1
|
Washington HS, Wang S, Berry KE. Generation of single-cysteine E. coli ProQ variants to study RNA-protein interaction mechanisms. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001188. [PMID: 38660567 PMCID: PMC11040395 DOI: 10.17912/micropub.biology.001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
ProQ is a FinO-domain protein found in E. coli and other proteobacteria that has a global RNA-binding profile. In order to probe the detailed mechanism of RNA interactions, we have developed a collection of 13 E. coli ProQ variants that possess single-cysteine residues at varied positions on the surface of the N-terminal FinO domain and retain the ability to bind well to RNA. This set of variant ProQ proteins will support future biochemical and biophysical studies to map the orientation of bound RNAs to different sites around the ProQ protein, shedding light on the mechanism of ProQ-RNA interactions.
Collapse
Affiliation(s)
- Helen S. Washington
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts, United States
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts, United States
| | - Katherine E. Berry
- Program in Biochemistry and Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts, United States
| |
Collapse
|
2
|
Mercer JAM, DeCarlo SJ, Roy Burman SS, Sreekanth V, Nelson AT, Hunkeler M, Chen PJ, Donovan KA, Kokkonda P, Tiwari PK, Shoba VM, Deb A, Choudhary A, Fischer ES, Liu DR. Continuous evolution of compact protein degradation tags regulated by selective molecular glues. Science 2024; 383:eadk4422. [PMID: 38484051 PMCID: PMC11203266 DOI: 10.1126/science.adk4422] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.
Collapse
Affiliation(s)
- Jaron A. M. Mercer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Stephan J. DeCarlo
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Shourya S. Roy Burman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115
| | - Andrew T. Nelson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Peter J. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Praveen K. Tiwari
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115
| | - Veronika M. Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Arghya Deb
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
3
|
Li L, Yang B, Wang J, Wei Y, Xiang B, Liu Y, Wu P, Li W, Wang Y, Zhao X, Qin J, Liu M, Liu R, Ma G, Fu T, Wang M, Liu B. CobB-mediated deacetylation of the chaperone CesA regulates Escherichia coli O157:H7 virulence. Gut Microbes 2024; 16:2331435. [PMID: 38502202 PMCID: PMC10956630 DOI: 10.1080/19490976.2024.2331435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a common food-borne pathogen that can cause acute diseases. Lysine acetylation is a post-translational modification (PTM) that occurs in various prokaryotes and is regulated by CobB, the only deacetylase found in bacteria. Here, we demonstrated that CobB plays an important role in the virulence of EHEC O157:H7 and that deletion of cobB significantly decreased the intestinal colonization ability of bacteria. Using acetylation proteomic studies, we systematically identified several proteins that could be regulated by CobB in EHEC O157:H7. Among these CobB substrates, we found that acetylation at the K44 site of CesA, a chaperone for the type-III secretion system (T3SS) translocator protein EspA, weakens its binding to EspA, thereby reducing the stability of this virulence factor; this PTM ultimately attenuating the virulence of EHEC O157:H7. Furthermore, we showed that deacetylation of the K44 site, which is deacetylated by CobB, promotes the interaction between CesA and EspA, thereby increasing bacterial virulence in vitro and in animal experiments. In summary, we showed that acetylation influences the virulence of EHEC O157:H7, and uncovered the mechanism by which CobB contributes to bacterial virulence based on the regulation of CesA deacetylation.
Collapse
Affiliation(s)
- Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jing Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Binbin Xiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Pan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Wanwu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xinyu Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Miaomiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Guozhen Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Tian Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| |
Collapse
|
4
|
Kang YS, Kirby JE. A Versatile Nanoluciferase Reporter Reveals Structural Properties Associated with a Highly Efficient, N-Terminal Legionella pneumophila Type IV Secretion Translocation Signal. Microbiol Spectr 2023; 11:e0233822. [PMID: 36815834 PMCID: PMC10100965 DOI: 10.1128/spectrum.02338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Many Gram-negative pathogens rely on type IV secretion systems (T4SS) for infection. One limitation has been the lack of ideal reporters to identify T4SS translocated effectors and study T4SS function. Most reporter systems make use of fusions to reporter proteins, in particular, β-lactamase (TEM) and calmodulin-dependent adenylate cyclase (CYA), that allow detection of translocated enzymatic activity inside host cells. However, both systems require costly reagents and use complex, multistep procedures for loading host cells with substrate (TEM) or for analysis (CYA). Therefore, we have developed and characterized a novel reporter system using nanoluciferase (NLuc) fusions to address these limitations. Serendipitously, we discovered that Nluc itself is efficiently translocated by Legionella pneumophila T4SS in an IcmSW chaperone-dependent manner via an N-terminal translocation signal. Extensive mutagenesis in the NLuc N terminus suggested the importance of an α-helical domain spanning D5 to V9, as mutations predicted to disrupt this structure, with one exception, were translocation defective. Notably, NLuc was capable of translocating several proteins examined when fused to the N or C terminus, while maintaining robust luciferase activity. In particular, it delivered the split GFP11 fragment into J774 macrophages transfected with GFPopt, thereby resulting in in vivo assembly of superfolder green fluorescent protein (GFP). This provided a bifunctional assay in which translocation could be assayed by fluorescence microplate, confocal microscopy, and/or luciferase assays. We further identified an optimal NLuc substrate which allowed a robust, inexpensive, one-step, high-throughput screening assay to identify T4SS translocation substrates and inhibitors. Taken together, these results indicate that NLuc provides both new insight into and also tools for studying T4SS biology. IMPORTANCE Type IV secretion systems (T4SS) are used by Gram-negative pathogens to coopt host cell function. However, the translocation signals recognized by T4SS are not fully explained by primary amino acid sequence, suggesting yet-to-be-defined contributions of secondary and tertiary structure. Here, we unexpectedly identified nanoluciferase (NLuc) as an efficient IcmSW-dependent translocated T4SS substrate, and we provide extensive mutagenesis data suggesting that the first N-terminal, alpha-helix domain is a critical translocation recognition motif. Notably, most existing reporter systems for studying translocated proteins make use of fusions to reporters to permit detection of translocated enzymatic activity inside the host cell. However, existing systems require extremely costly substrates, complex technical procedures to isolate eukaryotic cytoplasm for analysis, and/or are insensitive. Importantly, we found that NLuc provides a powerful, cost-effective new tool to address these limitations and facilitate high-throughput exploration of secretion system biology.
Collapse
Affiliation(s)
- Yoon-Suk Kang
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Lee B, Wang T. A Modular Scaffold for Controlling Transcriptional Activation via Homomeric Protein-Protein Interactions. ACS Synth Biol 2022; 11:3198-3206. [PMID: 36215660 DOI: 10.1021/acssynbio.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein-protein interactions (PPIs) have been extensively utilized in synthetic biology to construct artificial gene networks. However, synthetic regulation of gene expression by PPIs in E. coli has largely relied upon repressors, and existing PPI-controlled transcriptional activators have generally been employed with heterodimeric interactions. Here we report a highly modular, PPI-dependent transcriptional activator, cCadC, that was designed to be compatible with homomeric interactions. We describe the process of engineering cCadC from a transmembrane protein into a soluble cytosolic regulator. We then show that gene transcription by cCadC can be controlled by homomeric PPIs and furthermore discriminates between dimeric and higher-order interactions. Finally, we demonstrate that cCadC activity can be placed under small molecule regulation using chemically induced dimerization or ligand dependent stabilization. This work should greatly expand the scope of PPIs that can be employed in artificial gene circuits in E. coli and complements the existing repertoire of tools for transcriptional regulation in synthetic biology.
Collapse
Affiliation(s)
- ByungUk Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tina Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Graph Neural Network for Protein-Protein Interaction Prediction: A Comparative Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186135. [PMID: 36144868 PMCID: PMC9501426 DOI: 10.3390/molecules27186135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Proteins are the fundamental biological macromolecules which underline practically all biological activities. Protein-protein interactions (PPIs), as they are known, are how proteins interact with other proteins in their environment to perform biological functions. Understanding PPIs reveals how cells behave and operate, such as the antigen recognition and signal transduction in the immune system. In the past decades, many computational methods have been developed to predict PPIs automatically, requiring less time and resources than experimental techniques. In this paper, we present a comparative study of various graph neural networks for protein-protein interaction prediction. Five network models are analyzed and compared, including neural networks (NN), graph convolutional neural networks (GCN), graph attention networks (GAT), hyperbolic neural networks (HNN), and hyperbolic graph convolutions (HGCN). By utilizing the protein sequence information, all of these models can predict the interaction between proteins. Fourteen PPI datasets are extracted and utilized to compare the prediction performance of all these methods. The experimental results show that hyperbolic graph neural networks tend to have a better performance than the other methods on the protein-related datasets.
Collapse
|
7
|
Stockert OM, Gravel CM, Berry KE. A bacterial three-hybrid assay for forward and reverse genetic analysis of RNA-protein interactions. Nat Protoc 2022; 17:941-961. [PMID: 35197605 PMCID: PMC10241318 DOI: 10.1038/s41596-021-00657-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
This protocol describes a bacterial three-hybrid (B3H) assay, an in vivo system that reports on RNA-protein interactions and can be implemented in both forward and reverse genetic experiments. The B3H assay connects the strength of an RNA-protein interaction inside of living Escherichia coli cells to the transcription of a reporter gene (here, lacZ). We present protocols to (1) insert RNA and protein sequences into appropriate vectors for B3H experiments, (2) detect putative RNA-protein interactions with both qualitative and quantitative readouts and (3) carry out forward genetic mutagenesis screens. The B3H assay builds on a well-established bacterial two-hybrid system for genetic analyses. As a result, protein-protein interactions can be assessed in tandem with RNA interactions with a bacterial two-hybrid assay to ensure that protein variants maintain their functionality. The B3H system is a powerful complement to traditional biochemical methods for dissecting RNA-protein interaction mechanisms: RNAs and proteins of interest do not need to be purified, and their interactions can be assessed under native conditions inside of a living bacterial cell. Once cloning has been completed, an assay can be completed in under a week and a screen in 1-2 weeks.
Collapse
Affiliation(s)
- Oliver M Stockert
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, USA
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, USA.
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, USA.
| |
Collapse
|
8
|
Extracting phylogenetic dimensions of coevolution reveals hidden functional signals. Sci Rep 2022; 12:820. [PMID: 35039514 PMCID: PMC8764114 DOI: 10.1038/s41598-021-04260-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Despite the structural and functional information contained in the statistical coupling between pairs of residues in a protein, coevolution associated with function is often obscured by artifactual signals such as genetic drift, which shapes a protein's phylogenetic history and gives rise to concurrent variation between protein sequences that is not driven by selection for function. Here, we introduce a background model for phylogenetic contributions of statistical coupling that separates the coevolution signal due to inter-clade and intra-clade sequence comparisons and demonstrate that coevolution can be measured on multiple phylogenetic timescales within a single protein. Our method, nested coevolution (NC), can be applied as an extension to any coevolution metric. We use NC to demonstrate that poorly conserved residues can nonetheless have important roles in protein function. Moreover, NC improved the structural-contact predictions of several coevolution-based methods, particularly in subsampled alignments with fewer sequences. NC also lowered the noise in detecting functional sectors of collectively coevolving residues. Sectors of coevolving residues identified after application of NC were more spatially compact and phylogenetically distinct from the rest of the protein, and strongly enriched for mutations that disrupt protein activity. Thus, our conceptualization of the phylogenetic separation of coevolution provides the potential to further elucidate relationships among protein evolution, function, and genetic diseases.
Collapse
|
9
|
Simmons TR, Ellington AD, Contreras LM. RNP-Based Control Systems for Genetic Circuits in Synthetic Biology Beyond CRISPR. Methods Mol Biol 2022; 2518:1-31. [PMID: 35666436 DOI: 10.1007/978-1-0716-2421-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ribonucleoproteins (RNPs) are RNA-protein complexes utilized natively in both prokaryotes and eukaryotes to regulate essential processes within the cell. Over the past few years, many of these native systems have been adapted to provide control over custom genetic targets. Engineered RNP-based control systems allow for fine-tune regulation of desired targets, by providing customizable nucleotide-nucleotide interactions. However, as there have been several engineered RNP systems developed recently, identifying an optimal system for various bioprocesses is challenging. Here, we review the most successful engineered RNP systems and their applications to survey the current state of the field. Additionally, we provide selection criteria to provide users a streamlined method for identifying an RNP control system most useful to their own work. Lastly, we discuss future applications of RNP control systems and how they can be utilized to address the current grand challenges of the synthetic biology community.
Collapse
Affiliation(s)
- Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Abstract
Methods for detecting and dissecting the interactions of virally encoded proteins are essential for probing basic viral biology and providing a foundation for therapeutic advances. The dearth of targeted therapeutics for the treatment of coronavirus disease 2019 (COVID-19), an ongoing global health crisis, underscores the importance of gaining a deeper understanding of the interactions of proteins encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we describe the use of a convenient bacterial cell-based two-hybrid (B2H) system to analyze the SARS-CoV-2 proteome. We identified 16 distinct intraviral protein-protein interactions (PPIs), involving 16 proteins. We found that many of the identified proteins interact with more than one partner. Further, our system facilitates the genetic dissection of these interactions, enabling the identification of selectively disruptive mutations. We also describe a modified B2H system that permits the detection of disulfide bond-dependent PPIs in the normally reducing Escherichia coli cytoplasm, and we used this system to detect the interaction of the SARS-CoV-2 spike protein receptor-binding domain (RBD) with its cognate cell surface receptor ACE2. We then examined how the RBD-ACE2 interaction is perturbed by several RBD amino acid substitutions found in currently circulating SARS-CoV-2 variants. Our findings illustrate the utility of a genetically tractable bacterial system for probing the interactions of viral proteins and investigating the effects of emerging mutations. In principle, the system could also facilitate the identification of potential therapeutics that disrupt specific interactions of virally encoded proteins. More generally, our findings establish the feasibility of using a B2H system to detect and dissect disulfide bond-dependent interactions of eukaryotic proteins.
Collapse
|
11
|
Structural visualization of transcription activated by a multidrug-sensing MerR family regulator. Nat Commun 2021; 12:2702. [PMID: 33976201 PMCID: PMC8113463 DOI: 10.1038/s41467-021-22990-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/08/2021] [Indexed: 01/25/2023] Open
Abstract
Bacterial RNA polymerase (RNAP) holoenzyme initiates transcription by recognizing the conserved -35 and -10 promoter elements that are optimally separated by a 17-bp spacer. The MerR family of transcriptional regulators activate suboptimal 19-20 bp spacer promoters in response to myriad cellular signals, ranging from heavy metals to drug-like compounds. The regulation of transcription by MerR family regulators is not fully understood. Here we report one crystal structure of a multidrug-sensing MerR family regulator EcmrR and nine cryo-electron microscopy structures that capture the EcmrR-dependent transcription process from promoter opening to initial transcription to RNA elongation. These structures reveal that EcmrR is a dual ligand-binding factor that reshapes the suboptimal 19-bp spacer DNA to enable optimal promoter recognition, sustains promoter remodeling to stabilize initial transcribing complexes, and finally dissociates from the promoter to reverse DNA remodeling and facilitate the transition to elongation. Our findings yield a comprehensive model for transcription regulation by MerR family factors and provide insights into the transition from transcription initiation to elongation.
Collapse
|
12
|
Villegas Kcam MC, Tsong AJ, Chappell J. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. Nucleic Acids Res 2021; 49:4793-4802. [PMID: 33823546 PMCID: PMC8096225 DOI: 10.1093/nar/gkab211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR-Cas activator (CRISPRa) systems that selectively turn on transcription of a target gene are a potentially transformative technology for programming cellular function. While in eukaryotes versatile CRISPRa systems exist, in bacteria these systems suffer from a limited ability to activate different genes due to strict distance-dependent requirements of functional target binding sites, and require greater customization to optimize performance in different genetic and cellular contexts. To address this, we apply a rational protein engineering approach to create a new CRISPRa platform that is highly modular to allow for easy customization and has increased targeting flexibility through harnessing engineered Cas proteins. We first demonstrate that transcription activation domains can be recruited by CRISPR-Cas through noncovalent protein-protein interactions, which allows each component to be encoded on separate and easily interchangeable plasmid elements. We then exploit this modularity to rapidly screen a library of different activation domains, creating new systems with distinct regulatory properties. Furthermore, we demonstrate that by harnessing a library of circularly permuted Cas proteins, we can create CRISPRa systems that have different target binding site requirements, which together, allow for expanded target range.
Collapse
Affiliation(s)
| | - Annette J Tsong
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | - James Chappell
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, MS 142, Houston, TX 77005, USA
| |
Collapse
|
13
|
Wang CD, Mansky R, LeBlanc H, Gravel CM, Berry KE. Optimization of a bacterial three-hybrid assay through in vivo titration of an RNA-DNA adapter protein. RNA (NEW YORK, N.Y.) 2021; 27:513-526. [PMID: 33500316 PMCID: PMC7962490 DOI: 10.1261/rna.077404.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
Noncoding RNAs regulate gene expression in every domain of life. In bacteria, small RNAs (sRNAs) regulate gene expression in response to stress and are often assisted by RNA-chaperone proteins, such as Hfq. We have recently developed a bacterial three-hybrid (B3H) assay that detects the strong binding interactions of certain E. coli sRNAs with proteins Hfq and ProQ. Despite the promise of this system, the signal-to-noise has made it challenging to detect weaker interactions. In this work, we use Hfq-sRNA interactions as a model system to optimize the B3H assay, so that weaker RNA-protein interactions can be more reliably detected. We find that the concentration of the RNA-DNA adapter is an important parameter in determining the signal in the system and have modified the plasmid expressing this component to tune its concentration to optimal levels. In addition, we have systematically perturbed the binding affinity of Hfq-RNA interactions to define, for the first time, the relationship between B3H signal and in vitro binding energetics. The new pAdapter construct presented here substantially expands the range of detectable interactions in the B3H assay, broadening its utility. This improved assay will increase the likelihood of identifying novel protein-RNA interactions with the B3H system and will facilitate exploration of the binding mechanisms of these interactions.
Collapse
Affiliation(s)
- Clara D Wang
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Rachel Mansky
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
14
|
Schilling C, Koffas MAG, Sieber V, Schmid J. Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression. ACS Synth Biol 2020; 9:3353-3363. [PMID: 33238093 DOI: 10.1021/acssynbio.0c00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional perturbation using inactivated CRISPR-nucleases (dCas) is a common method in eukaryotic organisms. While rare examples of dCas9-based tools for prokaryotes have been described, multiplexing approaches are limited due to the used effector nuclease. For the first time, a dCas12a derived tool for the targeted activation and repression of genes was developed. Therefore, a previously described SoxS activator domain was linked to dCas12a to enable the programmable activation of gene expression. A proof of principle of transcriptional regulation was demonstrated on the basis of fluorescence reporter assays using the alternative host organism Paenibacillus polymyxa as well as Escherichia coli. Single target and multiplex CRISPR interference targeting the exopolysaccharide biosynthesis of P. polymyxa was shown to emulate polymer compositions of gene knockouts. The simultaneous expression of 11 gRNAs targeting multiple lactate dehydrogenases and a butanediol dehydrogenase resulted in decreased lactate formation, as well as an increased butanediol production in microaerobic fermentation processes. Even though Cas12a is more restricted in terms of its genomic target sequences compared to Cas9, its ability to efficiently process its own guide RNAs in vivo makes it a promising tool to orchestrate sophisticated genetic reprogramming of bacterial cells or to screen for engineering targets in the genome. The developed tool will accelerate metabolic engineering efforts in the alternative host organism P. polymyxa and might be also applied for other bacterial cell factories.
Collapse
Affiliation(s)
- Christoph Schilling
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
- Fraunhofer IGB, Straubing Branch BioCat, Schulgasse 23, 94315 Straubing, Germany
- TUM Catalysis Research Center, Ernst-Otto-Fischer-Straße1, 85748 Garching, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia 4072, Australia
| | - Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| |
Collapse
|
15
|
Anam ZE, Joshi N, Gupta S, Yadav P, Chaurasiya A, Kahlon AK, Kaushik S, Munde M, Ranganathan A, Singh S. A De novo Peptide from a High Throughput Peptide Library Blocks Myosin A -MTIP Complex Formation in Plasmodium falciparum. Int J Mol Sci 2020; 21:ijms21176158. [PMID: 32859024 PMCID: PMC7503848 DOI: 10.3390/ijms21176158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023] Open
Abstract
Apicomplexan parasites, through their motor machinery, produce the required propulsive force critical for host cell-entry. The conserved components of this so-called glideosome machinery are myosin A and myosin A Tail Interacting Protein (MTIP). MTIP tethers myosin A to the inner membrane complex of the parasite through 20 amino acid-long C-terminal end of myosin A that makes direct contacts with MTIP, allowing the invasion of Plasmodium falciparum in erythrocytes. Here, we discovered through screening a peptide library, a de-novo peptide ZA1 that binds the myosin A tail domain. We demonstrated that ZA1 bound strongly to myosin A tail and was able to disrupt the native myosin A tail MTIP complex both in vitro and in vivo. We then showed that a shortened peptide derived from ZA1, named ZA1S, was able to bind myosin A and block parasite invasion. Overall, our study identified a novel anti-malarial peptide that could be used in combination with other antimalarials for blocking the invasion of Plasmodium falciparum.
Collapse
Affiliation(s)
- Zill e Anam
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Nishant Joshi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201304, India;
| | - Sakshi Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (M.M.)
| | - Preeti Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Ayushi Chaurasiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Shikha Kaushik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (M.M.)
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
- Correspondence: (A.R.); (S.S.)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
- Correspondence: (A.R.); (S.S.)
| |
Collapse
|
16
|
Novel Escherichia coli RNA Polymerase Binding Protein Encoded by Bacteriophage T5. Viruses 2020; 12:v12080807. [PMID: 32722583 PMCID: PMC7472727 DOI: 10.3390/v12080807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
The Escherichia coli bacteriophage T5 has three temporal classes of genes (pre-early, early, and late). All three classes are transcribed by host RNA polymerase (RNAP) containing the σ70 promoter specificity subunit. Molecular mechanisms responsible for the switching of viral transcription from one class to another remain unknown. Here, we find the product of T5 gene 026 (gpT5.026) in RNAP preparations purified from T5-infected cells and demonstrate in vitro its tight binding to E. coli RNAP. While proteins homologous to gpT5.026 are encoded by all T5-related phages, no similarities to proteins with known functions can be detected. GpT5.026 binds to two regions of the RNAP β subunit and moderately inhibits RNAP interaction with the discriminator region of σ70-dependent promoters. A T5 mutant with disrupted gene 026 is viable, but the host cell lysis phase is prolongated and fewer virus particles are produced. During the mutant phage infection, the number of early transcripts increases, whereas the number of late transcripts decreases. We propose that gpT5.026 is part of the regulatory cascade that orchestrates a switch from early to late bacteriophage T5 transcription.
Collapse
|
17
|
Liu Y, Wang B. A Novel Eukaryote-Like CRISPR Activation Tool in Bacteria: Features and Capabilities. Bioessays 2020; 42:e1900252. [PMID: 32310310 DOI: 10.1002/bies.201900252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Indexed: 11/09/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) activation (CRISPRa) in bacteria is an attractive method for programmable gene activation. Recently, a eukaryote-like, σ54 -dependent CRISPRa system has been reported. It exhibits high dynamic ranges and permits flexible target site selection. Here, an overview of the existing strategies of CRISPRa in bacteria is presented, and the characteristics and design principles of the CRISPRa system are introduced. Possible scenarios for applying the eukaryote-like CRISPRa system is discussed with corresponding suggestions for performance optimization and future functional expansion. The authors envision the new eukaryote-like CRISPRa system enabling novel designs in multiplexed gene regulation and promoting research in the σ54 -dependent gene regulatory networks among a variety of biotechnology relevant or disease-associated bacterial species.
Collapse
Affiliation(s)
- Yang Liu
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
18
|
Stiffler MA, Poelwijk FJ, Brock KP, Stein RR, Riesselman A, Teyra J, Sidhu SS, Marks DS, Gauthier NP, Sander C. Protein Structure from Experimental Evolution. Cell Syst 2020; 10:15-24.e5. [DOI: 10.1016/j.cels.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 11/27/2022]
|
19
|
Lim HC, Bernhardt TG. A PopZ-linked apical recruitment assay for studying protein-protein interactions in the bacterial cell envelope. Mol Microbiol 2019; 112:1757-1768. [PMID: 31550057 DOI: 10.1111/mmi.14391] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 02/03/2023]
Abstract
Most bacteria are surrounded by a complex cell envelope. As with many biological processes, studies of envelope assembly have benefited from cell-based assays for detecting protein-protein interactions. These assays use simple readouts and lack a protein purification requirement, making them ideal for early stage investigations. The most widely used two-hybrid interaction assay for proteins involved in envelope biogenesis is based on the reconstitution of adenylate cyclase activity from a split enzyme. Because adenylate cyclase is only functional in the cytoplasm, both protein fusions used in the assay must have a terminus located in this compartment. However, many envelope assembly factors are wholly extracytoplasmic. Detecting interactions involving such proteins using two-hybrid systems has therefore been problematic. To address this issue, we developed a cytological assay in Escherichia coli based on PopZ from Caulobacter crescentus. Here, we demonstrate the utility of this PopZ-Linked Apical Recruitment (POLAR) method for detecting interactions between proteins located in different cellular compartments. Additionally, we report that recruitment of an active peptidoglycan synthase to the cell pole is detrimental for E. coli and that interactions between proteins in the inner and outer membranes of the Gram-negative envelope may provide a mechanism for recruiting protein complexes to subpolar sites.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Smith AJ, Thomas F, Shoemark D, Woolfson DN, Savery NJ. Guiding Biomolecular Interactions in Cells Using de Novo Protein-Protein Interfaces. ACS Synth Biol 2019; 8:1284-1293. [PMID: 31059644 DOI: 10.1021/acssynbio.8b00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An improved ability to direct and control biomolecular interactions in living cells would have an impact on synthetic biology. A key issue is the need to introduce interacting components that act orthogonally to endogenous proteomes and interactomes. Here, we show that low-complexity, de novo designed protein-protein interaction (PPI) domains can substitute for natural PPIs and guide engineered protein-DNA interactions in Escherichia coli. Specifically, we use de novo homo- and heterodimeric coiled coils to reconstitute a cytoplasmic split adenylate cyclase, recruit RNA polymerase to a promoter and activate gene expression, and oligomerize both natural and designed DNA-binding domains to repress transcription. Moreover, the stabilities of the heterodimeric coiled coils can be modulated by rational design and, thus, adjust the levels of gene activation and repression in vivo. These experiments demonstrate the possibilities for using designed proteins and interactions to control biomolecular systems such as enzyme cascades and circuits in cells.
Collapse
Affiliation(s)
- Abigail J. Smith
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Franziska Thomas
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Deborah Shoemark
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Nigel J. Savery
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| |
Collapse
|
21
|
Ichikawa DM, Corbi-Verge C, Shen MJ, Snider J, Wong V, Stagljar I, Kim PM, Noyes MB. A Multireporter Bacterial 2-Hybrid Assay for the High-Throughput and Dynamic Assay of PDZ Domain-Peptide Interactions. ACS Synth Biol 2019; 8:918-928. [PMID: 30969105 DOI: 10.1021/acssynbio.8b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate determination of protein-protein interactions has been an important focus of molecular biology toward which much progress has been made due to the continuous development of existing and new technologies. However, current methods can have limitations, including scale and restriction to high affinity interactions, limiting our understanding of a large subset of these interactions. Here, we describe a modified bacterial-hybrid assay that employs combined selectable and scalable reporters that enable the sensitive screening of large peptide libraries followed by the sorting of positive interactions by the level of reporter output. We have applied this tool to characterize a set of human and E. coli PDZ domains. Our results are consistent with prior characterization of these proteins, and the improved sensitivity increases our ability to predict known and novel in vivo binding partners. This approach allows for the recovery of a wide range of affinities with a high throughput method that does not sacrifice the scale of the screen.
Collapse
Affiliation(s)
- David M. Ichikawa
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael J. Shen
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Jamie Snider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Philip M. Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Marcus B. Noyes
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
22
|
Ragheb MN, Thomason MK, Hsu C, Nugent P, Gage J, Samadpour AN, Kariisa A, Merrikh CN, Miller SI, Sherman DR, Merrikh H. Inhibiting the Evolution of Antibiotic Resistance. Mol Cell 2018; 73:157-165.e5. [PMID: 30449724 PMCID: PMC6320318 DOI: 10.1016/j.molcel.2018.10.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/17/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
Abstract
Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an “evolvability factor” that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd’s role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with “anti-evolution” drugs)—in particular, Mfd—providing an unexplored route toward battling the AMR crisis.
The bacterial transcription-coupled repair (TCR) factor Mfd promotes mutagenesis Mfd-driven mutagenesis accelerates the evolution of antimicrobial resistance (AMR) The rapid evolution of AMR requires Mfd’s interaction with RpoB and UvrA Mfd may be an ideal target for “anti-evolution” drugs that inhibit AMR development
Collapse
Affiliation(s)
- Mark N Ragheb
- Department of Microbiology, University of Washington, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | | | - Chris Hsu
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Patrick Nugent
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - John Gage
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ankunda Kariisa
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David R Sherman
- Center for Infectious Disease Research, Seattle, WA, USA; Interdiscipinary Program of Pathobiology, Department of Global Health, University of Washington, Seattle, WA, USA
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Zhou H, Wang F, Tao P. t-Distributed Stochastic Neighbor Embedding Method with the Least Information Loss for Macromolecular Simulations. J Chem Theory Comput 2018; 14:5499-5510. [PMID: 30252473 PMCID: PMC6679899 DOI: 10.1021/acs.jctc.8b00652] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dimensionality reduction methods are usually applied on molecular dynamics simulations of macromolecules for analysis and visualization purposes. It is normally desired that suitable dimensionality reduction methods could clearly distinguish functionally important states with different conformations for the systems of interest. However, common dimensionality reduction methods for macromolecules simulations, including predefined order parameters and collective variables (CVs), principal component analysis (PCA), and time-structure based independent component analysis (t-ICA), only have limited success due to significant key structural information loss. Here, we introduced the t-distributed stochastic neighbor embedding (t-SNE) method as a dimensionality reduction method with minimum structural information loss widely used in bioinformatics for analyses of macromolecules, especially biomacromolecules simulations. It is demonstrated that both one-dimensional (1D) and two-dimensional (2D) models of the t-SNE method are superior to distinguish important functional states of a model allosteric protein system for free energy and mechanistic analysis. Projections of the model protein simulations onto 1D and 2D t-SNE surfaces provide both clear visual cues and quantitative information, which is not readily available using other methods, regarding the transition mechanism between two important functional states of this protein.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Feng Wang
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| |
Collapse
|
24
|
An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622. J Bacteriol 2018; 200:JB.00346-18. [PMID: 30126939 DOI: 10.1128/jb.00346-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022] Open
Abstract
One mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 from Myxococcus xanthus DK1622 for characterization. The M. xanthus DK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination of in vivo and in vitro assays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping of M. xanthus DK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a "universal" MLP for generating functional hybrid NRPSs.IMPORTANCE MbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP from Myxococcus xanthus DK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a "universal" MLP during the construction of functional hybrid NRPSs.
Collapse
|
25
|
Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. Nat Commun 2018; 9:3899. [PMID: 30254227 PMCID: PMC6156420 DOI: 10.1038/s41467-018-06201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Type VI secretion systems (T6SSs) translocate effector proteins, such as Rhs toxins, to eukaryotic cells or prokaryotic competitors. All T6SS Rhs-type effectors characterized thus far contain a PAAR motif or a similar structure. Here, we describe a T6SS-dependent delivery mechanism for a subset of Rhs proteins that lack a PAAR motif. We show that the N-terminal Rhs domain of protein RhsP (or VP1517) from Vibrio parahaemolyticus inhibits the activity of the C-terminal DNase domain. Upon auto-proteolysis, the Rhs fragment remains inside the cells, and the C-terminal region interacts with PAAR2 and is secreted by T6SS2; therefore, RhsP acts as a pro-effector. Furthermore, we show that RhsP contributes to the control of certain “social cheaters” (opaR mutants). Genes encoding proteins with similar Rhs and PAAR-interacting domains, but diverse C-terminal regions, are widely distributed among Vibrio species. It is unclear how Rhs toxins lacking a PAAR motif are secreted by Type VI secretion systems. Here, the authors show for one of these proteins that the mechanism requires removal of an N-terminal fragment by auto-proteolysis, followed by interaction with a PAAR protein and then secretion.
Collapse
|
26
|
Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 2018; 9:2489. [PMID: 29950558 PMCID: PMC6021436 DOI: 10.1038/s41467-018-04901-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Methods to regulate gene expression programs in bacterial cells are limited by the absence of effective gene activators. To address this challenge, we have developed synthetic bacterial transcriptional activators in E. coli by linking activation domains to programmable CRISPR-Cas DNA binding domains. Effective gene activation requires target sites situated in a narrow region just upstream of the transcription start site, in sharp contrast to the relatively flexible target site requirements for gene activation in eukaryotic cells. Together with existing tools for CRISPRi gene repression, these bacterial activators enable programmable control over multiple genes with simultaneous activation and repression. Further, the entire gene expression program can be switched on by inducing expression of the CRISPR-Cas system. This work will provide a foundation for engineering synthetic bacterial cellular devices with applications including diagnostics, therapeutics, and industrial biosynthesis. The absence of effective gene activators in bacteria limits regulated expression programs. Here the authors design synthetic bacterial CRISPR-Cas transcriptional activators that can be used to construct multi-gene programs of activation and repression.
Collapse
|
27
|
Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018; 556:57-63. [PMID: 29512652 PMCID: PMC5951633 DOI: 10.1038/nature26155] [Citation(s) in RCA: 1101] [Impact Index Per Article: 157.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 12/18/2022]
Abstract
A key limitation to the use of CRISPR-Cas9 proteins for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), this PAM requirement is NGG. No natural or engineered Cas9 variants shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we used phage-assisted continuous evolution (PACE) to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA, and GAT. The PAM compatibility of xCas9 is the broadest reported to date among Cas9s active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and both cytidine and adenine base editing. Remarkably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility, and DNA specificity.
Collapse
Affiliation(s)
- Johnny H Hu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shannon M Miller
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Maarten H Geurts
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Weixin Tang
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Liwei Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ning Sun
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Christina M Zeina
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xue Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Holly A Rees
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zhi Lin
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
28
|
Berry KE, Hochschild A. A bacterial three-hybrid assay detects Escherichia coli Hfq-sRNA interactions in vivo. Nucleic Acids Res 2018; 46:e12. [PMID: 29140461 PMCID: PMC5778611 DOI: 10.1093/nar/gkx1086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
The interaction of RNA molecules with proteins is a critical aspect of gene regulation across all domains of life. Here, we report the development of a bacterial three-hybrid (B3H) assay to genetically detect RNA-protein interactions. The basis for this three-hybrid assay is a transcription-based bacterial two-hybrid assay that has been used widely to detect and dissect protein-protein interactions. In the three-hybrid assay, a DNA-bound protein with a fused RNA-binding moiety (the coat protein of bacteriophage MS2 (MS2CP)) is used to recruit a hybrid RNA upstream of a test promoter. The hybrid RNA consists of a constant region that binds the tethered MS2CP and a variable region. Interaction between the variable region of the hybrid RNA and a target RNA-binding protein that is fused to a subunit of Escherichia coli RNA polymerase (RNAP) stabilizes the binding of RNAP to the test promoter, thereby activating transcription of a reporter gene. We demonstrate that this three-hybrid assay detects interaction between non-coding small RNAs (sRNAs) and the hexameric RNA chaperone Hfq from E. coli and enables the identification of Hfq mutants with sRNA-binding defects. Our findings suggest that this B3H assay will be broadly applicable for the study of RNA-protein interactions.
Collapse
Affiliation(s)
- Katherine E Berry
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Lawrie J, Song X, Niu W, Guo J. A high throughput approach for the generation of orthogonally interacting protein pairs. Sci Rep 2018; 8:867. [PMID: 29343761 PMCID: PMC5772552 DOI: 10.1038/s41598-018-19281-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022] Open
Abstract
In contrast to the nearly error-free self-assembly of protein architectures in nature, artificial assembly of protein complexes with pre-defined structure and function in vitro is still challenging. To mimic nature's strategy to construct pre-defined three-dimensional protein architectures, highly specific protein-protein interacting pairs are needed. Here we report an effort to create an orthogonally interacting protein pair from its parental pair using a bacteria-based in vivo directed evolution strategy. This high throughput approach features a combination of a negative and a positive selection. The newly developed negative selection from this work was used to remove any protein mutants that retain effective interaction with their parents. The positive selection was used to identify mutant pairs that can engage in effective mutual interaction. By using the cohesin-dockerin protein pair that is responsible for the self-assembly of cellulosome as a model system, we demonstrated that a protein pair that is orthogonal to its parent pair could be readily generated using our strategy. This approach could open new avenues to a wide range of protein-based assembly, such as biocatalysis or nanomaterials, with pre-determined architecture and potentially novel functions and properties.
Collapse
Affiliation(s)
- Justin Lawrie
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Xi Song
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| |
Collapse
|
30
|
CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PLoS Genet 2017; 13:e1007007. [PMID: 28931012 PMCID: PMC5624674 DOI: 10.1371/journal.pgen.1007007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/02/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. Bacterially encoded toxin-antitoxin systems, which consist of a small toxin protein that is co-produced with a neutralizing antitoxin, are a potential avenue for the identification of novel antibiotic targets. These toxins typically target essential cellular processes, causing growth arrest or cell death when unchecked by the antitoxin. Our study is focused on the CbtA toxin of E. coli, which was known to inhibit both bacterial cell division and also bacterial cell elongation (the process by which rod-shaped bacteria grow prior to cell division). We report that the effects of CbtA on cell division and cell elongation are genetically separable, and that they are due to direct and independent interactions with its targets FtsZ and MreB, essential cytoskeletal proteins that direct cell division and cell elongation, respectively. Our genetic analysis defines the functionally relevant target surfaces on FtsZ and MreB; in the case of FtsZ this surface represents a novel inhibitory target. As a dual-function toxin that independently targets two essential cytoskeletal elements, CbtA could guide the design of dual-function antibiotics whose ability to independently target more than one essential cellular process might impede the development of drug resistance, which is a growing public health threat.
Collapse
|
31
|
Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 2017; 130:1165-77. [PMID: 27252403 DOI: 10.1042/cs20160024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process.
Collapse
|
32
|
Bandaru P, Shah NH, Bhattacharyya M, Barton JP, Kondo Y, Cofsky JC, Gee CL, Chakraborty AK, Kortemme T, Ranganathan R, Kuriyan J. Deconstruction of the Ras switching cycle through saturation mutagenesis. eLife 2017; 6:e27810. [PMID: 28686159 PMCID: PMC5538825 DOI: 10.7554/elife.27810] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023] Open
Abstract
Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Neel H Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - John P Barton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Arup K Chakraborty
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
| | - Rama Ranganathan
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States, (RR)
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States, (JK)
| |
Collapse
|
33
|
Zhao X, Chen C, Jiang X, Shen W, Huang G, Le S, Lu S, Zou L, Ni Q, Li M, Zhao Y, Wang J, Rao X, Hu F, Tan Y. Transcriptomic and Metabolomic Analysis Revealed Multifaceted Effects of Phage Protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol 2016; 7:1519. [PMID: 27725812 PMCID: PMC5035744 DOI: 10.3389/fmicb.2016.01519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The impact of phage infection on the host cell is severe. In order to take over the cellular machinery, some phage proteins were produced to shut off the host biosynthesis early in the phage infection. The discovery and identification of these phage-derived inhibitors have a significant prospect of application in antibacterial treatment. This work presented a phage protein, gp70.1, with non-specific inhibitory effects on Pseudomonas aeruginosa and Escherichia coli. Gp70.1 was encoded by early gene – orf 70.1 from P. aeruginosa phage PaP3. The P. aeruginosa with a plasmid encoding gp70.1 showed with delayed growth and had the appearance of a small colony. The combination of multifaceted analysis including microarray-based transcriptomic analysis, RT-qPCR, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics and phenotype experiments were performed to investigate the effects of gp70.1 on P. aeruginosa. A total of 178 genes of P. aeruginosa mainly involved in extracellular function and metabolism were differentially expressed in the presence of gp70.1 at three examined time points. Furthermore, our results indicated that gp70.1 had an extensive impact on the extracellular phenotype of P. aeruginosa, such as motility, pyocyanin, extracellular protease, polysaccharide, and cellulase. For the metabolism of P. aeruginosa, the main effect of gp70.1 was the reduction of amino acid consumption. Finally, the RNA polymerase sigma factor RpoS was identified as a potential cellular target of gp70.1. Gp70.1 was the first bacterial inhibitor identified from Pseudomonas aeruginosa phage PaP3. It was also the first phage protein that interacted with the global regulator RpoS of bacteria. Our results indicated the potential value of gp70.1 in antibacterial applications. This study preliminarily revealed the biological function of gp70.1 and provided a reference for the study of other phage genes sharing similarities with orf70.1.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | | | - Xingyu Jiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University Chongqing, China
| | - Wei Shen
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Guangtao Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Lingyun Zou
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Qingshan Ni
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University Chongqing, China
| |
Collapse
|
34
|
Stiffler MA, Subramanian SK, Salinas VH, Ranganathan R. A Protocol for Functional Assessment of Whole-Protein Saturation Mutagenesis Libraries Utilizing High-Throughput Sequencing. J Vis Exp 2016. [PMID: 27403811 DOI: 10.3791/54119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Site-directed mutagenesis has long been used as a method to interrogate protein structure, function and evolution. Recent advances in massively-parallel sequencing technology have opened up the possibility of assessing the functional or fitness effects of large numbers of mutations simultaneously. Here, we present a protocol for experimentally determining the effects of all possible single amino acid mutations in a protein of interest utilizing high-throughput sequencing technology, using the 263 amino acid antibiotic resistance enzyme TEM-1 β-lactamase as an example. In this approach, a whole-protein saturation mutagenesis library is constructed by site-directed mutagenic PCR, randomizing each position individually to all possible amino acids. The library is then transformed into bacteria, and selected for the ability to confer resistance to β-lactam antibiotics. The fitness effect of each mutation is then determined by deep sequencing of the library before and after selection. Importantly, this protocol introduces methods which maximize sequencing read depth and permit the simultaneous selection of the entire mutation library, by mixing adjacent positions into groups of length accommodated by high-throughput sequencing read length and utilizing orthogonal primers to barcode each group. Representative results using this protocol are provided by assessing the fitness effects of all single amino acid mutations in TEM-1 at a clinically relevant dosage of ampicillin. The method should be easily extendable to other proteins for which a high-throughput selection assay is in place.
Collapse
Affiliation(s)
- Michael A Stiffler
- Green Center for Systems Biology, University of Texas Southwestern Medical Center;
| | - Subu K Subramanian
- Green Center for Systems Biology, University of Texas Southwestern Medical Center
| | - Victor H Salinas
- Green Center for Systems Biology, University of Texas Southwestern Medical Center
| | - Rama Ranganathan
- Green Center for Systems Biology, University of Texas Southwestern Medical Center;
| |
Collapse
|
35
|
Shen DK, Blocker AJ. MxiA, MxiC and IpaD Regulate Substrate Selection and Secretion Mode in the T3SS of Shigella flexneri. PLoS One 2016; 11:e0155141. [PMID: 27171191 PMCID: PMC4865121 DOI: 10.1371/journal.pone.0155141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Type III secretion systems (T3SSs) are central virulence devices for many Gram-negative bacterial pathogens of humans, animals & plants. Upon physical contact with eukaryotic host cells, they translocate virulence-mediating proteins, known as effectors, into them during infection. T3SSs are gated from the outside by host-cell contact and from the inside via two cytoplasmic negative regulators, MxiC and IpaD in Shigella flexneri, which together control the effector secretion hierarchy. Their absence leads to premature and increased secretion of effectors. Here, we investigated where and how these regulators act. We demonstrate that the T3SS inner membrane export apparatus protein MxiA plays a role in substrate selection. Indeed, using a genetic screen, we identified two amino acids located on the surface of MxiA's cytoplasmic region (MxiAC) which, when mutated, upregulate late effector expression and, in the case of MxiAI674V, also secretion. The cytoplasmic region of MxiA, but not MxiAN373D and MxiAI674V, interacts directly with the C-terminus of MxiC in a two-hybrid assay. Efficient T3S requires a cytoplasmic ATPase and the proton motive force (PMF), which is composed of the ΔΨ and the ΔpH. MxiA family proteins and their regulators are implicated in utilization of the PMF for protein export. However, our MxiA point mutants show similar PMF utilisation to wild-type, requiring primarily the ΔΨ. On the other hand, lack of MxiC or IpaD, renders the faster T3S seen increasingly dependent on the ΔpH. Therefore, MxiA, MxiC and IpaD act together to regulate substrate selection and secretion mode in the T3SS of Shigella flexneri.
Collapse
Affiliation(s)
- Da-Kang Shen
- School of Cellular & Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Ariel J. Blocker
- Schools of Cellular & Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Han X, Tian Y, Tian D. Tumor metastatic promoter ABCE1 interacts with the cytoskeleton protein actin and increases cell motility. Oncol Rep 2016; 35:3623-9. [PMID: 27109616 DOI: 10.3892/or.2016.4751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
ABCE1, a member of the ATP-binding cassette (ABC) family, is a candidate tumor metastatic promoter in lung cancer. Overexpression of ABCE1 is correlated with aggressive growth and metastasis in lung cancer cells. However, the exact mechanism remains unclear. In the present study, GST pull-down assay provided evidence of the possible interaction between ABCE1 and β-actin using GST-ABCE1 as a bait protein. Co-immunoprecipitation manifested ABCE1 formed complexes with β-actin in vivo. ABCE1 overexpression significantly increased the migration of lung cancer cells which may be attributed to the promotion of F-actin rearrangements. Taken together, these data suggest that overexpression of ABCE1 produces an obvious effect on the motility of lung cancer cells through cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xu Han
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Ye Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dali Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
37
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015. [PMID: 26620262 DOI: 10.1128/jb.00784-15.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
38
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015; 198:755-65. [PMID: 26620262 DOI: 10.1128/jb.00784-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
39
|
Ramsey KM, Osborne ML, Vvedenskaya IO, Su C, Nickels BE, Dove SL. Ubiquitous promoter-localization of essential virulence regulators in Francisella tularensis. PLoS Pathog 2015; 11:e1004793. [PMID: 25830507 PMCID: PMC4382096 DOI: 10.1371/journal.ppat.1004793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/08/2015] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium whose ability to replicate within macrophages and cause disease is strictly dependent upon the coordinate activities of three transcription regulators called MglA, SspA, and PigR. MglA and SspA form a complex that associates with RNA polymerase (RNAP), whereas PigR is a putative DNA-binding protein that functions by contacting the MglA-SspA complex. Most transcription activators that bind the DNA are thought to occupy only those promoters whose activities they regulate. Here we show using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) that PigR, MglA, and SspA are found at virtually all promoters in F. tularensis and not just those of regulated genes. Furthermore, we find that the ability of PigR to associate with promoters is dependent upon the presence of MglA, suggesting that interaction with the RNAP-associated MglA-SspA complex is what directs PigR to promoters in F. tularensis. Finally, we present evidence that the ability of PigR (and thus MglA and SspA) to positively control the expression of genes is dictated by a specific 7 base pair sequence element that is present in the promoters of regulated genes. The three principal regulators of virulence gene expression in F. tularensis therefore function in a non-classical manner with PigR interacting with the RNAP-associated MglA-SspA complex at the majority of promoters but only activating transcription from those that contain a specific sequence element. Our findings reveal how transcription factors can exert regulatory effects at a restricted set of promoters despite being associated with most or all. This distinction between occupancy and regulatory effect uncovered by our data may be relevant to the study of RNAP-associated transcription regulators in other pathogenic bacteria.
Collapse
Affiliation(s)
- Kathryn M. Ramsey
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melisa L. Osborne
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Irina O. Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Cathy Su
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryce E. Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Chen AH, Lubkowicz D, Yeong V, Chang RL, Silver PA. Transplantability of a circadian clock to a noncircadian organism. SCIENCE ADVANCES 2015; 1:e1500358. [PMID: 26229984 PMCID: PMC4517858 DOI: 10.1126/sciadv.1500358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/24/2015] [Indexed: 05/25/2023]
Abstract
Circadian oscillators are posttranslationally regulated and affect gene expression in autotrophic cyanobacteria. Oscillations are controlled by phosphorylation of the KaiC protein, which is modulated by the KaiA and KaiB proteins. However, it remains unclear how time information is transmitted to transcriptional output. We show reconstruction of the KaiABC oscillator in the noncircadian bacterium Escherichia coli. This orthogonal system shows circadian oscillations in KaiC phosphorylation and in a synthetic transcriptional reporter. Coexpression of KaiABC with additional native cyanobacterial components demonstrates a minimally sufficient set of proteins for transcriptional output from a native cyanobacterial promoter in E. coli. Together, these results demonstrate that a circadian oscillator is transplantable to a heterologous organism for reductive study as well as wide-ranging applications.
Collapse
Affiliation(s)
- Anna H. Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | - David Lubkowicz
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | - Vivian Yeong
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | - Roger L. Chang
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Rydenfelt M, Garcia HG, Cox RS, Phillips R. The influence of promoter architectures and regulatory motifs on gene expression in Escherichia coli. PLoS One 2014; 9:e114347. [PMID: 25549361 PMCID: PMC4280137 DOI: 10.1371/journal.pone.0114347] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022] Open
Abstract
The ability to regulate gene expression is of central importance for the adaptability of living organisms to changes in their external and internal environment. At the transcriptional level, binding of transcription factors (TFs) in the promoter region can modulate the transcription rate, hence making TFs central players in gene regulation. For some model organisms, information about the locations and identities of discovered TF binding sites have been collected in continually updated databases, such as RegulonDB for the well-studied case of E. coli. In order to reveal the general principles behind the binding-site arrangement and function of these regulatory architectures we propose a random promoter architecture model that preserves the overall abundance of binding sites to identify overrepresented binding site configurations. This model is analogous to the random network model used in the study of genetic network motifs, where regulatory motifs are identified through their overrepresentation with respect to a “randomly connected” genetic network. Using our model we identify TF pairs which coregulate operons in an overrepresented fashion, or individual TFs which act at multiple binding sites per promoter by, for example, cooperative binding, DNA looping, or through multiple binding domains. We furthermore explore the relationship between promoter architecture and gene expression, using three different genome-wide protein copy number censuses. Perhaps surprisingly, we find no systematic correlation between the number of activator and repressor binding sites regulating a gene and the level of gene expression. A position-weight-matrix model used to estimate the binding affinity of RNA polymerase (RNAP) to the promoters of activated and repressed genes suggests that this lack of correlation might in part be due to differences in basal transcription levels, with repressed genes having a higher basal activity level. This quantitative catalogue relating promoter architecture and function provides a first step towards genome-wide predictive models of regulatory function.
Collapse
Affiliation(s)
- Mattias Rydenfelt
- Department of Physics, California Institute of Technology, Pasadena, CA, United States of America
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Hernan G. Garcia
- Joseph-Henry Laboratories of Physics, Princeton University, Princeton, NJ, United States of America
| | - Robert Sidney Cox
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, United States of America
- Division of Biology, California Institute of Technology, Pasadena, CA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Understanding how sequence-specific protein-DNA interactions direct cellular function is of great interest to the research community. High-throughput methods have been developed to determine DNA-binding specificities; one such technique, the bacterial one-hybrid (B1H) system, confers advantages including ease of use, sensitivity and throughput. In this review, we describe the evolution of the B1H system as a tool capable of screening large DNA libraries to investigate protein-DNA interactions of interest. We discuss how DNA-binding specificities produced by the B1H system have been used to predict regulatory targets. Additionally, we examine how this approach has been applied to characterize two common DNA-binding domain families-homeodomains and Cys2His2 zinc fingers-both in organism-wide studies and with synthetic approaches. In the case of the former, the B1H system has produced large catalogs of protein specificity and nuanced information about previously recovered DNA targets, thereby improving our understanding of these proteins' functions in vivo and increasing our capacity to predict similar interactions in other species. In the latter, synthetic screens of the same DNA-binding domains have further refined our models of specificity, through analyzing comprehensive libraries to uncover all proteins able to bind a complete set of targets, and, for instance, exploring how context-in the form of domain position within the parent protein-may affect specificity. Finally, we recognize the limitations of the B1H system and discuss its potential for use in the production of designer proteins and in studies of protein-protein interactions.
Collapse
|
43
|
Stasi M, De Luca M, Bucci C. Two-hybrid-based systems: powerful tools for investigation of membrane traffic machineries. J Biotechnol 2014; 202:105-17. [PMID: 25529347 DOI: 10.1016/j.jbiotec.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
Protein-protein interactions regulate biological processes and are fundamental for cell functions. Recently, efforts have been made to define interactomes, which are maps of protein-protein interactions that are useful for understanding biological pathways and networks and for investigating how perturbations of these networks lead to diseases. Therefore, interactomes are becoming fundamental for establishing the molecular basis of human diseases and contributing to the discovery of effective therapies. Interactomes are constructed based on experimental data present in the literature and computational predictions of interactions. Several biochemical, genetic and biotechnological techniques have been used in the past to identify protein-protein interactions. The yeast two-hybrid system has beyond doubt represented a revolution in the field, being a versatile tool and allowing the immediate identification of the interacting proteins and isolation of the cDNA coding for the interacting peptide after in vivo screening. Recently, variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the rapidly growing field of proteomics. In this review we will focus on the role of this technique in the discovery of Rab interacting proteins, highlighting the importance of high-throughput two-hybrid screening as a tool to study the complexity of membrane traffic machineries.
Collapse
Affiliation(s)
- Mariangela Stasi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
44
|
Guazzaroni ME, Silva-Rocha R. Expanding the logic of bacterial promoters using engineered overlapping operators for global regulators. ACS Synth Biol 2014; 3:666-75. [PMID: 25036188 DOI: 10.1021/sb500084f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The understanding of how the architecture of cis-regulatory elements at bacterial promoters determines their final output is of central interest in modern biology. In this work, we attempt to gain insight into this process by analyzing complex promoter architectures in the model organism Escherichia coli. By focusing on the relationship between different TFs at the genomic scale in terms of their binding site arrangement and their effect on the target promoters, we found no strong constraint limiting the combinatorial assembly of TF pairs in E. coli. More strikingly, overlapping binding sites were found equally associated with both equivalent (both TFs have the same effect on the promoter) and opposite (one TF activates while the other repress the promoter) effects on gene expression. With this information on hand, we set an in silico approach to design overlapping sites for three global regulators (GRs) of E. coli, specifically CRP, Fis, and IHF. Using random sequence assembly and an evolutionary algorithm, we were able to identify potential overlapping operators for all TF pairs. In order to validate our prediction, we constructed two lac promoter variants containing overlapping sites for CRP and IHF designed in silico. By assaying the synthetic promoters using a GFP reporter system, we demonstrated that these variants were functional and activated by CRP and IHF in vivo. Taken together, presented results add new information on the mechanisms of signal integration in bacterial promoters and provide new strategies for the engineering of synthetic regulatory circuits in bacteria.
Collapse
|
45
|
Structure of the RNA polymerase assembly factor Crl and identification of its interaction surface with sigma S. J Bacteriol 2014; 196:3279-88. [PMID: 25002538 DOI: 10.1128/jb.01910-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria utilize multiple sigma factors that associate with core RNA polymerase (RNAP) to control transcription in response to changes in environmental conditions. In Escherichia coli and Salmonella enterica, Crl positively regulates the σ(S) regulon by binding to σ(S) to promote its association with core RNAP. We recently characterized the determinants in σ(S) responsible for specific binding to Crl. However, little is known about the determinants in Crl required for this interaction. Here, we present the X-ray crystal structure of a Crl homolog from Proteus mirabilis in conjunction with in vivo and in vitro approaches that probe the Crl-σ(S) interaction in E. coli. We show that the P. mirabilis, Vibrio harveyi, and E. coli Crl homologs function similarly in E. coli, indicating that Crl structure and function are likely conserved throughout gammaproteobacteria. We utilize phylogenetic conservation and bacterial two-hybrid analyses to predict residues in Crl important for the interaction with σ(S). The results of p-benzoylphenylalanine (BPA)-mediated UV cross-linking studies further support the model in which an evolutionarily conserved central cleft is the surface on Crl that binds to σ(S). Within this conserved binding surface, we identify a key residue in Crl that is critical for activation of Eσ(S)-dependent transcription in vivo and in vitro. Our study provides a physical basis for understanding the σ(S)-Crl interaction.
Collapse
|
46
|
Sarmadian H, Nazari R, Zolfaghari M, Pirayandeh M, Sadrnia M, Arjomandzadegan M, Titov L, Rajabi F, Ahmadi A, Shojapoor M. Study of carD gene sequence in clinical isolates of Mycobacterium tuberculosis. Acta Microbiol Immunol Hung 2014; 61:1-10. [PMID: 24631749 DOI: 10.1556/amicr.61.2014.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis growth rate is closely coupled to rRNA transcription which is regulated through carD gene. The aim of this study was to determine the sequence of carD gene in drug susceptible and resistant clinical isolates of M. tuberculosis and designing of a PCR assay based on carD sequence for rapid detection of this bacterium.Specific primers for amplification of carD gene were carefully designed, so that whole sequence of gene could be amplified; therefore primers were positioned at the upstream (promoter of this gene and ispD gene) and downstream (in ispD gene). DNA from 41 clinical isolates of M. tuberculosis with different pattern of drug resistance was used in the study. PCR conditions and annealing temperature were designed by means of online programs. PCR products were sequenced by ABI system.PCR product of carD gene was a 524 bp fragment. This method could detect all resistant and susceptible strains of M. tuberculosis. The size of amplified fragment was similar in all investigated samples. Sequence analysis showed that there was similar sequence in all of our isolates therefore probably this gene is considered to be conservative. Translation of nucleotide mode to amino acids was showed that TRCF domain in N-terminal of protein CarD was found to be fully conservative.This is the first study on the sequence of carD gene in clinical isolates of M. tuberculosis. This conservative gene is recommended for use as a target for designing of suitable inhibitors as anti-tuberculosis drug because its importance for life of MTB. In the other hand, a PCR detection method based on detection of carD gene was recommended for rapid detection in routine test.
Collapse
Affiliation(s)
- Hossein Sarmadian
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Razieh Nazari
- 2 Islamic Azad University Department of Microbiology, Faculty of Basic Sciences, Qom Branch Qom Iran
| | - Mohammad Zolfaghari
- 2 Islamic Azad University Department of Microbiology, Faculty of Basic Sciences, Qom Branch Qom Iran
| | - Mina Pirayandeh
- 2 Islamic Azad University Department of Microbiology, Faculty of Basic Sciences, Qom Branch Qom Iran
| | - Maryam Sadrnia
- 3 Payame Noor University Department of Biology P.O. Box 19395-4697 Tehran Iran
| | - Mohammad Arjomandzadegan
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Leonid Titov
- 4 Belarusian Research Institute for Epidemiology and Microbiology Minsk Belarus
| | - Fariba Rajabi
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Azam Ahmadi
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Mana Shojapoor
- 5 Arak University of Medical Sciences Research Center of Molecular Medicine Arak Iran
| |
Collapse
|
47
|
Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme. Proc Natl Acad Sci U S A 2013; 110:15955-60. [PMID: 24043782 DOI: 10.1073/pnas.1311642110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteria use multiple sigma factors to coordinate gene expression in response to environmental perturbations. In Escherichia coli and other γ-proteobacteria, the transcription factor Crl stimulates σ(S)-dependent transcription during times of cellular stress by promoting the association of σ(S) with core RNA polymerase. The molecular basis for specific recognition of σ(S) by Crl, rather than the homologous and more abundant primary sigma factor σ(70), is unknown. Here we use bacterial two-hybrid analysis in vivo and p-benzoyl-phenylalanine cross-linking in vitro to define the features in σ(S) responsible for specific recognition by Crl. We identify residues in σ(S) conserved domain 2 (σ(S)2) that are necessary and sufficient to allow recognition of σ(70) conserved domain 2 by Crl, one near the promoter-melting region and the other at the position where a large nonconserved region interrupts the sequence of σ(70). We then use luminescence resonance energy transfer to demonstrate directly that Crl promotes holoenzyme assembly using these specificity determinants on σ(S). Our results explain how Crl distinguishes between sigma factors that are largely homologous and activates discrete sets of promoters even though it does not bind to promoter DNA.
Collapse
|
48
|
Cai Y, Yan W, Xu W, Yin Y, He Y, Wang H, Zhang X. Screening and identification of DnaJ interaction proteins in Streptococcus pneumoniae. Curr Microbiol 2013; 67:732-41. [PMID: 23907491 PMCID: PMC3824243 DOI: 10.1007/s00284-013-0424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 06/16/2013] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae DnaJ is recognized as a virulence factor whose role in pneumococcal virulence remains unclear. Here, we attempted to reveal the contribution of DnaJ in pneumococcal virulence from the identification of its interacting proteins using co-immunoprecipitation method. dnaJ was cloned into plasmid pAE03 generating pAE03-dnaJ-gfp which was used to transform S. pneumoniae D39 strain. Then anti-GFP coated beads were used to capture GFP-coupled proteins from the bacterial lysate. The resulting protein mixtures were subjected to SDS-PAGE and those differential bands were determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. We finally obtained nine proteins such as DnaK, Gap, Eno, SpxB using this method. Furthermore, to confirm the interaction between DnaJ and these candidates, bacterial two-hybrid system was employed to reveal, for example, the interaction between DnaJ and DnaK, Eno, SpxB. Further protein expression experiments suggested that DnaJ prevented denaturation of Eno and SpxB at high temperature. These results help to understand the role of DnaJ in the pathogenesis of S. pneumoniae.
Collapse
Affiliation(s)
- YingYing Cai
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Broussard TC, Price AE, Laborde SM, Waldrop GL. Complex Formation and Regulation of Escherichia coli Acetyl-CoA Carboxylase. Biochemistry 2013; 52:3346-57. [DOI: 10.1021/bi4000707] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tyler C. Broussard
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Amanda E. Price
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Susan M. Laborde
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Grover L. Waldrop
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| |
Collapse
|
50
|
Kim KM, Adyshev DM, Kása A, Zemskov EA, Kolosova IA, Csortos C, Verin AD. Putative protein partners for the human CPI-17 protein revealed by bacterial two-hybrid screening. Microvasc Res 2013; 88:19-24. [PMID: 23583905 DOI: 10.1016/j.mvr.2013.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/26/2013] [Accepted: 04/01/2013] [Indexed: 01/06/2023]
Abstract
We have previously demonstrated that PKC-potentiated inhibitory protein of protein phosphatase-1 (CPI-17) is expressed in lung endothelium. CPI-17, a specific inhibitor of myosin light chain phosphatase (MLCP), is involved in the endothelial cytoskeletal and barrier regulation. In this paper, we report the identification of fourteen putative CPI-17 interacting proteins in the lung using BacterioMatch Two-Hybrid System. Five of them: plectin 1 isoform 1, alpha II spectrin, OK/SW-CL.16, gelsolin isoform a, and junction plakoglobin are involved in actin cytoskeleton organization and cell adhesion, suggesting possible significance of these binding partners in CPI-17-mediated cytoskeletal reorganization of endothelial cells. Furthermore, we confirmed the specific interaction between plakoglobin and CPI-17, which is affected by the phosphorylation status of CPI-17 in human lung microvascular endothelial cells.
Collapse
Affiliation(s)
- Kyung-mi Kim
- Vascular Biology Center, Georgia Health Sciences University, Augusta, GA, USA
| | | | | | | | | | | | | |
Collapse
|