying enzyme functions and the importance of further study of this enigmatic phenomenon.
Collapse
Affiliation(s)
| | - Laurie M Lyon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Samantha L Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jonah Rittenberry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - K Maeve Lawless
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anabelle A Acosta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence. PLoS Genet 2020; 16:e1008603. [PMID: 33370275 PMCID: PMC7793543 DOI: 10.1371/journal.pgen.1008603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/08/2021] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.
Collapse
|
7
|
Das P, Bhadra MP. Histone deacetylase (Rpd3) regulates Drosophila early brain development via regulation of Tailless. Open Biol 2020; 10:200029. [PMID: 32873153 PMCID: PMC7536075 DOI: 10.1098/rsob.200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022] Open
Abstract
Tailless is a committed transcriptional repressor and principal regulator of the brain and eye development in Drosophila. Rpd3, the histone deacetylase, is an established repressor that interacts with co-repressors like Sin3a, Prospero, Brakeless and Atrophin. This study aims at deciphering the role of Rpd3 in embryonic segmentation and larval brain development in Drosophila. It delineates the mechanism of Tailless regulation by Rpd3, along with its interacting partners. There was a significant reduction in Tailless in Rpd3 heteroallelic mutant embryos, substantiating that Rpd3 is indispensable for the normal Tailless expression. The expression of the primary readout, Tailless was correlative to the expression of the neural cell adhesion molecule homologue, Fascilin2 (Fas2). Rpd3 also aids in the proper development of the mushroom body. Both Tailless and Fas2 expression are reported to be antagonistic to the epidermal growth factor receptor (EGFR) expression. The decrease in Tailless and Fas2 expression highlights that EGFR is upregulated in the larval mutants, hindering brain development. This study outlines the axis comprising Rpd3, dEGFR, Tailless and Fas2, which interact to fine-tune the early segmentation and larval brain development. Therefore, Rpd3 along with Tailless has immense significance in early embryogenesis and development of the larval brain.
Collapse
Affiliation(s)
- Paromita Das
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR) Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600 113, India
| | - Manika Pal Bhadra
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR) Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600 113, India
| |
Collapse
|
8
|
Walther M, Schrahn S, Krauss V, Lein S, Kessler J, Jenuwein T, Reuter G. Heterochromatin formation in Drosophila requires genome-wide histone deacetylation in cleavage chromatin before mid-blastula transition in early embryogenesis. Chromosoma 2020; 129:83-98. [PMID: 31950239 PMCID: PMC7021753 DOI: 10.1007/s00412-020-00732-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
Su(var) mutations define epigenetic factors controlling heterochromatin formation and gene silencing in Drosophila. Here, we identify SU(VAR)2-1 as a novel chromatin regulator that directs global histone deacetylation during the transition of cleavage chromatin into somatic blastoderm chromatin in early embryogenesis. SU(VAR)2-1 is heterochromatin-associated in blastoderm nuclei but not in later stages of development. In larval polytene chromosomes, SU(VAR)2-1 is a band-specific protein. SU(VAR)2-1 directs global histone deacetylation by recruiting the histone deacetylase RPD3. In Su(var)2-1 mutants H3K9, H3K27, H4K8 and H4K16 acetylation shows elevated levels genome-wide and heterochromatin displays aberrant histone hyper-acetylation. Whereas H3K9me2- and HP1a-binding appears unaltered, the heterochromatin-specific H3K9me2S10ph composite mark is impaired in heterochromatic chromocenters of larval salivary polytene chromosomes. SU(VAR)2-1 contains an NRF1/EWG domain and a C2HC zinc-finger motif. Our study identifies SU(VAR)2-1 as a dosage-dependent, heterochromatin-initiating SU(VAR) factor, where the SU(VAR)2-1-mediated control of genome-wide histone deacetylation after cleavage and before mid-blastula transition (pre-MBT) is required to enable heterochromatin formation.
Collapse
Affiliation(s)
- Matthias Walther
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Sandy Schrahn
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
| | - Veiko Krauss
- Cluster of Excellence in Plant Science (CEPLAS), University of Cologne, Biocenter, 50674, Cologne, Germany
| | - Sandro Lein
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
| | - Jeannette Kessler
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Gunter Reuter
- Developmental Genetics, Institute of Biology, Martin Luther University Halle, Weinbergweg 10, 06120, Halle/S., Germany.
| |
Collapse
|
9
|
Suda K, Muraoka Y, Ortega-Yáñez A, Yoshida H, Kizu F, Hochin T, Kimura H, Yamaguchi M. Reduction of Rpd3 suppresses defects in locomotive ability and neuronal morphology induced by the knockdown of Drosophila SLC25A46 via an epigenetic pathway. Exp Cell Res 2019; 385:111673. [PMID: 31614134 DOI: 10.1016/j.yexcr.2019.111673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction causes various diseases. Mutations in the SLC25A46 gene have been identified in mitochondrial diseases that are sometimes classified as Charcot-Marie-Tooth disease type 2, optic atrophy, and Leigh syndrome. A homolog of SLC25A46 was identified in Drosophila and designated as dSLC25A46 (CG5755). We previously established mitochondrial disease model targeting of dSLC25A46, which causes locomotive dysfunction and morphological defects at neuromuscular junctions, such as reduced synaptic branch lengths and decreased numbers of boutons. The diverse symptoms of mitochondrial diseases carrying mutations in SLC25A46 may be associated with the dysregulation of some epigenetic regulators. To investigate the involvement of epigenetic regulators in mitochondrial diseases, we examined candidate epigenetic regulators that interact with human SLC25A46 by searching Gene Expression Omnibus (GEO). We discovered that HDAC1 binds to several SLC25A46 genomic regions in human cultured CD4 (+) cells, and attempted to prove this in an in vivo Drosophila model. By demonstrating that Rpd3, Drosophila HDAC1, regulates the histone H4K8 acetylation state in dSLC25A46 genomic regions, we confirmed that Rpd3 is a novel epigenetic regulator modifying the phenotypes observed with the mitochondrial disease model targeting of dSLC25A46. The functional reduction of Rpd3 rescued the deficient locomotive ability and aberrant morphology of motoneurons at presynaptic terminals induced by the dSLC25A46 knockdown. The present results suggest that the inhibition of HDAC1 suppresses the pathogenic processes that lead to the degeneration of motoneurons in mitochondrial diseases.
Collapse
Affiliation(s)
- Kojiro Suda
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuuka Muraoka
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Andrea Ortega-Yáñez
- Departamento de Genética del Desarrollo Y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Fuma Kizu
- Department of Information Science, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Teruhisa Hochin
- Department of Information Science, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
10
|
Neuroepigenetic signatures of age and sex in the living human brain. Nat Commun 2019; 10:2945. [PMID: 31270332 PMCID: PMC6610136 DOI: 10.1038/s41467-019-11031-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Age- and sex-related alterations in gene transcription have been demonstrated, however the underlying mechanisms are unresolved. Neuroepigenetic pathways regulate gene transcription in the brain. Here, we measure in vivo expression of the epigenetic enzymes, histone deacetylases (HDACs), across healthy human aging and between sexes using [11C]Martinostat positron emission tomography (PET) neuroimaging (n = 41). Relative HDAC expression increases with age in cerebral white matter, and correlates with age-associated disruptions in white matter microstructure. A post mortem study confirmed that HDAC1 and HDAC2 paralogs are elevated in white matter tissue from elderly donors. There are also sex-specific in vivo HDAC expression differences in brain regions associated with emotion and memory, including the amygdala and hippocampus. Hippocampus and white matter HDAC expression negatively correlates with emotion regulation skills (n = 23). Age and sex are associated with HDAC expression in vivo, which could drive age- and sex-related transcriptional changes and impact human behavior. Gene transcription is known to vary with age and sex, although the underlying mechanisms are unresolved. Here, the authors show that epigenetic enzymes known as HDACs, which regulate gene transcription, are increasingly expressed with age in the living human brain, with sex differences also observed.
Collapse
|
11
|
Molecular characterization of class I histone deacetylases and their expression in response to thermal and oxidative stresses in the red flour beetle, Tribolium castaneum. Genetica 2019; 147:281-290. [DOI: 10.1007/s10709-019-00065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
12
|
Boldyreva LV, Goncharov FP, Demakova OV, Zykova TY, Levitsky VG, Kolesnikov NN, Pindyurin AV, Semeshin VF, Zhimulev IF. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines. Curr Genomics 2017; 18:214-226. [PMID: 28367077 PMCID: PMC5345337 DOI: 10.2174/1389202917666160512164913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. RESULTS Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Igor F. Zhimulev
- Address correspondence to this author at the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: +7 383 363-90-41; Fax: +7 383 363-90-78; E-mail:
| |
Collapse
|
13
|
Woods JK, Rogina B. The effects of Rpd3 on fly metabolism, health, and longevity. Exp Gerontol 2016; 86:124-128. [PMID: 26927903 PMCID: PMC5002259 DOI: 10.1016/j.exger.2016.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/29/2022]
Abstract
The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.
Collapse
Affiliation(s)
- Jared K Woods
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, USA; Institute for Systems Genomics, School of Medicine, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
14
|
Frankel S, Woods J, Ziafazeli T, Rogina B. RPD3 histone deacetylase and nutrition have distinct but interacting effects on Drosophila longevity. Aging (Albany NY) 2016; 7:1112-29. [PMID: 26647291 PMCID: PMC4712336 DOI: 10.18632/aging.100856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single-gene mutations that extend longevity have revealed regulatory pathways related to aging and longevity. RPD3 is a conserved histone deacetylase (Class I HDAC). Previously we showed that Drosophila rpd3 mutations increase longevity. Here we tested the longevity effects of RPD3 on multiple nutrient levels. Dietary restriction (DR) has additive effects on RPD3-mediated longevity extension, but the effect may be modestly attenuated relative to controls. RPD3 and DR therefore appear to operate by distinct but interacting mechanisms. Since RPD3 regulates transcription, the mRNA levels for two proteins involved in nutrient signaling, 4E-BP and Tor, were examined in rpd3 mutant flies. 4E-BP mRNA was reduced under longevity-increasing conditions. Epistasis between RPD3 and 4E-BP with regard to longevity was then tested. Flies only heterozygous for a mutation in Thor, the 4E-BP gene, have modestly decreased life spans. Flies mutant for both rpd3 and Thor show a superposition of a large RPD3-mediated increase and a small Thor-mediated decrease in longevity at all food levels, consistent with each gene product having distinct effects on life span. However, DR-mediated extension was absent in males carrying both mutations and lessened in females. Our results support the view that multiple discrete but interacting mechanisms regulate longevity.
Collapse
Affiliation(s)
- Stewart Frankel
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
| | - Jared Woods
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| | - Tahereh Ziafazeli
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT 06030, USA.,Current address: Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT 06030, USA.,Institute for Systems Genomics, School of Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
15
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
16
|
|
17
|
de Pretis S, Pelizzola M. Computational and experimental methods to decipher the epigenetic code. Front Genet 2014; 5:335. [PMID: 25295054 PMCID: PMC4172025 DOI: 10.3389/fgene.2014.00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
A multi-layered set of epigenetic marks, including post-translational modifications of histones and methylation of DNA, is finely tuned to define the epigenetic state of chromatin in any given cell type under specific conditions. Recently, the knowledge about the combinations of epigenetic marks occurring in the genome of different cell types under various conditions is rapidly increasing. Computational methods were developed for the identification of these states, unraveling the combinatorial nature of epigenetic marks and their association to genomic functional elements and transcriptional states. Nevertheless, the precise rules defining the interplay between all these marks remain poorly characterized. In this perspective we review the current state of this research field, illustrating the power and the limitations of current approaches. Finally, we sketch future avenues of research illustrating how the adoption of specific experimental designs coupled with available experimental approaches could be critical for a significant progress in this area.
Collapse
Affiliation(s)
- Stefano de Pretis
- Computational Epigenomics, Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milan, Italy
| | - Mattia Pelizzola
- Computational Epigenomics, Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milan, Italy
| |
Collapse
|
18
|
Messina G, Damia E, Fanti L, Atterrato MT, Celauro E, Mariotti FR, Accardo MC, Walther M, Vernì F, Picchioni D, Moschetti R, Caizzi R, Piacentini L, Cenci G, Giordano E, Dimitri P. Yeti, an essential Drosophila melanogaster gene, encodes a protein required for chromatin organization. J Cell Sci 2014; 127:2577-88. [PMID: 24652835 DOI: 10.1242/jcs.150243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionarily conserved family of Bucentaur (BCNT) proteins exhibits a widespread distribution in animal and plants, yet its biological role remains largely unknown. Using Drosophila melanogaster as a model organism, we investigated the in vivo role of the Drosophila BCNT member called YETI. We report that loss of YETI causes lethality before pupation and defects in higher-order chromatin organization, as evidenced by severe impairment in the association of histone H2A.V, nucleosomal histones and epigenetic marks with polytene chromosomes. We also find that YETI binds to polytene chromosomes through its conserved BCNT domain and interacts with the histone variant H2A.V, HP1a and Domino-A (DOM-A), the ATPase subunit of the DOM/Tip60 chromatin remodeling complex. Furthermore, we identify YETI as a downstream target of the Drosophila DOM-A. On the basis of these results, we propose that YETI interacts with H2A.V-exchanging machinery, as a chaperone or as a new subunit of the DOM/Tip60 remodeling complex, and acts to regulate the accumulation of H2A.V at chromatin sites. Overall, our findings suggest an unanticipated role of YETI protein in chromatin organization and provide, for the first time, mechanistic clues on how BCNT proteins control development in multicellular organisms.
Collapse
Affiliation(s)
- Giovanni Messina
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Elisabetta Damia
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Laura Fanti
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Teresa Atterrato
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Emanuele Celauro
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Francesca Romana Mariotti
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Carmela Accardo
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | | | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy
| | - Daria Picchioni
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari, 70121 Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari, 70121 Bari, Italy
| | - Lucia Piacentini
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Ennio Giordano
- Dipartimento di Biologia, Università Federico II, 80134 Napoli, Italy
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
19
|
Kadiyala V, Smith CL. Minireview: The versatile roles of lysine deacetylases in steroid receptor signaling. Mol Endocrinol 2014; 28:607-21. [PMID: 24645680 DOI: 10.1210/me.2014-1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysine deacetylases have been known to regulate nuclear receptor function for many years. In the unliganded state, nuclear receptors that form heterodimers with retinoid X receptors, such as the retinoic acid and thyroid hormone receptors, associate with deacetylases to repress target genes. In the case of steroid receptors, binding of an antagonist ligand was initially reported to induce association of deacetylases to prevent activation of target genes. Since then, deacetylases have been shown to have diverse functions in steroid receptor signaling, from regulating interactions with molecular chaperones to facilitating their ability to activate transcription. The purpose of this review is to summarize recent studies on the role of deacetylases in steroid receptor signaling, which show deacetylases to be highly versatile regulators of steroid receptor function.
Collapse
Affiliation(s)
- Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy (V.K., C.L.S.), Department of Chemistry and Biochemistry, College of Science (V.K.), University of Arizona, Tucson Arizona 85721
| | | |
Collapse
|
20
|
Rpd3- and spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA genes. Mol Cell Biol 2013; 33:2748-59. [PMID: 23689130 DOI: 10.1128/mcb.00112-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosomal DNA (rDNA) genes in eukaryotes are organized into multicopy tandem arrays and transcribed by RNA polymerase I. During cell proliferation, ∼50% of these genes are active and have a relatively open chromatin structure characterized by elevated accessibility to psoralen cross-linking. In Saccharomyces cerevisiae, transcription of rDNA genes becomes repressed and chromatin structure closes when cells enter the diauxic shift and growth dramatically slows. In this study, we found that nucleosomes are massively depleted from the active rDNA genes during log phase and reassembled during the diauxic shift, largely accounting for the differences in psoralen accessibility between active and inactive genes. The Rpd3L histone deacetylase complex was required for diauxic shift-induced H4 and H2B deposition onto rDNA genes, suggesting involvement in assembly or stabilization of the entire nucleosome. The Spt16 subunit of FACT, however, was specifically required for H2B deposition, suggesting specificity for the H2A/H2B dimer. Miller chromatin spreads were used for electron microscopic visualization of rDNA genes in an spt16 mutant, which was found to be deficient in the assembly of normal nucleosomes on inactive genes and the disruption of nucleosomes on active genes, consistent with an inability to fully reactivate polymerase I (Pol I) transcription when cells exit stationary phase.
Collapse
|
21
|
Abstract
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.
Collapse
|
22
|
Milliman EJ, Yadav N, Chen YC, Muddukrishna B, Karunanithi S, Yu MC. Recruitment of Rpd3 to the telomere depends on the protein arginine methyltransferase Hmt1. PLoS One 2012; 7:e44656. [PMID: 22953000 PMCID: PMC3432115 DOI: 10.1371/journal.pone.0044656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 08/10/2012] [Indexed: 11/19/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the establishment and maintenance of silent chromatin at the telomere requires a delicate balance between opposing activities of histone modifying enzymes. Previously, we demonstrated that the protein arginine methyltransferase Hmt1 plays a role in the formation of yeast silent chromatin. To better understand the nature of the Hmt1 interactions that contribute to this phenomenon, we carried out a systematic reverse genetic screen using a null allele of HMT1 and the synthetic genetic array (SGA) methodology. This screen revealed interactions between HMT1 and genes encoding components of the histone deacetylase complex Rpd3L (large). A double mutant carrying both RPD3 and HMT1 deletions display increased telomeric silencing and Sir2 occupancy at the telomeric boundary regions, when comparing to a single mutant carrying Hmt1-deletion only. However, the dual rpd3/hmt1-null mutant behaves like the rpd3-null single mutant with respect to silencing behavior, indicating that RPD3 is epistatic to HMT1. Mutants lacking either Hmt1 or its catalytic activity display an increase in the recruitment of histone deacetylase Rpd3 to the telomeric boundary regions. Moreover, in such loss-of-function mutants the levels of acetylated H4K5, which is a substrate of Rpd3, are altered at the telomeric boundary regions. In contrast, the level of acetylated H4K16, a target of the histone deacetylase Sir2, was increased in these regions. Interestingly, mutants lacking either Rpd3 or Sir2 display various levels of reduction in dimethylated H4R3 at these telomeric boundary regions. Together, these data provide insight into the mechanism whereby Hmt1 promotes the proper establishment and maintenance of silent chromatin at the telomeres.
Collapse
Affiliation(s)
- Eric J. Milliman
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Neelu Yadav
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yin-Chu Chen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Bhavana Muddukrishna
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sheelarani Karunanithi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michael C. Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Burgio G, Cipressa F, Ingrassia AMR, Cenci G, Corona DFV. The histone deacetylase Rpd3 regulates the heterochromatin structure of Drosophila telomeres. J Cell Sci 2011; 124:2041-8. [DOI: 10.1242/jcs.078261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomeres are specialized structures at the end of eukaryotic chromosomes that are required to preserve genome integrity, chromosome stability and nuclear architecture. Telomere maintenance and function are established epigenetically in several eukaryotes. However, the exact chromatin enzymatic modifications regulating telomere homeostasis are poorly understood. In Drosophila melanogaster, telomere length and stability are maintained through the retrotransposition of specialized telomeric sequences and by the specific loading of protecting capping proteins, respectively. Here, we show that the loss of the essential and evolutionarily conserved histone deacetylase Rpd3, the homolog of mammalian HDAC1, causes aberrant telomeric fusions on polytene chromosome ends. Remarkably, these telomere fusion defects are associated with a marked decrease of histone H4 acetylation, as well as an accumulation of heterochromatic epigenetic marks at telomeres, including histone H3K9 trimethylation and the heterochromatic protein HP2. Our work suggests that Drosophila telomere structure is epigenetically regulated by the histone deacetylase Rpd3.
Collapse
Affiliation(s)
- Giosalba Burgio
- Istituto Telethon Dulbecco, c/o STEMBIO, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
- Università degli Studi di Palermo–Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari – Sezione di Biologia Cellulare, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Francesca Cipressa
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, 67100 Coppito, L'Aquila, Italy
| | - Antonia Maria Rita Ingrassia
- Istituto Telethon Dulbecco, c/o STEMBIO, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
- Università degli Studi di Palermo–Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari – Sezione di Biologia Cellulare, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, 67100 Coppito, L'Aquila, Italy
| | - Davide F. V. Corona
- Istituto Telethon Dulbecco, c/o STEMBIO, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
- Università degli Studi di Palermo–Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari – Sezione di Biologia Cellulare, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| |
Collapse
|
24
|
Radman-Livaja M, Ruben G, Weiner A, Friedman N, Kamakaka R, Rando OJ. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization. EMBO J 2011; 30:1012-26. [PMID: 21336256 DOI: 10.1038/emboj.2011.30] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
Chromatin domains are believed to spread via a polymerization-like mechanism in which modification of a given nucleosome recruits a modifying complex, which can then modify the next nucleosome in the polymer. In this study, we carry out genome-wide mapping of the Sir3 component of the Sir silencing complex in budding yeast during a time course of establishment of heterochromatin. Sir3 localization patterns do not support a straightforward model for nucleation and polymerization, instead showing strong but spatially delimited binding to silencers, and weaker and more variable Ume6-dependent binding to novel secondary recruitment sites at the seripauperin (PAU) genes. Genome-wide nucleosome mapping revealed that Sir binding to subtelomeric regions was associated with overpackaging of subtelomeric promoters. Sir3 also bound to a surprising number of euchromatic sites, largely at genes expressed at high levels, and was dynamically recruited to GAL genes upon galactose induction. Together, our results indicate that heterochromatin complex localization cannot simply be explained by nucleation and linear polymerization, and show that heterochromatin complexes associate with highly expressed euchromatic genes in many different organisms.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wang QP, Kawahara T, Horn D. Histone deacetylases play distinct roles in telomeric VSG expression site silencing in African trypanosomes. Mol Microbiol 2010; 77:1237-45. [PMID: 20624217 PMCID: PMC2941730 DOI: 10.1111/j.1365-2958.2010.07284.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2010] [Indexed: 01/10/2023]
Abstract
African trypanosomes evade the host immune response through antigenic variation, which is achieved by periodically expressing different variant surface glycoproteins (VSGs). VSG expression is monoallelic such that only one of approximately 15 telomeric VSG expression sites (ESs) is transcribed at a time. Epigenetic regulation is involved in VSG control but our understanding of the mechanisms involved remains incomplete. Histone deacetylases are potential drug targets for diseases caused by protozoan parasites. Here, using recombinant expression we show that the essential Trypanosoma brucei deacetylases, DAC1 (class I) and DAC3 (class II) display histone deacetylase activity. Both DAC1 and DAC3 are nuclear proteins in the bloodstream stage parasite, while only DAC3 remains concentrated in the nucleus in insect-stage cells. Consistent with developmentally regulated localization, DAC1 antagonizes SIR2rp1-dependent telomeric silencing only in the bloodstream form, indicating a conserved role in the control of silent chromatin domains. In contrast, DAC3 is specifically required for silencing at VSG ES promoters in both bloodstream and insect-stage cells. We conclude that DAC1 and DAC3 play distinct roles in subtelomeric gene silencing and that DAC3 represents the first readily druggable target linked to VSG ES control in the African trypanosome.
Collapse
Affiliation(s)
- Qiao-Ping Wang
- London School of Hygiene and Tropical MedicineKeppel Street, London WC1E 7HT, UK
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan Medical College, Sun Yat-Sen UniversityGuangzhou 510275, China
| | - Taemi Kawahara
- London School of Hygiene and Tropical MedicineKeppel Street, London WC1E 7HT, UK
| | - David Horn
- London School of Hygiene and Tropical MedicineKeppel Street, London WC1E 7HT, UK
| |
Collapse
|
26
|
Histone deacetylase Rpd3 regulates olfactory projection neuron dendrite targeting via the transcription factor Prospero. J Neurosci 2010; 30:9939-46. [PMID: 20660276 DOI: 10.1523/jneurosci.1643-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3(-/-) PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3(-/-) phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor.
Collapse
|
27
|
Morimoto T, Sunagawa Y, Fujita M, Hasegawa K. Novel heart failure therapy targeting transcriptional pathway in cardiomyocytes by a natural compound, curcumin. Circ J 2010; 74:1059-66. [PMID: 20467147 DOI: 10.1253/circj.cj-09-1012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertensive heart disease and post-myocardial-infarction heart failure (HF) are leading causes of cardiovascular mortality in industrialized countries. To date, pharmacological agents that block cell surface receptors for neurohormonal factors have been used, but despite such conventional therapy, HF is increasing in incidence worldwide. During the development and deterioration process of HF, cardiomyocytes undergo maladaptive hypertrophy, which markedly influences their gene expression. Regulation of histone acetylation by histone acetyltransferase (eg, p300) and histone deacetylase plays an important role in this process. Increasing evidence suggests that the excessive acetylation of cardiomyocyte nuclei is a hallmark of maladaptive cardiomyocyte hypertrophy. Curcumin inhibits p300-mediated nuclear acetylation, suggesting its usefulness in HF treatment. Clinical application of this natural compound, which is inexpensive and safe, should be established in the near future.
Collapse
Affiliation(s)
- Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | |
Collapse
|
28
|
Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res 2010; 20:763-83. [PMID: 20440302 DOI: 10.1038/cr.2010.64] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Both transcription and post-transcriptional processes, such as alternative splicing, play crucial roles in controlling developmental programs in metazoans. Recently emerged RNA-seq method has brought our understanding of eukaryotic transcriptomes to a new level, because it can resolve both gene expression level and alternative splicing events simultaneously. To gain a better understanding of cellular differentiation in gonads, we analyzed mRNA profiles from Drosophila testes and ovaries using RNA-seq. We identified a set of genes that have sex-specific isoforms in wild-type (WT) gonads, including several transcription factors. We found that differentiation of sperms from undifferentiated germ cells induced a dramatic downregulation of RNA splicing factors. Our data confirmed that RNA splicing events are significantly more frequent in the undifferentiated cell-enriched bag of marbles (bam) mutant testis, but downregulated upon differentiation in WT testis. Consistent with this, we showed that genes required for meiosis and terminal differentiation in WT testis were mainly regulated at the transcriptional level, but not by alternative splicing. Unexpectedly, we observed an increase in expression of all families of chromatin remodeling factors and histone modifying enzymes in the undifferentiated cell-enriched bam testis. More interestingly, chromatin regulators and histone modifying enzymes with opposite enzymatic activities are coenriched in undifferentiated cells in testis, suggesting that these cells may possess dynamic chromatin architecture. Finally, our data revealed many new features of the Drosophila gonadal transcriptomes, and will lead to a more comprehensive understanding of how differential gene expression and splicing regulate gametogenesis in Drosophila. Our data provided a foundation for the systematic study of gene expression and alternative splicing in many interesting areas of germ cell biology in Drosophila, such as the molecular basis for sexual dimorphism and the regulation of the proliferation vs terminal differentiation programs in germline stem cell lineages. The GEO accession number for the raw and analyzed RNA-seq data is GSE16960.
Collapse
Affiliation(s)
- Qiang Gan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate. Proc Natl Acad Sci U S A 2010; 107:5522-7. [PMID: 20133733 DOI: 10.1073/pnas.0909169107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Boundaries between euchromatic and heterochromatic regions until now have been associated with chromatin-opening activities. Here, we identified an unexpected role for histone deacetylation in this process. Significantly, the histone deacetylase (HDAC) Rpd3 was necessary for boundary formation in Saccharomyces cerevisiae. rpd3Delta led to silent information regulator (SIR) spreading and repression of subtelomeric genes. In the absence of a known boundary factor, the histone acetyltransferase complex SAS-I, rpd3Delta caused inappropriate SIR spreading that was lethal to yeast cells. Notably, Rpd3 was capable of creating a boundary when targeted to heterochromatin. Our data suggest a mechanism for boundary formation whereby histone deacetylation by Rpd3 removes the substrate for the HDAC Sir2, so that Sir2 no longer can produce O-acetyl-ADP ribose (OAADPR) by consumption of NAD(+) in the deacetylation reaction. In essence, OAADPR therefore is unavailable for binding to Sir3, preventing SIR propagation.
Collapse
|
30
|
Verzijlbergen KF, Faber AW, Stulemeijer IJ, van Leeuwen F. Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae. BMC Mol Biol 2009; 10:76. [PMID: 19638198 PMCID: PMC2724485 DOI: 10.1186/1471-2199-10-76] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/28/2009] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers. RESULT We determined that loss of H3K79 methylation results in a partial silencing defect that could be bypassed by conditions that promote targeting of Sir proteins to heterochromatin. Furthermore, the silencing defect in strains lacking Dot1 was dependent on methylation of H3K4 by Set1 and histone acetylation by Gcn5, Elp3, and Sas2 in euchromatin. Our study shows that multiple histone modifications associated with euchromatin positively modulate the function of heterochromatin by distinct mechanisms. Genetic interactions between Set1 and Set2 suggested that the H3K36 methyltransferase Set2, unlike most other euchromatic modifiers, negatively affects gene silencing. CONCLUSION Our genetic dissection of Dot1's role in silencing in budding yeast showed that heterochromatin formation is modulated by multiple euchromatic histone modifiers that act by non-overlapping mechanisms. We discuss how euchromatic histone modifiers can make negative as well as positive contributions to gene silencing by competing with heterochromatin proteins within heterochromatin, within euchromatin, and at the boundary between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Kitty F Verzijlbergen
- Fred van Leeuwen, Division of Gene Regulation B4, Netherlands Cancer Institute, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae. Genetics 2009; 183:149-60. [PMID: 19596907 DOI: 10.1534/genetics.109.103846] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone modifications that regulate chromatin-dependent processes are catalyzed by multisubunit complexes. These can function in both targeting activities to specific genes and in regulating genomewide levels of modifications. In Saccharomyces cerevisiae, Esa1 and Rpd3 have opposing enzymatic activities and are catalytic subunits of multiple chromatin modifying complexes with key roles in processes such as transcriptional regulation and DNA repair. Esa1 is an essential histone acetyltransferase that belongs to the highly conserved MYST family. This study presents evidence that the yeast histone deacetylase gene, RPD3, when deleted, suppressed esa1 conditional mutant phenotypes. Deletion of RPD3 reversed rDNA and telomeric silencing defects and restored global H4 acetylation levels, in addition to rescuing the growth defect of a temperature-sensitive esa1 mutant. This functional genetic interaction between ESA1 and RPD3 was mediated through the Rpd3L complex. The suppression of esa1's growth defect by disruption of Rpd3L was dependent on lysine 12 of histone H4. We propose a model whereby Esa1 and Rpd3L act coordinately to control the acetylation of H4 lysine 12 to regulate transcription, thereby emphasizing the importance of dynamic acetylation and deacetylation of this particular histone residue in maintaining cell viability.
Collapse
|
32
|
Zhou J, Zhou BO, Lenzmeier BA, Zhou JQ. Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. Nucleic Acids Res 2009; 37:3699-713. [PMID: 19372273 PMCID: PMC2699518 DOI: 10.1093/nar/gkp233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the eukaryotic genome, transcriptionally silent chromatin tends to propagate along a chromosome and encroach upon adjacent active chromatin. The silencing machinery can be stopped by chromatin boundary elements. We performed a screen in Saccharomyces cerevisiae for proteins that may contribute to the establishment of a chromatin boundary. We found that disruption of histone deacetylase Rpd3p results in defective boundary activity, leading to a Sir-dependent local propagation of transcriptional repression. In rpd3 Delta cells, the amount of Sir2p that was normally found in the nucleolus decreased and the amount of Sir2p found at telomeres and at HM and its adjacent loci increased, leading to an extension of silent chromatin in those areas. In addition, Rpd3p interacted directly with chromatin at boundary regions to deacetylate histone H4 at lysine 5 and at lysine 12. Either the mutation of histone H4 at lysine 5 or a decrease in the histone acetyltransferase (HAT) activity of Esa1p abrogated the silencing phenotype associated with rpd3 mutation, suggesting a novel role for the H4 amino terminus in Rpd3p-mediated heterochromatin boundary regulation. Together, these data provide insight into the molecular mechanisms for the anti-silencing functions of Rpd3p during the formation of heterochromatin boundaries.
Collapse
Affiliation(s)
- Jing Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, The Graduate School, Shanghai 200031, China
| | | | | | | |
Collapse
|
33
|
Corepressive action of CBP on androgen receptor transactivation in pericentric heterochromatin in a Drosophila experimental model system. Mol Cell Biol 2008; 29:1017-34. [PMID: 19075001 DOI: 10.1128/mcb.02123-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ligand-bound nuclear receptors (NR) activate transcription of the target genes. This activation is coupled with histone modifications and chromatin remodeling through the function of various coregulators. However, the nature of the dependence of a NR coregulator action on the presence of the chromatin environment at the target genes is unclear. To address this issue, we have developed a modified position effect variegation experimental model system that includes an androgen-dependent reporter transgene inserted into either a pericentric heterochromatin region or a euchromatic region of Drosophila chromosome. Human androgen receptor (AR) and its constitutively active truncation mutant (AR AF-1) were transcriptionally functional in both chromosomal regions. Predictably, the level of AR-induced transactivation was lower in the pericentric heterochromatin. In genetic screening for AR AF-1 coregulators, Drosophila CREB binding protein (dCBP) was found to corepress AR transactivation at the pericentric region whereas it led to coactivation in the euchromatic area. Mutations of Sir2 acetylation sites or deletion of the CBP acetyltransferase domain abrogated dCBP corepressive action for AR at heterochromatic areas in vivo. Such a CBP corepressor function for AR was observed in the transcriptionally silent promoter of an AR target gene in cultured mammalian cells. Thus, our findings suggest that the action of NR coregulators may depend on the state of chromatin at the target loci.
Collapse
|
34
|
Doheny JG, Mottus R, Grigliatti TA. Telomeric position effect--a third silencing mechanism in eukaryotes. PLoS One 2008; 3:e3864. [PMID: 19057646 PMCID: PMC2587703 DOI: 10.1371/journal.pone.0003864] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/20/2008] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic chromosomes terminate in telomeres, complex nucleoprotein structures that are required for chromosome integrity that are implicated in cellular senescence and cancer. The chromatin at the telomere is unique with characteristics of both heterochromatin and euchromatin. The end of the chromosome is capped by a structure that protects the end and is required for maintaining proper chromosome length. Immediately proximal to the cap are the telomere associated satellite-like (TAS) sequences. Genes inserted into the TAS sequences are silenced indicating the chromatin environment is incompatible with transcription. This silencing phenomenon is called telomeric position effect (TPE). Two other silencing mechanisms have been identified in eukaryotes, suppressors position effect variegation [Su(var)s, greater than 30 members] and Polycomb group proteins (PcG, approximately 15 members). We tested a large number of each group for their ability to suppress TPE [Su(TPE)]. Our results showed that only three Su(var)s and only one PcG member are involved in TPE, suggesting silencing in the TAS sequences occurs via a novel silencing mechanism. Since, prior to this study, only five genes have been identified that are Su(TPE)s, we conducted a candidate screen for Su(TPE) in Drosophila by testing point mutations in, and deficiencies for, proteins involved in chromatin metabolism. Screening with point mutations identified seven new Su(TPE)s and the deficiencies identified 19 regions of the Drosophila genome that harbor suppressor mutations. Chromatin immunoprecipitation experiments on a subset of the new Su(TPE)s confirm they act directly on the gene inserted into the telomere. Since the Su(TPE)s do not overlap significantly with either PcGs or Su(var)s, and the candidates were selected because they are involved generally in chromatin metabolism and act at a wide variety of sites within the genome, we propose that the Su(TPE) represent a third, widely used, silencing mechanism in the eukaryotic genome.
Collapse
Affiliation(s)
- J. Greg Doheny
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Randy Mottus
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas A. Grigliatti
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Genomewide screen for negative regulators of sirtuin activity in Saccharomyces cerevisiae reveals 40 loci and links to metabolism. Genetics 2008; 179:1933-44. [PMID: 18689887 DOI: 10.1534/genetics.108.088443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are conserved proteins implicated in myriad key processes including gene control, aging, cell survival, metabolism, and DNA repair. In Saccharomyces cerevisiae, the sirtuin Silent information regulator 2 (Sir2) promotes silent chromatin formation, suppresses recombination between repeats, and inhibits senescence. We performed a genomewide screen for factors that negatively regulate Sir activity at a reporter gene placed immediately outside a silenced region. After linkage analysis, assessment of Sir dependency, and knockout tag verification, 40 loci were identified, including 20 that have not been previously described to regulate Sir. In addition to chromatin-associated factors known to prevent ectopic silencing (Bdf1, SAS-I complex, Rpd3L complex, Ku), we identified the Rtt109 DNA repair-associated histone H3 lysine 56 acetyltransferase as an anti-silencing factor. Our findings indicate that Rtt109 functions independently of its proposed effectors, the Rtt101 cullin, Mms1, and Mms22, and demonstrate unexpected interplay between H3K56 and H4K16 acetylation. The screen also identified subunits of mediator (Soh1, Srb2, and Srb5) and mRNA metabolism factors (Kem1, Ssd1), thus raising the possibility that weak silencing affects some aspect of mRNA structure. Finally, several factors connected to metabolism were identified. These include the PAS-domain metabolic sensor kinase Psk2, the mitochondrial homocysteine detoxification enzyme Lap3, and the Fe-S cluster protein maturase Isa2. We speculate that PAS kinase may integrate metabolic signals to control sirtuin activity.
Collapse
|
36
|
Genome analysis identifies the p15ink4b tumor suppressor as a direct target of the ZNF217/CoREST complex. Mol Cell Biol 2008; 28:6066-77. [PMID: 18625718 DOI: 10.1128/mcb.00246-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ZNF217 oncoprotein is a constituent of a core transcriptional complex that includes CoREST, histone deacetylase 1/2, lysine demethylase 1, and the C-terminal binding protein 1/2. We have combined genome-wide expression profiling and chromatin immunoprecipitation with directed selection and ligation (ChIP-DSL) to identify a subset of genes directly regulated by ZNF217. Our results establish p15(ink4b) as a direct target of the ZNF217 complex. Downregulation of ZNF217 in MCF-7 breast cancer cells resulted in a dramatic increase in p15(ink4b) expression and coincided with increases in dimethylation of H3-K4 and, surprisingly, a decrease in K9/K14-H3 acetylation. Stimulation of HaCaT cells with transforming growth factor beta (TGF-beta) resulted in a release of ZNF217 and a concomitant binding of SMAD2 to the proximal promoter, which preceded increases in ink4b protein expression. Furthermore, the changes in chromatin marks at the p15(ink4b) promoter following TGF-beta stimulation were similar to those observed following ZNF217 downregulation. Collectively, these results establish the ZNF217 complex as a novel negative regulator of the p15(ink4b) gene and may constitute an important link between amplification of ZNF217 and the loss of TGF-beta responsiveness in breast cancer.
Collapse
|
37
|
Abstract
Transcriptional repression and silencing have been strongly associated with hypoacetylation of histones. Accordingly, histone deacetylases, which remove acetyl groups from histones, have been shown to participate in mechanisms of transcriptional repression. Therefore, current models of the role of acetylation in transcriptional regulation focus on the acetylation status of histones and designate histone acetyltransferases, which add acetyl groups to histones, as transcriptional coactivators and histone deacetylases as corepressors. In recent years, an accumulation of studies have shown that these enzymes also target non-histone proteins and that histone deacetylases have clear roles as coactivators at a variety of genes, some of which are key regulators of cell growth and survival. This review summarizes the evidence for histone deacetylases as coactivators and provides models of coactivation mechanisms, some of which integrate roles of acetylated histones and non-histone proteins in transcription.
Collapse
Affiliation(s)
- Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
38
|
Zhu CC, Bornemann DJ, Zhitomirsky D, Miller EL, O'Connor MB, Simon JA. Drosophila histone deacetylase-3 controls imaginal disc size through suppression of apoptosis. PLoS Genet 2008; 4:e1000009. [PMID: 18454196 PMCID: PMC2265479 DOI: 10.1371/journal.pgen.1000009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/18/2008] [Indexed: 02/05/2023] Open
Abstract
Histone deacetylases (HDACs) execute biological regulation through post-translational modification of chromatin and other cellular substrates. In humans, there are eleven HDACs, organized into three distinct subfamilies. This large number of HDACs raises questions about functional overlap and division of labor among paralogs. In vivo roles are simpler to address in Drosophila, where there are only five HDAC family members and only two are implicated in transcriptional control. Of these two, HDAC1 has been characterized genetically, but its most closely related paralog, HDAC3, has not. Here we describe the isolation and phenotypic characterization of hdac3 mutations. We find that both hdac3 and hdac1 mutations are dominant suppressors of position effect variegation, suggesting functional overlap in heterochromatin regulation. However, all five hdac3 loss-of-function alleles are recessive lethal during larval/pupal stages, indicating that HDAC3 is essential on its own for Drosophila development. The mutant larvae display small imaginal discs, which result from abnormally elevated levels of apoptosis. This cell death occurs as a cell-autonomous response to HDAC3 loss and is accompanied by increased expression of the pro-apoptotic gene, hid. In contrast, although HDAC1 mutants also display small imaginal discs, this appears to result from reduced proliferation rather than from elevated apoptosis. The connection between HDAC loss and apoptosis is important since HDAC inhibitors show anticancer activities in animal models through mechanisms involving apoptotic induction. However, the specific HDACs implicated in tumor cell killing have not been identified. Our results indicate that protein deacetylation by HDAC3 plays a key role in suppression of apoptosis in Drosophila imaginal tissue. Histone deacetylases (HDACs) are enzymes that reverse acetylation of protein substrates inside the cell. Like phosphorylation, acetylation/deacetylation can alter the biochemical properties of a protein target and thereby regulate its functions. Histones are a major target of certain HDACs. When histones become deacetylated, the biochemical properties of the local chromatin are altered, which can contribute to gene silencing. HDACs can also act upon protein substrates besides histones. There are multiple HDACs encoded in animal genomes, with eleven HDACs in humans. Thus, it becomes complicated to determine which individual HDACs exert which biological functions in vivo. To address this, we have isolated and studied mutations that specifically disrupt a single HDAC, HDAC3, in Drosophila. We find that a major function of HDAC3 is to prevent programmed cell death from occurring abnormally in certain fly tissues. This finding has implications for anticancer strategies since HDAC chemical inhibitors can reduce tumors in animal models through induction of cell death. Our study identifies HDAC3 as a single HDAC among many that can play a key role in control of cell death and suggests that this version of the enzyme should be further investigated for regulatory roles in tumor cell killing versus survival.
Collapse
Affiliation(s)
- Changqi C. Zhu
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Douglas J. Bornemann
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - David Zhitomirsky
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Ellen L. Miller
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jeffrey A. Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
39
|
Girton JR, Johansen KM. Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila. ADVANCES IN GENETICS 2008; 61:1-43. [PMID: 18282501 DOI: 10.1016/s0065-2660(07)00001-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Position-effect variegation (PEV) was discovered in 1930 in a study of X-ray-induced chromosomal rearrangements. Rearrangements that place euchromatic genes adjacent to a region of centromeric heterochromatin give a variegated phenotype that results from the inactivation of genes by heterochromatin spreading from the breakpoint. PEV can also result from P element insertions that place euchromatic genes into heterochromatic regions and rearrangements that position euchromatic chromosomal regions into heterochromatic nuclear compartments. More than 75 years of studies of PEV have revealed that PEV is a complex phenomenon that results from fundamental differences in the structure and function of heterochromatin and euchromatin with respect to gene expression. Molecular analysis of PEV began with the discovery that PEV phenotypes are altered by suppressor and enhancer mutations of a large number of modifier genes whose products are structural components of heterochromatin, enzymes that modify heterochromatic proteins, or are nuclear structural components. Analysis of these gene products has led to our current understanding that formation of heterochromatin involves specific modifications of histones leading to the binding of particular sets of heterochromatic proteins, and that this process may be the mechanism for repressing gene expression in PEV. Other modifier genes produce products whose function is part of an active mechanism of generation of euchromatin that resists heterochromatization. Current studies of PEV are focusing on defining the complex patterns of modifier gene activity and the sequence of events that leads to the dynamic interplay between heterochromatin and euchromatin.
Collapse
Affiliation(s)
- Jack R Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
40
|
Slx5 promotes transcriptional silencing and is required for robust growth in the absence of Sir2. Mol Cell Biol 2007; 28:1361-72. [PMID: 18086879 DOI: 10.1128/mcb.01291-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The broadly conserved Sir2 NAD(+)-dependent deacetylase is required for chromatin silencing. Here we report the discovery of physical and functional links between Sir2 and Slx5 (Hex3), a RING domain protein and subunit of the Slx5/8 complex, [corrected] which is a ubiquitin E3 ligase that targets sumoylated proteins. Slx5 interacted with Sir2 by two-hybrid and glutathione S-transferase-binding assays and was found to promote silencing of genes at telomeric or ribosomal DNA (rDNA) loci. However, deletion of SLX5 had no detectable effect on the distribution of silent chromatin components and only slightly altered the deacetylation of histone H4 lysine 16 at the telomere. In vivo assays indicated that Sir2-dependent silencing was functionally intact in the absence of Slx5. Although no previous reports suggest that Sir2 contributes to the fitness of yeast populations, we found that Sir2 was required for maximal growth in slx5Delta mutant cells. A similar requirement was observed for mutants of the SUMO isopeptidase Ulp2/Smt4. The contribution of Sir2 to optimal growth was not due to known Sir2 roles in mating-type determination or rDNA maintenance but was connected to a role of sumoylation in transcriptional silencing. These results indicate that Sir2 and Slx5 jointly contribute to transcriptional silencing and robust cellular growth.
Collapse
|
41
|
Transcriptional adaptor ADA3 of Drosophila melanogaster is required for histone modification, position effect variegation, and transcription. Mol Cell Biol 2007; 28:376-85. [PMID: 17967867 DOI: 10.1128/mcb.01307-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila melanogaster gene diskette (also known as dik or dAda3) encodes a protein 29% identical to human ADA3, a subunit of GCN5-containing histone acetyltransferase (HAT) complexes. The fly dADA3 is a major contributor to oogenesis, and it is also required for somatic cell viability. dADA3 localizes to chromosomes, and it is significantly reduced in dGcn5 and dAda2a, but not in dAda2b, mutant backgrounds. In dAda3 mutants, acetylation at histone H3 K9 and K14, but not K18, and at histone H4 K12, but not K5, K8, and K16, is significantly reduced. Also, phosphorylation at H3 S10 is reduced in dAda3 and dGcn5 mutants. Variegation for white (w(m4)) and scute (Hw(v)) genes, caused by rearrangements of X chromosome heterochromatin, is modified in a dAda3(+) gene-dosage-dependent manner. The effect is not observed with rearrangements involving Y heterochromatin (bw(D)), euchromatin (Scutoid), or transvection effects on chromosomal pairing (white and zeste interaction). Activity of scute gene enhancers, targets for Iroquoi transcription factors, is abolished in dAda3 mutants. Also, Iroquoi-associated phenotypes are sensitive to dAda3(+) gene dosage. We conclude that dADA3 plays a role in HAT complexes which acetylate H3 and H4 at specific residues. In turn, this acetylation results in chromatin structure effects of certain rearrangements and transcription of specific genes.
Collapse
|
42
|
McClure KD, Schubiger G. A screen for genes that function in leg disc regeneration in Drosophila melanogaster. Mech Dev 2007; 125:67-80. [PMID: 18036784 DOI: 10.1016/j.mod.2007.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 09/26/2007] [Accepted: 10/08/2007] [Indexed: 11/16/2022]
Abstract
Many diverse animal species regenerate parts of an organ or tissue after injury. However, the molecules responsible for the regenerative growth remain largely unknown. The screen reported here aimed to identify genes that function in regeneration and the transdetermination events closely associated with imaginal disc regeneration using Drosophila melanogaster. We screened a collection of 97 recessive lethal P-lacZ enhancer trap lines for two primary criteria: first, the ability to dominantly modify wg-induced leg-to-wing transdetermination and second, for the activation or repression of the lacZ reporter gene in the blastema during disc regeneration. Of the 97 P-lacZ lines, we identified six genes (Krüppel-homolog-1, rpd3, jing, combgap, Aly and S6 kinase) that met both criteria. Five of these genes suppress, while one enhances, leg-to-wing transdetermination and therefore affects disc regeneration. Two of the genes, jing and rpd3, function in concert with chromatin remodeling proteins of the Polycomb Group (PcG) and trithorax Group (trxG) genes during Drosophila development, thus linking chromatin remodeling with the process of regeneration.
Collapse
Affiliation(s)
- Kimberly D McClure
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
43
|
Abstract
Chromatin modifications play a crucial role in regulating DNA metabolism. Chromatin structures can be remodeled by covalently modifying histones, by shifting nucleosomes along the DNA, and by changing the histone composition of nucleosomes. Lately, nucleosome displacement has been extensively described within transcribed genes and DNA breaks. This review focuses on recently published work that describes the relationships between histone modification/exchange and nucleosome displacement.
Collapse
Affiliation(s)
- Antonin Morillon
- CNRS CGM, 1, avenue de la terrasse, 91198 Gif/Yvette cedex, France.
| |
Collapse
|
44
|
Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV. Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 2007; 27:2037-47. [PMID: 17210643 PMCID: PMC1820486 DOI: 10.1128/mcb.02297-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of "anaerobic" genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression.
Collapse
Affiliation(s)
- Odeniel Sertil
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
45
|
Clarke AS, Samal E, Pillus L. Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing. Mol Biol Cell 2006; 17:1744-57. [PMID: 16436512 PMCID: PMC1415314 DOI: 10.1091/mbc.e05-07-0613] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Among acetyltransferases, the MYST family enzyme Esa1p is distinguished for its essential function and contribution to transcriptional activation and DNA double-stranded break repair. Here we report that Esa1p also plays a key role in silencing RNA polymerase II (Pol II)-transcribed genes at telomeres and within the ribosomal DNA (rDNA) of the nucleolus. These effects are mediated through Esa1p's HAT activity and correlate with changes within the nucleolus. Esa1p is enriched within the rDNA, as is the NAD-dependent protein deacetylase Sir2p, and the acetylation levels of key Esa1p histone targets are reduced in the rDNA in esa1 mutants. Although mutants of both ESA1 and SIR2 have enhanced rates of rDNA recombination, esa1 effects are more modest yet result in distinct structural changes of rDNA chromatin. Surprisingly, increased expression of ESA1 can bypass the requirement for Sir2p in rDNA silencing, suggesting that these two enzymes with seemingly opposing activities both contribute to achieve optimal nucleolar chromatin structure and function.
Collapse
Affiliation(s)
- Astrid S Clarke
- Division of Biological Sciences, UCSD Cancer Center and Center for Molecular Genetics, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
46
|
Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:10060-70. [PMID: 16260619 PMCID: PMC1280264 DOI: 10.1128/mcb.25.22.10060-10070.2005] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological significance of recently described modifiable residues in the globular core of the bovine nucleosome remains elusive. We have mapped these modification sites onto the Saccharomyces cerevisiae histones and used a genetic approach to probe their potential roles both in heterochromatic regions of the genome and in the DNA repair response. By mutating these residues to mimic their modified and unmodified states, we have generated a total of 39 alleles affecting 14 residues in histones H3 and H4. Remarkably, despite the apparent evolutionary pressure to conserve these near-invariant histone amino acid sequences, the vast majority of mutant alleles are viable. However, a subset of these variant proteins elicit an effect on transcriptional silencing both at the ribosomal DNA locus and at telomeres, suggesting that posttranslational modification(s) at these sites regulates formation and/or maintenance of heterochromatin. Furthermore, we provide direct mass spectrometry evidence for the existence of histone H3 K56 acetylation in yeast. We also show that substitutions at histone H4 K91, K59, S47, and R92 and histone H3 K56 and K115 lead to hypersensitivity to DNA-damaging agents, linking the significance of the chemical identity of these modifiable residues to DNA metabolism. Finally, we allude to the possible molecular mechanisms underlying the effects of these modifications.
Collapse
Affiliation(s)
- Edel M Hyland
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Laribee RN, Klemsz MJ. Histone H4 HDAC activity is necessary for expression of the PU.1 gene. ACTA ACUST UNITED AC 2005; 1730:226-34. [PMID: 16139904 DOI: 10.1016/j.bbaexp.2005.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/12/2005] [Indexed: 11/21/2022]
Abstract
Although the current paradigm delegates histone deacetylases (HDACs) to the role of transcriptional co-repressors, we recently showed that HDAC activity was necessary for expression of the hematopoietic transcription factor PU.1. Chromatin immunoprecipitation analyses showed that inhibition of HDACs resulted in increased histone H4 acetylation within the promoter and intron 1 regions of the PU.1 locus. In contrast, increases in both H3 and H4 acetylation were seen for introns 2, 3 and 4 on the 3' end of the PU.1 locus. Maximal increases in histone H4 acetylation over the promoter and intron 1 region were seen within 10 min of HDAC inhibition, while the increases seen on the 3' end showed slower kinetics. The increases in H4 acetylation were reversible and decreased levels of acetylation correlated with re-expression of the PU.1 gene. Finally, we show that HDAC activity is required for association of RNA polymerase II with the PU.1 promoter.
Collapse
Affiliation(s)
- R Nicholas Laribee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
48
|
Struffi P, Arnosti DN. Functional interaction between the Drosophila knirps short range transcriptional repressor and RPD3 histone deacetylase. J Biol Chem 2005; 280:40757-65. [PMID: 16186109 PMCID: PMC1802102 DOI: 10.1074/jbc.m506819200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Knirps and other short range transcriptional repressors play critical roles in patterning the early Drosophila embryo. These repressors are known to bind the C-terminal binding protein corepressor, but their mechanism of action is poorly understood. We purified functional recombinant Knirps protein from transgenic embryos to identify possible cofactors that contribute to the activity of this protein. The protein migrates in a complex of approximately 450 kDa and was found to copurify with the Rpd3 histone deacetylase protein during a double affinity purification procedure. Association of Rpd3 with Knirps was dependent on the presence of the C-terminal binding protein-dependent repression domain of Knirps. Previous studies of an rpd3 mutant had not shown defects in the pattern of expression of even-skipped, a target of the Knirps repressor. However, in embryos doubly heterozygous for knirps and rpd3, a marked increase in the frequency of defects in the Knirps-regulated posterior domain of even-skipped expression was found, indicating that Rpd3 contributes to Knirps repression activity in vivo. This finding implicates deacetylation in the mechanism of short range repression in Drosophila.
Collapse
Affiliation(s)
- Paolo Struffi
- Department of Biochemistry and Molecular Biology and Program in Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
49
|
Varga-Weisz P. Chromatin remodeling factors and DNA replication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:1-30. [PMID: 15881889 DOI: 10.1007/3-540-27310-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatin structures have to be precisely duplicated during DNA replication to maintain tissue-specific gene expression patterns and specialized domains, such as the centromeres. Chromatin remodeling factors are key components involved in this process and include histone chaperones, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. Several of these factors interact directly with components of the replication machinery. Histone variants are also important to mark specific chromatin domains. Because chromatin remodeling factors render chromatin dynamic, they may also be involved in facilitating the DNA replication process through condensed chromatin domains.
Collapse
|
50
|
Whetstine JR, Ceron J, Ladd B, Dufourcq P, Reinke V, Shi Y. Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. Mol Cell 2005; 18:483-90. [PMID: 15893731 DOI: 10.1016/j.molcel.2005.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/17/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Class I histone deacetylases (HDACs) repress transcription by deacetylating histones and have been shown to play crucial roles in mouse, Xenopus, zebrafish, and C. elegans development. To identify the molecular networks regulated by a class I HDAC in a multicellular organism, we carried out a global gene expression profiling study using C. elegans embryos, and identified tissue-specific and extracellular matrix (ECM)-related genes as major HDA-1 targets. Ectopic expression of HDA-1 or C. elegans cystatin, an HDA-1 target identified from the microarray, significantly perturbed mammalian cell invasion. Similarly, RNAi depletion or overexpression of human HDAC-1 also affected cell migration. These findings suggest that HDA-1/HDAC-1 may play a critical, evolutionarily conserved role in regulating the extracellular microenvironment. Because human HDACs are targets for cancer therapy, these findings have significant implications in cancer treatment.
Collapse
|