1
|
Abstract
In this work, we study the kinetics of thermal decomposition of MgCO3 in the form of particles of known size. In the experiments, the material is heated to a known temperature in a vacuum oven, and it is characterized, both before and after heating, by infrared spectroscopy and gravimetry. The agreement between the results of the two techniques is excellent. These results are rationalized by means of a model based on Languir’s law, and the comparison with the experiments allows us to estimate the activation energy of the process. The reabsorption of atmospheric water by the oxide is shown spectroscopically, finding that is strongly influenced by the temperature of the process.
Collapse
|
2
|
Cataldi G, Brandeker A, Thébault P, Singer K, Ahmed E, de Vries BL, Neubeck A, Olofsson G. Searching for Biosignatures in Exoplanetary Impact Ejecta. ASTROBIOLOGY 2017; 17:721-746. [PMID: 28692303 DOI: 10.1089/ast.2015.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures-Exoplanets-Impacts-Interplanetary dust-Remote sensing. Astrobiology 17, 721-746.
Collapse
Affiliation(s)
- Gianni Cataldi
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| | - Alexis Brandeker
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| | - Philippe Thébault
- 3 LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot , Paris, France
| | - Kelsi Singer
- 4 Southwest Research Institute , Boulder, Colorado, USA
| | - Engy Ahmed
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 5 Royal Institute of Technology (KTH) , Science for Life Laboratory, Solna, Sweden
- 6 Stockholm University , Department of Geological Sciences, Stockholm, Sweden
| | - Bernard L de Vries
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 7 Scientific Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC) , Noordwijk, The Netherlands
| | - Anna Neubeck
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 6 Stockholm University , Department of Geological Sciences, Stockholm, Sweden
| | - Göran Olofsson
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| |
Collapse
|
3
|
Shaheen R, Abramian A, Horn J, Dominguez G, Sullivan R, Thiemens MH. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars. Proc Natl Acad Sci U S A 2010; 107:20213-8. [PMID: 21059939 PMCID: PMC2996665 DOI: 10.1073/pnas.1014399107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.
Collapse
Affiliation(s)
- R. Shaheen
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - A. Abramian
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - J. Horn
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - G. Dominguez
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - R. Sullivan
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Mark H. Thiemens
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
4
|
Toppani A, Robert F, Libourel G, de Donato P, Barres O, d'Hendecourt L, Ghanbaja J. A 'dry' condensation origin for circumstellar carbonates. Nature 2005; 437:1121-4. [PMID: 16237436 DOI: 10.1038/nature04128] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 08/03/2005] [Indexed: 11/09/2022]
Abstract
The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars. Abiogenic carbonates are considered as indicators of aqueous mineral alteration in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae and protostars devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial. The main dust component observed in circumstellar envelopes is amorphous silicates, which are thought to have formed by non-equilibrium condensation. Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows.
Collapse
Affiliation(s)
- Alice Toppani
- Centre de Recherches Pétrographiques et Géochimiques-CNRS UPR 2300, 15 rue Notre Dame des Pauvres, BP 20, Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Miller MF, Franchi IA, Thiemens MH, Jackson TL, Brack A, Kurat G, Pillinger CT. Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates. Proc Natl Acad Sci U S A 2002; 99:10988-93. [PMID: 12167677 PMCID: PMC123197 DOI: 10.1073/pnas.172378499] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all chemical processes fractionate 17O and 18O in a mass-dependent way relative to 16O, a major exception being the formation of ozone from diatomic oxygen in the presence of UV radiation or electrical discharge. Investigation of oxygen three-isotope behavior during thermal decomposition of naturally occurring carbonates of calcium and magnesium in vacuo has revealed that, surprisingly, anomalous isotopic compositions are also generated during this process. High-precision measurements of the attendant three-isotope fractionation line, and consequently the magnitude of the isotopic anomaly (delta17O), demonstrate that the slope of the line is independent of the nature of the carbonate but is controlled by empirical factors relating to the decomposition procedure. For a slope identical to that describing terrestrial silicates and waters (0.5247 +/- 0.0007 at the 95% confidence level), solid oxides formed during carbonate pyrolysis fit a parallel line offset by -0.241 +/- 0.042 per thousand. The corresponding CO2 is characterized by a positive offset of half this magnitude, confirming the mass-independent nature of the fractionation. Slow, protracted thermolysis produces a fractionation line of shallower slope (0.5198 +/- 0.0007). These findings of a 17O anomaly being generated from a solid, and solely by thermal means, provide a further challenge to current understanding of the nature of mass-independent isotopic fractionation.
Collapse
Affiliation(s)
- Martin F Miller
- Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|