1
|
Abeyawardhane DL, Sevdalis SE, Adipietro KA, Godoy-Ruiz R, Varney KM, Nawaz IF, Spittel AX, Hunter D, Rustandi RR, Silin VI, des Georges A, Cook ME, Pozharski E, Weber DJ. Pore formation by the CDTb component of the Clostridioides difficile binary toxin is Ca 2+-dependent. Commun Biol 2025; 8:901. [PMID: 40490540 PMCID: PMC12149301 DOI: 10.1038/s42003-025-08343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/04/2025] [Indexed: 06/11/2025] Open
Abstract
Clostridioides difficile infection (CDI) is one of the five most urgent bacterial threats in the United States. Furthermore, hypervirulent CDI strains express a third toxin termed the C. difficile binary toxin (CDT), and its molecular mechanism for entering host cells is not fully elucidated. Like other AB-type binary toxins, CDT enters host cells via endosomes. Here we show via surface plasmon resonance and electrochemical impedance spectroscopy that the cell-binding component of CDT, termed CDTb, binds and form pores in lipid bilayers in the absence of its enzymatic component, CDTa. This occurs upon lowering free Ca2+ ion concentration, and not by decreasing pH, as found for other binary toxins (i.e., anthrax). Cryogenic electron microscopy (CryoEM), X-ray crystallography, and nuclear magnetic resonance (NMR) studies show that dissociation of Ca2+ from a single site in receptor binding domain 1 (RBD1) of CDTb triggers conformational exchange in CDTb. These and structure/function studies of a Ca2+-binding double mutant targeting RBD1 (i.e., D623A/D734A) support a model in which dissociation of Ca2+ from RBD1 induces dynamic properties in CDTb that enable it to bind and form pores in lipid bilayers.
Collapse
Affiliation(s)
- Dinendra L Abeyawardhane
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Spiridon E Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaylin A Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raquel Godoy-Ruiz
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Izza F Nawaz
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alejandro X Spittel
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel Hunter
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Vitalii I Silin
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA
- PhD Programs in Biochemistry and Chemistry, Graduate Center, City University of New York, New York, NY, USA
| | - Mary E Cook
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA.
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA.
| | - David J Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA.
- The Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sharma P, Sana T, Khatoon S, Naikoo UM, Mosina, Malhotra N, Hasnain MS, Nayak AK, Narang J. Nanopores for DNA and biomolecule analysis: Diagnostic, genomic insights, applications in energy conversion and catalysis. Anal Biochem 2025; 701:115791. [PMID: 39894145 DOI: 10.1016/j.ab.2025.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Recently, nanopores have emerged as highly significant structures with broad applications in diverse scientific and technological fields. They can naturally occur in biological membranes or be artificially fabricated using advanced techniques. Recent advances in nanopore technology have revolutionized genomics by offering previously unheard-of capacities for deoxyribo nucleic acid (DNA) sequencing and analysis. These tiny pores allow individual molecules to be found more easily, allowing for real-time DNA analysis and providing currently unheard-of insights into genetics and diagnostics. By tracking alterations in electrical or ionic currents as biomolecules traverse the pore, nanopores make possible the real-time recognition of other biomolecules, like proteins, nucleic acids, and small molecules, eliminating the need for labeling. This label-free detection potential holds a huge promise in medical diagnostics, genotyping, environmental monitoring, etc. Nanopores have significantly improved DNA sequencing technology such as increment in read length, enabling researchers to sequence entire genomic regions, accuracy can be improved and recent updates have led to a reported increase in total DNA reads, demonstrating the technology's capacity for high-throughput applications via trapping individual DNA strands and monitoring the variations of ionic current as each nucleotide passes across the pore. Finally, nanopore sequencing is well-known as a novel and highly flexible technique for DNA analyses, which has a huge deal of promise in clinical diagnosis and genomics research. Hence, this review article comprehensively explains nanopores for DNA analysis and other biomolecules, their synthesis, and diverse applications.
Collapse
Affiliation(s)
- Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Tasmiya Sana
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Shaheen Khatoon
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Ubiad Mushtaq Naikoo
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mosina
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Nitesh Malhotra
- Department of Physiotherapy, School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121003, India
| | - Md Saquib Hasnain
- Department of Pharmacy, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
3
|
Karedla N, Schneider F, Enderlein J, Chen T. Leaflet-Specific Structure and Dynamics of Solid and Polymer Supported Lipid Bilayers. Angew Chem Int Ed Engl 2025; 64:e202423784. [PMID: 40059717 PMCID: PMC12087848 DOI: 10.1002/anie.202423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/08/2025]
Abstract
Polymer-supported or tethered lipid bilayers serve as versatile platforms for mimicking plasma membrane structure and dynamics, yet the impact of polymer supports on lipid bilayers remains largely unresolved. In this study, we introduce a novel methodology that combines graphene-induced energy transfer (GIET) with line-scan fluorescence lifetime correlation spectroscopy (lsFLCS) to examine the structural and dynamic properties of lipid bilayers. Our findings reveal that polymer supports markedly influence both the structural parameters, such as the membrane height from the substrate, its thickness, as well as dynamic properties, including leaflet-specific diffusion coefficients and interleaflet coupling. These findings highlight the complex interplay between a polymer support and the lipid bilayers. By resolving leaflet-specific diffusion and heights of the two leaflets from the substrate, this study emphasizes the potential of GIET-lsFLCS for probing membrane dynamics and structure. These insights significantly advance the understanding and application of polymer-supported membranes across diverse research contexts.
Collapse
Affiliation(s)
- Narain Karedla
- Third Institute of Physics – BiophysicsGeorg August UniversityFriedrich‐Hund‐Platz 1Göttingen37077Germany
- The Rosalind Franklin InstituteHarwell CampusDidcotOX11 0FAUK
- Kennedy Institute of RheumatologyUniversity of OxfordRoosevelt DriveOxfordOX3 7LFUK
| | - Falk Schneider
- Translational Imaging CenterUniversity of Southern CaliforniaLos AngelesCA90089USA
- Biomedical SciencesWarwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | - Jörg Enderlein
- Third Institute of Physics – BiophysicsGeorg August UniversityFriedrich‐Hund‐Platz 1Göttingen37077Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)Universitätsmedizin GöttingenRobert‐Koch‐Str. 40Göttingen37075Germany
| | - Tao Chen
- Third Institute of Physics – BiophysicsGeorg August UniversityFriedrich‐Hund‐Platz 1Göttingen37077Germany
| |
Collapse
|
4
|
Wang H, Zhao R, Zhang B, Xiao Y, Yu C, Wang Y, Yu C, Tang Y, Li Y, Lu B, Li B. Accurate Molecular Sensing based on a Modular and Customizable CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON). Angew Chem Int Ed Engl 2025; 64:e202423473. [PMID: 39804233 DOI: 10.1002/anie.202423473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator. The unblocked initiator then triggers downstream DNA assembly reaction and generate a large-size structure easy for nanopore detection. Such integration of Cas12a/crRNA with DNA assembly establishes an accurate correspondence among the input targets, output DNA structures, and the ultimate nanopore signals. We demonstrated dsDNA, long RNA (i.e., Flu virus gene), short microRNA (i.e., let-7d) and non-nucleic acids (i.e., Pb2+) as input paradigms. Various structural assembly reactions, such as hybridization chain reaction (HCR), G-HCR and duplex polymerization strategy (DPS), are adapted as outputs for nanopore signaling. Simultaneous assay is also verified via transferring FluA and FluB genes into HCR and G-HCR, respectively. CANON is thus a modular sensing platform holding multiple advantages such as high accuracy, high resolution and high universality, which can be easily customized into various application scenes.
Collapse
Affiliation(s)
- Huaning Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rujian Zhao
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Bing Zhang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Xiao
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chunxu Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yidan Tang
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanru Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Baiyang Lu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
5
|
Ruano M, Sut TN, Tan SW, Mullen AB, Kelemen D, Ferro VA, Jackman JA. Solvent-Free Microfluidic Fabrication of Antimicrobial Lipid Nanoparticles. ACS APPLIED BIO MATERIALS 2025; 8:2194-2203. [PMID: 40029689 DOI: 10.1021/acsabm.4c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Antimicrobial lipid nanoparticles composed of monoglycerides offer a promising strategy to inhibit membrane-enveloped viral and bacterial pathogens. However, previous efforts mainly focused on fabricating nanoparticles from long-chain monoglycerides, which lack intrinsic antimicrobial activity but contribute to nanoparticle stability and structural integrity. In contrast, shorter-chain monoglycerides often exhibit potent antimicrobial effects but do not self-assemble into colloidally stable nanoparticles and lose efficacy upon dilution. To overcome these limitations and incorporate antimicrobial monoglycerides into a stable nanoparticle configuration, we report a solvent-free microfluidic fabrication strategy that combines the functional characteristics of different monoglycerides to prepare interfacially active, monoglyceride-based nanoparticles with mixed compositions that display potent antibacterial activity. Unlike conventional microfluidic mixing methods that rely on volatile organic solvents, our approach utilizes pharmaceutical-grade materials and does not require organic solvent removal, hence eliminating the need for a dialysis step postfabrication. Dynamic light scattering (DLS) and zeta potential measurements verified that the fabricated nanoparticles had ∼250-350 nm diameters and exhibited high colloidal stability whereas the antibacterial activity of the nanoparticles against Staphylococcus aureus bacteria depended strongly on the nanoparticle composition. Nanoparticles composed of glycerol monooleate alone were inactive, while the inclusion of glycerol monolaurate slightly enhanced antibacterial activity. Surprisingly, the further addition of glycerol monobehenate or glycerol dibehenate─previously considered inactive structural components that are used to improve nanoparticle cohesion─boosted antibacterial potency by up to 270-fold. Biophysical experiments showed that nanoparticle compositions with greater antibacterial activity induced more pronounced membrane disruption, as observed in quartz crystal microbalance-dissipation and electrochemical impedance spectroscopy measurements. These findings demonstrate that combining different monoglycerides can significantly enhance the antibacterial activity of lipid-based nanoparticles and underscore the potential of membrane biophysics approaches to guide performance optimization, highlighting the capability to tune membrane-disruptive properties in physiologically relevant pH conditions.
Collapse
Affiliation(s)
- Marta Ruano
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Alexander B Mullen
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Donald Kelemen
- ABITEC Corporation, 501 W First Ave, Columbus, Ohio 43215, United States
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Suresh H, Haridasan N, Varghese B, Sathian SP. The role of functionalization in the translocation of peptides through multilayer graphene nanopores. J Chem Phys 2025; 162:064701. [PMID: 39927545 DOI: 10.1063/5.0249099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
The rapid translocation speed of peptides through graphene nanopores poses a challenge, hindering the accurate sensing of the biomarkers. Employing the functionalized graphene nanopores is at the forefront of reducing the translocation speed. The current work details the translocation of a negatively charged peptide endothelin-1 through a bare multilayer graphene nanopore, a hydrogen-functionalized graphene nanopore, and a hydroxyl-functionalized graphene nanopore by applying electric fields. The hydroxyl-functionalized graphene nanopore significantly reduces the peptide's translocation speed. The time required for the peptide to translocate through the hydroxyl-functionalized graphene nanopore is 2.25 times longer than in the non-functionalized graphene nanopore and 1.25 times longer than in the hydrogen-functionalized graphene nanopore. We critically analyze the factors influencing the reduced translocation speed, including the interactions between the pore and the peptide, the conformational changes of the peptide within the pore, the solvent velocity inside the pore, and the solvent's viscosity near the peptide. The altered solvent velocities within functionalized pores have a minimal role in the speed reduction of peptides. When a constant force is applied to the peptide without any electric field, the hydroxyl-functionalized graphene nanopore delivers the lowest diffusion rate. The persistence time, which serves as a measure of the solvent viscosity near the peptide, is the highest within the hydroxyl-functionalized pore. Finally, we conclude that the Coulombic interactions between the peptide and the pore play a major role in its speed reduction inside the hydroxyl-functionalized graphene nanopore.
Collapse
Affiliation(s)
- Hareesh Suresh
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Navaneeth Haridasan
- Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Binu Varghese
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Sarith P Sathian
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
7
|
Xu X, Tan S, Fu Y, Xing W, Song Y, Liu X, Fang Y. Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2619-2628. [PMID: 39835667 DOI: 10.1021/acs.langmuir.4c04405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface. We used quartz crystal microbalance-dissipation to study the adsorption and rupture of highly negatively charged small unilamellar vesicles on the silica surface in different concentrations of NaCl and under different osmotic stresses. It was demonstrated that an increase in the ionic strength of the solution enhances SLB formation. Both hypertonic and moderate hypotonic osmotic stress can promote the formation of SLBs. However, the SLB cannot be formed under high hypotonic osmotic stress. Importantly, osmotic stress alone without a change in ionic strength is insufficient to promote SLB formation. Moreover, the topographical images obtained by atomic force microscopy showed that complete bilayers were formed under hypertonic osmotic stress and high ionic strength, whereas defects were noticed in the bilayers formed under hypotonic osmotic stress. Furthermore, the fluidity of the lipid bilayers was studied by fluorescence recovery after photobleaching. A higher membrane fluidity was observed for the complete lipid bilayers compared to that of the lipid bilayers with defects. Our findings further the understanding of how ionic strength and osmotic stress affect the formation of highly negatively charged SLBs on negatively charged surfaces, providing insights for preparing model biological membranes.
Collapse
Affiliation(s)
- Xiaojia Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Shuwen Tan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yao Fu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wenlong Xing
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yaping Song
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
8
|
Galimzyanov TR, Volynsky PE, Batishchev OV. Continuum elasticity and molecular dynamics of a pore in archaeal bolalipid membranes. SOFT MATTER 2025; 21:687-698. [PMID: 39763423 DOI: 10.1039/d4sm01015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Archaea are famous for their ability to survive in extremely harsh environments, probably due to the unprecedented stability of their lipid membranes. Key features of archaeal lipids (bolalipids) that confer their stability are methyl side groups and cyclopentanes in the alkyl chains, as well as the specific shape of the molecule, which has two headgroups connected by two tails. However, the contribution of each structural parameter to membrane stability and the underlying physical mechanism remain unknown. Here, we used molecular dynamics simulations to develop a method for measuring the energy of pore formation in bolalipid membranes as an assessment of their stability. In addition, we improved our previously developed continuum model by introducing a new term responsible for the rigidity of the alkyl chain. We calculated the pore edge energy and evaluated the membrane stability in terms of membrane elasticity. We demonstrated that increased stability of bolalipid membranes resulted both from hindered lateral mobility of these amphiphilic molecules and increased pore energy due to specific structure of bolalipids. Methyl side groups of bolalipids reduce the mobility of the molecules and increase the pore line tension in the same way as in the case of conventional phytanyl lipids. Chain rigidity hinders the formation of the bend molecules at the pore edge, thus additionally increasing the pore formation energy.
Collapse
Affiliation(s)
- Timur R Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Oleg V Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
9
|
Sugahara T, Ichihashi H, Tsumura K, Hara T, Miyazaki A, Sakai T. Aggregation Characteristics of Biobased Anionic Surfactant, Hydroxy Alkane Sulfonate in Aqueous CaCl 2 Solutions: Vesicle and Supported Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21719-21727. [PMID: 39347654 DOI: 10.1021/acs.langmuir.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vesicles are known to spontaneously adsorb onto solid-liquid interfaces and to form supported bilayers in aqueous solution. Cationic surfactants have typically been used to generate supported bilayers because solid surfaces in water are often negatively charged. The present study investigated the aggregation behavior of an anionic surfactant, hydroxy alkane sulfonate having a C18 alkyl chain (C18HAS) in aqueous CaCl2 solutions. These assessments were performed by acquiring data related to equilibrium surface tension, the solubilization of an oil-soluble dye, UV-visible transmittance, pyrene fluorescence and dynamic light scattering together with freeze-fracture transmission electron microscopy observations. The results suggest that C18HAS can form vesicles in aqueous CaCl2 solutions under certain surfactant concentrations. Specifically, this aggregation behavior is greatly affected by C18HAS/CaCl2 molar ratio. At the C18HAS/CaCl2 molar ratio is less than an equivalence point (that is, less than 2:1), phase separation occurs with the formation of a vesicle above solubility limit of the C18HAS Ca salt. On the other hand, in the case that the C18HAS/CaCl2 molar ratio is above an equivalence point (that is, above 2:1), the Na salt of C18HAS forms micelles above the critical micelle concentration (cmc), causing solubilization of vesicles. Analyses by high-speed atomic force microscopy demonstrated that the C18HAS vesicles can spontaneously form a supported bilayer on a negatively charged mica surfaces, similar to the behavior of cationic surfactant vesicles, even though C18HAS is an anionic surfactant. These results suggest that C18HAS could serve as a detergent component but also as a surface modifier when the C18HAS/CaCl2 molar ratio is optimized.
Collapse
Affiliation(s)
- Tadashi Sugahara
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Haruna Ichihashi
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Kana Tsumura
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Teruyuki Hara
- Analytical Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Atsushi Miyazaki
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Takaya Sakai
- R&D, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| |
Collapse
|
10
|
Mohammed-Sadhakathullah AHM, Pashazadeh-Panahi P, Sek S, Armelin E, Torras J. Formation of sparsely tethered bilayer lipid membrane on a biodegradable self-assembled monolayer of poly(lactic acid). Bioelectrochemistry 2024; 159:108757. [PMID: 38851026 DOI: 10.1016/j.bioelechem.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The utilization of biomimetic membranes supported by advanced self-assembled monolayers is gaining attraction as a promising sensing tool. Biomimetic membranes offer exceptional biocompatibility and adsorption capacity upon degradation, transcending their role as mere research instruments to open new avenues in biosensing. This study focused on anchoring a sparsely tethered bilayer lipid membrane onto a self-assembled monolayer composed of a biodegradable polymer, functionalized with poly(ethylene glycol)-cholesterol moieties, for lipid membrane integration. Real-time monitoring via quartz crystal microbalance, coupled with characterization using surface-enhanced infrared absorption spectroscopy and electrochemical impedance spectroscopy, provided comprehensive insights into each manufacturing phase. The resulting lipid layer, along with transmembrane pores formed by gramicidin A, exhibited robust stability. Electrochemical impedance spectroscopy analysis confirmed membrane integrity, successful pore formation, and consistent channel density. Notably, gramicidin A demonstrated sustained functionality as an ion channel upon reconstitution, with its functionality being effectively blocked and inhibited in the presence of calcium ions. These findings mark significant strides in developing intricate biodegradable nanomaterials with promising applications in biomedicine.
Collapse
Affiliation(s)
- Ahammed H M Mohammed-Sadhakathullah
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I, 2nd Floor, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Basement S-1, 08019 Barcelona, Spain
| | - Paria Pashazadeh-Panahi
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Elaine Armelin
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I, 2nd Floor, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Basement S-1, 08019 Barcelona, Spain
| | - Juan Torras
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I, 2nd Floor, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Basement S-1, 08019 Barcelona, Spain.
| |
Collapse
|
11
|
Chuduang K, Pholraksa P, Naumann CA. Capillary-Assisted Assembly of Polymer Gel-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39255463 DOI: 10.1021/acs.langmuir.4c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The polymer-supported lipid bilayer represents an attractive supramolecular assembly in numerous biophysical and bioanalytical applications. The assembly of polymer-supported membranes with a polymer layer thickness of just a few nanometers is now well-established, but bilayer properties in such a membrane architecture are still influenced by the nearby solid substrate. Polymer-supported lipid bilayer systems with a several micrometers thick polymer layer will overcome this shortcoming. However, formation of a fluid lipid bilayer on a fully hydrated, micrometer thick polymer film using traditional methods (e.g., vesicle fusion and lipid monolayer deposition techniques) remains a challenging task due to the rather unfavorable interfacial conditions for bilayer formation in such a system. Here, we report for the first time on the facile capillary-assisted formation of a lipid bilayer on the surface of a fully hydrated, several micrometers thick polyacrylamide (PAA) gel, in which forced molecular crowding of lipids at the air-water interface of the capillary results in monolayer instability and collapse, thereby forming a lipid bilayer on the top of the polymer gel inside the capillary. Stable bilayer attachment on the surface of the polymer gel can be achieved via physisorption or specific chemical linkages (tethering) on both cross-linked and non-cross-linked PAA films. Unlike the traditional solid-supported lipid bilayer (SLB), the lipid lateral diffusion in the polymer gel-supported lipid bilayer is not anymore perturbed by a solid substrate. Instead, more like a plasma membrane, it is mainly influenced by the properties of the underlying polymer and the nature/distribution of polymer-bilayer attachments. Polymer gel-supported lipid bilayers built using the capillary-assisted assembly approach show attractive self-healing properties, resulting in superior long-term stability relative to the SLB. We hypothesize that the described capillary-assisted assembly method can be applied to a wide range of polymeric materials and lipid compositions, opening exciting opportunities as an advanced model membrane system.
Collapse
Affiliation(s)
- Kridnut Chuduang
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Pornchanan Pholraksa
- Department of Biology, Indiana University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
12
|
Yamamoto A, Sakamaki Y, Abuillan W, Konovalov O, Ueno Y, Tanaka M. Structural and Mechanical Characterization of DNA-Tethered Membranes on Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16530-16537. [PMID: 39046847 DOI: 10.1021/acs.langmuir.4c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lipid membranes that are separated from the surface of graphene by DNA tethers were prepared by surface functionalization with pyrene coupled to single-stranded DNA (ssDNA), followed by self-assembly of the mixture of ssDNA-functionalized phospholipid and the matrix phospholipids. The formation of uniform membranes was confirmed by fluorescence microscopy, and the structures of the systems before and after hybridization in the direction perpendicular to the global plane of the membranes were investigated using high-energy X-ray reflectivity. The thickness values of the DNA spacers (15 and 37 bp) calculated from the best-fit results were less than the expected thicknesses of the double-stranded DNA (dsDNA) chains taking the upright conformation, indicating that the DNA spacers are tilted with respect to the direction normal to the surface. The Young's moduli of the DNA-tethered membranes obtained by AFM nanoindentation showed higher values than the membranes with no DNA tethers, which suggests that the DNA layer resists against the compression, lifting up the membrane. Intriguingly, the presence of DNA tethers caused no increase in the yield depth. The smaller thickness values as well as the unchanged yield depth suggest that the dsDNA chains can tilt and rotate, which can be attributed to the flexible pyrene-DNA junction.
Collapse
Affiliation(s)
- Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Sakamaki
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Oleg Konovalov
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | - Yuko Ueno
- NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Tan SW, Yoon BK, Jackman JA. Membrane-Disruptive Effects of Fatty Acid and Monoglyceride Mitigants on E. coli Bacteria-Derived Tethered Lipid Bilayers. Molecules 2024; 29:237. [PMID: 38202820 PMCID: PMC10780109 DOI: 10.3390/molecules29010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We report electrochemical impedance spectroscopy measurements to characterize the membrane-disruptive properties of medium-chain fatty acid and monoglyceride mitigants interacting with tethered bilayer lipid membrane (tBLM) platforms composed of E. coli bacterial lipid extracts. The tested mitigants included capric acid (CA) and monocaprin (MC) with 10-carbon long hydrocarbon chains, and lauric acid (LA) and glycerol monolaurate (GML) with 12-carbon long hydrocarbon chains. All four mitigants disrupted E. coli tBLM platforms above their respective critical micelle concentration (CMC) values; however, there were marked differences in the extent of membrane disruption. In general, CA and MC caused larger changes in ionic permeability and structural damage, whereas the membrane-disruptive effects of LA and GML were appreciably smaller. Importantly, the distinct magnitudes of permeability changes agreed well with the known antibacterial activity levels of the different mitigants against E. coli, whereby CA and MC are inhibitory and LA and GML are non-inhibitory. Mechanistic insights obtained from the EIS data help to rationalize why CA and MC are more effective than LA and GML at disrupting E. coli membranes, and these measurement capabilities support the potential of utilizing bacterial lipid-derived tethered lipid bilayers for predictive assessment of antibacterial drug candidates and mitigants.
Collapse
Affiliation(s)
- Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
14
|
Xing Y, Rottensteiner A, Ciccone J, Howorka S. Functional Nanopores Enabled with DNA. Angew Chem Int Ed Engl 2023; 62:e202303103. [PMID: 37186432 DOI: 10.1002/anie.202303103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Alexia Rottensteiner
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Jonah Ciccone
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
15
|
Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z, Tu J. Nanopore sensors for single molecular protein detection: Research progress based on computer simulations. IET Nanobiotechnol 2023; 17:257-268. [PMID: 36924083 DOI: 10.1049/nbt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As biological macromolecules, proteins are involved in important cellular functions ranging from DNA replication and biosynthesis to metabolic signalling and environmental sensing. Protein sequencing can help understand the relationship between protein function and structure, and provide key information for disease diagnosis and new drug design. Nanopore sensors are a novel technology to achieve the goal of label-free and high-throughput protein sequencing. In recent years, nanopore-based biosensors have been widely used in the detection and analysis of biomolecules such as DNA, RNA, and proteins. At the same time, computer simulations can describe the transport of proteins through nanopores at the atomic level. This paper reviews the applications of nanopore sensors in protein sequencing over the past decade and the solutions to key problems from a computer simulation perspective, with the aim of pointing the way to the future of nanopore protein sequencing.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Lee S, Chung M. DNA-Tethered Lipid Membrane Formation via Solvent-Assisted Self-Assembly. J Phys Chem B 2023; 127:1350-1356. [PMID: 36733188 DOI: 10.1021/acs.jpcb.2c07978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA-tethered lipid bilayers have been used in many studies, based on the controllable and well-defined properties of DNA tethers. However, their application has been limited, because it is difficult to cover a wide range of surfaces and achieve electrical insulation. We implemented an existing method, where a DNA hybrid chip on a silica or glass surface supports a lipid membrane using solvent-assisted self-assembly. The formation of a continuous lipid bilayer was confirmed through the change in quartz crystal microbalance dissipation results, depending on the presence or absence of DNA hybrids. The fluidity of the DNA-tethered lipid membranes was analyzed using a fluorescence microscope. The electrochemical analysis demonstrated the versatility of this new technique, which can be used for sensor or electrode surface modification for biosensors or bioelectronics.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 04066, Republic of Korea
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 04066, Republic of Korea
| |
Collapse
|
17
|
Tzouvadaki I, Prodromakis T. Large-scale nano-biosensing technologies. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1127363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Nanoscale technologies have brought significant advancements to modern diagnostics, enabling unprecedented bio-chemical sensitivities that are key to disease monitoring. At the same time, miniaturized biosensors and their integration across large areas enabled tessellating these into high-density biosensing panels, a key capability for the development of high throughput monitoring: multiple patients as well as multiple analytes per patient. This review provides a critical overview of various nanoscale biosensing technologies and their ability to unlock high testing throughput without compromising detection resilience. We report on the challenges and opportunities each technology presents along this direction and present a detailed analysis on the prospects of both commercially available and emerging biosensing technologies.
Collapse
|
18
|
Chen P, Sun Z, Wang J, Liu X, Bai Y, Chen J, Liu A, Qiao F, Chen Y, Yuan C, Sha J, Zhang J, Xu LQ, Li J. Portable nanopore-sequencing technology: Trends in development and applications. Front Microbiol 2023; 14:1043967. [PMID: 36819021 PMCID: PMC9929578 DOI: 10.3389/fmicb.2023.1043967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Sequencing technology is the most commonly used technology in molecular biology research and an essential pillar for the development and applications of molecular biology. Since 1977, when the first generation of sequencing technology opened the door to interpreting the genetic code, sequencing technology has been developing for three generations. It has applications in all aspects of life and scientific research, such as disease diagnosis, drug target discovery, pathological research, species protection, and SARS-CoV-2 detection. However, the first- and second-generation sequencing technology relied on fluorescence detection systems and DNA polymerization enzyme systems, which increased the cost of sequencing technology and limited its scope of applications. The third-generation sequencing technology performs PCR-free and single-molecule sequencing, but it still depends on the fluorescence detection device. To break through these limitations, researchers have made arduous efforts to develop a new advanced portable sequencing technology represented by nanopore sequencing. Nanopore technology has the advantages of small size and convenient portability, independent of biochemical reagents, and direct reading using physical methods. This paper reviews the research and development process of nanopore sequencing technology (NST) from the laboratory to commercially viable tools; discusses the main types of nanopore sequencing technologies and their various applications in solving a wide range of real-world problems. In addition, the paper collates the analysis tools necessary for performing different processing tasks in nanopore sequencing. Finally, we highlight the challenges of NST and its future research and application directions.
Collapse
Affiliation(s)
- Pin Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Jiawei Wang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yun Bai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Qiao
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Clinical Laboratory, Southeast University Zhongda Hospital, Nanjing, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Jinghui Zhang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China,*Correspondence: Li-Qun Xu, ✉
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China,Jian Li, ✉
| |
Collapse
|
19
|
Jiang Y, Liu J, Zhang W, Xiang G, Chen Y, He C, Shen H, Gong J, Bian Y. A low-frequency acceleration sensor inspired by saccule in human vestibule. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:025005. [PMID: 36859047 DOI: 10.1063/5.0126150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
A human vestibular system is a group of devices in the inner ear that govern the balancing movement of the head, in which the saccule is responsible for sensing gravity accelerations. Imitating the sensing principle and structure of the Sensory Hair (SH) cell in the saccule, a Bionic Sensory Hair (BSH) was developed, and 9 BSH arrays were arranged in the bionic macular at the bottom of the spherical shell to prepare a Bionic Saccule (BS). Based on the piezoelectric equation, the electromechanical theoretical models of the BSH cantilever and BS were deduced. They were subjected to impact oscillations using an exciter, and their output charges were analyzed to check their sensing ability. The results showed that BSH could sense its bending deflection, and the BS could sense its position change in the sagittal plane and in space. They exhibited a sensitivity of 1.6104 Pc s2/m and a fast response and similar sensing principles and low resonance frequency to those of the human saccule. The BS is expected to be used in the field of robotics and clinical disease diagnosis as a part of the artificial vestibular system in the future.
Collapse
Affiliation(s)
- Yani Jiang
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| | - Jialong Liu
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| | - Wenxuan Zhang
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| | - Guangcheng Xiang
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| | - Yuhang Chen
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| | - Can He
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| | - Hui Shen
- College of Mechanical and Electrical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Junjie Gong
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| | - Yixiang Bian
- College of Mechanical Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou, China
| |
Collapse
|
20
|
Krishnan R S, Jana K, Shaji AH, Nair KS, Das AD, Vikraman D, Bajaj H, Kleinekathöfer U, Mahendran KR. Assembly of transmembrane pores from mirror-image peptides. Nat Commun 2022; 13:5377. [PMID: 36104348 PMCID: PMC9474448 DOI: 10.1038/s41467-022-33155-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Tailored transmembrane alpha-helical pores with desired structural and functional versatility have promising applications in nanobiotechnology. Herein, we present a transmembrane pore DpPorA, based on the natural pore PorACj, built from D-amino acid α-helical peptides. Using single-channel current recordings, we show that DpPorA peptides self-assemble into uniform cation-selective pores in lipid membranes and exhibit properties distinct from their L-amino acid counterparts. DpPorA shows resistance to protease and acts as a functional nanopore sensor to detect cyclic sugars, polypeptides, and polymers. Fluorescence imaging reveals that DpPorA forms well-defined pores in giant unilamellar vesicles facilitating the transport of hydrophilic molecules. A second D-amino acid peptide based on the polysaccharide transporter Wza forms transient pores confirming sequence specificity in stable, functional pore formation. Finally, molecular dynamics simulations reveal the specific alpha-helical packing and surface charge conformation of the D-pores consistent with experimental observations. Our findings will aid the design of sophisticated pores for single-molecule sensing related technologies. Alpha-helix nanopores have a range of potential applications and the inclusion of non-natural amino acids allows for modification. Here, the authors report on the creation of alpha-helix pores using D-amino acids and show the pores formed, have different properties to the L-counterparts and were resistant to proteases.
Collapse
|
21
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
22
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
23
|
Gabriunaite I, Valiuniene A, Ramanavicius S, Ramanavicius A. Biosensors Based on Bio-Functionalized Semiconducting Metal Oxides. Crit Rev Anal Chem 2022; 54:549-564. [PMID: 35714203 DOI: 10.1080/10408347.2022.2088226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immobilization of biomaterials is a very important task in the development of biofuel cells and biosensors. Some semiconducting metal-oxide-based supporting materials can be used in these bioelectronics-based devices. In this article, we are reviewing some functionalization methods that are applied for the immobilization of biomaterials. The most significant attention is paid to the immobilization of biomolecules on the surface of semiconducting metal oxides. The improvement of biomaterials immobilization on metal oxides and analytical performance of biosensors by coatings based on conducting polymers, self-assembled monolayers and lipid membranes is discussed.
Collapse
Affiliation(s)
- Inga Gabriunaite
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Ausra Valiuniene
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| |
Collapse
|
24
|
Yudovich S, Marzouqe A, Kantorovitsch J, Teblum E, Chen T, Enderlein J, Miller EW, Weiss S. Electrically Controlling and Optically Observing the Membrane Potential of Supported Lipid Bilayers. Biophys J 2022; 121:2624-2637. [PMID: 35619563 DOI: 10.1016/j.bpj.2022.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipid bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically, and demonstrate direct optical observation of the transmembrane potential of supported lipid bilayers. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization dynamics is understood through electrochemical impedance spectroscopy and the analysis of an equivalent electrical circuit model. In addition, we describe the effect of the conducting electrode layer on the fluorescence of the optical probe through metal-induced energy transfer, and show that while this energy transfer has an adverse effect on the voltage sensitivity of the fluorescent probe, its strong distance dependency allows for axial localization of fluorescent emitters with ultrahigh accuracy. We conclude with a discussion on possible applications of this platform for the study of voltage-dependent membrane proteins and other processes in membrane biology and surface science.
Collapse
Affiliation(s)
- Shimon Yudovich
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Adan Marzouqe
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Joseph Kantorovitsch
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Eti Teblum
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Germany
| | - Evan W Miller
- Departments of Chemistry, Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Shimon Weiss
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Departments of Chemistry and Biochemistry, Physiology, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
25
|
Wu Y, Gooding JJ. The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 2022; 51:3862-3885. [PMID: 35506519 DOI: 10.1039/d1cs00988e] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanopore-based sensors typically work by monitoring transient pulses in conductance via current-time traces as molecules translocate through the nanopore. The unique property of being able to monitor single molecules gives nanopore sensors the potential as quantitative sensors based on the counting of single molecules. This review provides an overview of the concepts and fabrication of nanopore sensors as well as nanopore sensing with a view toward using nanopore sensors for quantitative analysis. We first introduce the classification of nanopores and highlight their applications in molecular identification with some pioneering studies. The review then shifts focus to recent strategies to extend nanopore sensors to devices that can rapidly and accurately quantify the amount of an analyte of interest. Finally, future prospects are provided and briefly discussed. The aim of this review is to aid in understanding recent advances, challenges, and prospects for nanopore sensors for quantitative analysis.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
26
|
Wu Y, Jamali S, Tilley RD, Gooding JJ. Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications. Faraday Discuss 2022; 233:10-32. [PMID: 34874385 DOI: 10.1039/d1fd00088h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing. Discussion of the developments in these two application fields highlights some of the advances in the fundamental understanding of nanoelectrochemical systems really driving these applications forward. Looking into our nanocrystal ball, this paper then highlights: the need to understand the impact of nanoconfinement on electrochemical processes, the need to measure many single entities, the need to develop more sophisticated ways of treating the potentially large data sets from measuring such many single entities, the need for more new methods for characterising nanoelectrochemical systems as they operate and the need for material synthesis to become more reproducible as well as possess more nanoscale control.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Sina Jamali
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Richard D Tilley
- School of Chemistry and Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
27
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Ambrulevičius F, Valinčius G. Electrochemical impedance spectrum reveals structural details of distribution of pores and defects in supported phospholipid bilayers. Bioelectrochemistry 2022; 146:108092. [DOI: 10.1016/j.bioelechem.2022.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/15/2022]
|
29
|
AI-based atomic force microscopy image analysis allows to predict electrochemical impedance spectra of defects in tethered bilayer membranes. Sci Rep 2022; 12:1127. [PMID: 35064137 PMCID: PMC8783026 DOI: 10.1038/s41598-022-04853-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023] Open
Abstract
Atomic force microscopy (AFM) image analysis of supported bilayers, such as tethered bilayer membranes (tBLMs) can reveal the nature of the membrane damage by pore-forming proteins and predict the electrochemical impedance spectroscopy (EIS) response of such objects. However, automated analysis involving pore detection in such images is often non-trivial and can require AI-based object detection techniques. The specific object-detection algorithm we used to determine the defect coordinates in real AFM images was a convolutional neural network (CNN). Defect coordinates allow to predict the EIS response of tBLMs populated by the pore-forming toxins using finite element analysis (FEA) modeling. We tested if the accuracy of the CNN algorithm affected the EIS spectral features sensitive to defect densities and other physical parameters of tBLMs. We found that the EIS spectra can be predicted sufficiently well, however, systematic errors of characteristic spectral points were observed and need to be taken into account. Importantly, the comparison of predicted EIS curves with experimental ones allowed to estimate important physical parameters of tBLMs such as the specific resistance of submembrane reservoir. This reservoir separates phospholipid bilayer from the solid support. We found that the specific resistance of the reservoir amounts to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^{4.25 \pm 0.10}$$\end{document}104.25±0.10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega \cdot cm$$\end{document}Ω·cm which is approximately two orders of a magnitude higher compared to the specific resistance of the buffer bathing tBLMs studied in this work. We hypothesize that such effect may be related in part due to decreased concentration of ionic carriers in the submembrane due to decreased relative dielectric permittivity in this region.
Collapse
|
30
|
Yang JM, Feng JD. Progress on optical measurements in single-molecule analysis with nanopores. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
32
|
Alghalayini A, Cranfield CG, Cornell BA, Valenzuela SM. Preparing Ion Channel Switch Membrane-Based Biosensors. Methods Mol Biol 2022; 2402:13-20. [PMID: 34854032 DOI: 10.1007/978-1-0716-1843-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monitoring the changes in membrane conductance using electrical impedance spectroscopy is the platform of membrane-based biosensors in order to detect a specific target molecule. These biosensors represent the amalgamation of an electrical conductor such as gold and a chemically tethered bilayer lipid membrane with specific incorporated ion channels such as gramicidin-A that is further functionalized with detector molecules of interest.
Collapse
Affiliation(s)
- Amani Alghalayini
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Bruce A Cornell
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Surgical Diagnostics Pty Ltd., Roseville, NSW, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Burdach K, Dziubak D, Sek S. Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) to Probe Interfacial Water in Floating Bilayer Lipid Membranes (fBLMs). Methods Mol Biol 2022; 2402:199-207. [PMID: 34854046 DOI: 10.1007/978-1-0716-1843-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Floating bilayer lipid membranes (fBLMs) immobilized on metallic surfaces provide a convenient model mimicking the cell membranes due to the effective hydration of lipid polar heads in a proximal leaflet and the possibility to generate the potential gradient across the membrane. This chapter describes the protocol for the measurement of interfacial water separating the floating bilayer lipid membrane from the solid support using surface-enhanced infrared absorption spectroscopy (SEIRAS) under electrochemical control.
Collapse
Affiliation(s)
- Kinga Burdach
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Damian Dziubak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
34
|
Hartmann LM, Garcia A, Deplazes E, Cranfield CG. Determining the Pore Size of Multimeric Peptide Ion Channels Using Cation Conductance Measures of Tethered Bilayer Lipid Membranes. Methods Mol Biol 2022; 2402:81-92. [PMID: 34854037 DOI: 10.1007/978-1-0716-1843-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Swept frequency electrical impedance spectroscopy (EIS) can be used in conjunction with tethered bilayer lipid membranes to monitor the membrane permeability of ions in real-time (Deplazes et al. J Phys Chem Lett 11:6353-6358, 2020). Conductance readings, as determined by EIS, are a measure of the ability of ions to be transported across membranes. Recording the change in conductance as a function of cation concentration and a comparison between a range of cations permits conclusions to be made about the specificity of cation transport through pores. An estimate for upper pore size and cation selectivity of ion channels can be established using this method.
Collapse
Affiliation(s)
- Lissy M Hartmann
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Alvaro Garcia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
35
|
Alobeedallah H, Cornell BA, Coster H. Measuring Voltage-Current Characteristics of Tethered Bilayer Lipid Membranes to Determine the Electro-Insertion Properties of Analytes. Methods Mol Biol 2022; 2402:61-69. [PMID: 34854035 DOI: 10.1007/978-1-0716-1843-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tethered bilayer lipid membranes (tBLMs) anchored to a solid substrate can be prepared and individual triangular voltage ramps from zero to 500 mV with a period of 2-10 ms applied to give membrane voltage dependencies with and without the addition of drugs and analytes in order to measure their electro-insertion properties.
Collapse
Affiliation(s)
- Hadeel Alobeedallah
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia.
| | | | - Hans Coster
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Guidelli R, Becucci L. Functional activity of peptide ion channels in tethered bilayer lipid membranes: Review. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry University of Florence Sesto Fiorentino Firenze Italy
| | - Lucia Becucci
- Ministero dell'Istruzione Scuola Media “Guglielmo Marconi” San Giovanni Valdarno Arezzo Italy
| |
Collapse
|
37
|
Solution Structures of Bacillus anthracis Protective Antigen Proteins Using Small Angle Neutron Scattering and Protective Antigen 63 Ion Channel Formation Kinetics. Toxins (Basel) 2021; 13:toxins13120888. [PMID: 34941724 PMCID: PMC8708185 DOI: 10.3390/toxins13120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
We are studying the structures of bacterial toxins that form ion channels and enable macromolecule transport across membranes. For example, the crystal structure of the Staphylococcus aureus α-hemolysin (α-HL) channel in its functional state was confirmed using neutron reflectometry (NR) with the protein reconstituted in membranes tethered to a solid support. This method, which provides sub-nanometer structural information, could also test putative structures of the Bacillus anthracis protective antigen 63 (PA63) channel, locate where B. anthracis lethal factor and edema factor toxins (LF and EF, respectively) bind to it, and determine how certain small molecules can inhibit the interaction of LF and EF with the channel. We report here the solution structures of channel-forming PA63 and its precursor PA83 (which does not form channels) obtained with small angle neutron scattering. At near neutral pH, PA83 is a monomer and PA63 a heptamer. The latter is compared to two cryo-electron microscopy structures. We also show that although the α-HL and PA63 channels have similar structural features, unlike α-HL, PA63 channel formation in lipid bilayer membranes ceases within minutes of protein addition, which currently precludes the use of NR for elucidating the interactions between PA63, LF, EF, and potential therapeutic agents.
Collapse
|
38
|
Kondrashov OV, Rokitskaya TI, Batishchev OV, Kotova EA, Antonenko YN, Akimov SA. Peptide-induced membrane elastic deformations decelerate gramicidin dimer-monomer equilibration. Biophys J 2021; 120:5309-5321. [PMID: 34715080 DOI: 10.1016/j.bpj.2021.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022] Open
Abstract
Gramicidin A (gA) is a hydrophobic pentadecapeptide readily incorporating into a planar bilayer lipid membrane (BLM), thereby inducing a large macroscopic current across the BLM. This current results from ion-channel formation due to head-to-head transbilayer dimerization of gA monomers with rapidly established monomer-dimer equilibrium. Any disturbance of the equilibrium, e.g., by sensitized photoinactivation of a portion of gA monomers, causes relaxation toward a new equilibrium state. According to previous studies, the characteristic relaxation time of the gA-mediated electric current decreases as the current increases upon elevating the gA concentration in the membrane. Here, we report data on the current relaxation kinetics for gA analogs with N-terminal valine replaced by glycine or tyrosine. Surprisingly, the relaxation time increased rather than decreased upon elevation of the total membrane conductance induced by these gA analogs, thus contradicting the classical kinetic scheme. We developed a general theoretical model that accounts for lateral interaction of monomers and dimers mediated by membrane elastic deformations. The modified kinetic scheme of the gramicidin dimerization predicts the reverse dependence of the relaxation time on membrane conductance for gA analogs, with a decreased dimerization constant that is in a good agreement with our experimental data. The equilibration process may be also modulated by incorporation of other peptides ("impurities") into the lipid membrane.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oleg V Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Sergey A Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
39
|
Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2543-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
|
41
|
Köhler S, Fragneto G, Alcaraz JP, Nelson A, Martin DK, Maccarini M. Nanostructural Characterization of Cardiolipin-Containing Tethered Lipid Bilayers Adsorbed on Gold and Silicon Substrates for Protein Incorporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8908-8923. [PMID: 34286589 DOI: 10.1021/acs.langmuir.1c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key to the development of lipid membrane-based devices is a fundamental understanding of how the molecular structure of the lipid bilayer membrane is influenced by the type of lipids used to build the membrane. This is particularly important when membrane proteins are included in these devices since the precise lipid environment affects the ability to incorporate membrane proteins and their functionality. Here, we used neutron reflectometry to investigate the structure of tethered bilayer lipid membranes and to characterize the incorporation of the NhaA sodium proton exchanger in the bilayer. The lipid membranes were composed of two lipids, dioleoyl phosphatidylcholine and cardiolipin, and were adsorbed on gold and silicon substrates using two different tethering architectures based on functionalized oligoethylene glycol molecules of different lengths. In all of the investigated samples, the addition of cardiolipin caused distinct structural rearrangement including crowding of ethylene glycol groups of the tethering molecules in the inner head region and a thinning of the lipid tail region. The incorporation of NhaA in the tethered bilayers following two different protocols is quantified, and the way protein incorporation modulates the structural properties of these membranes is detailed.
Collapse
Affiliation(s)
- Sebastian Köhler
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Jean-Pierre Alcaraz
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| | - Andrew Nelson
- ANSTO-Sydney, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Donald K Martin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| | - Marco Maccarini
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| |
Collapse
|
42
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
43
|
Hossain M, Blanchard GJ. Ceramide-mediation of diffusion in supported lipid bilayers. Chem Phys Lipids 2021; 238:105090. [PMID: 33971138 PMCID: PMC8222156 DOI: 10.1016/j.chemphyslip.2021.105090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
The fluidity and compositional heterogeneity of the mammalian plasma membrane play deterministic roles in a variety of membrane functions. Designing model bilayer systems allows for compositional control over these properties. Ceramide is a phospholipid capable of extensive headgroup-region hydrogen bonding, and we report here on the role of ceramide in planar model bilayers. We use fluorescence recovery after photobleaching (FRAP) to obtain translational diffusion constants of two chromophores in supported model bilayers composed of cholesterol, 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), sphingomyelin, and ceramide. FRAP data for perylene report on the acyl chain region of the model bilayer and FRAP data for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) sense diffusional dynamics in the bilayer headgroup region. Dynamics in the headgroup region exhibit anomalous diffusion behavior that is characteristic of spatially heterogeneous media.
Collapse
Affiliation(s)
- Masroor Hossain
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
Silin VI, Hoogerheide DP. pH dependent electrical properties of the inner- and outer- leaflets of biomimetic cell membranes. J Colloid Interface Sci 2021; 594:279-289. [PMID: 33765647 DOI: 10.1016/j.jcis.2021.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Composition and asymmetry of lipid membranes provide a means for regulation of trans-membrane permeability of ions and small molecules. The pH dependence of these processes plays an important role in the functioning and survival of cells. In this work, we study the pH dependence of membrane electrical resistance and capacitance using electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR) and neutron reflectometry (NR) measurements of biomimetic tethered bilayer lipid membranes (tBLMs). tBLMs were prepared with single-component phospholipid compositions, as well as mixtures of phospholipids (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and cholesterol) that mimic the inner- and outer- leaflets of plasma cell membranes. We found that all studied tBLMs have a resistance maximum at pHs near the pKas of the phospholipids. SPR and NR indicated that surface concentration of phospholipids and the thickness of the hydrophobic part of the membrane did not change versus pH. We postulate that these maxima are the result of protonation of the phosphate oxygen of the phospholipids and that hydronium ions play a major role in the conductance at pHs < pKas while sodium ions play the major role at pHs > pKas. An additional sharp resistance maximum of the PE tBLMs found at pH 5.9 and most likely represents the phosphatidylethanolamine's isoelectric point. The data show the key roles of the characteristic parts of phospholipid molecules: terminal group (choline, carboxyl, amine), phosphate, glycerol and ester oxygens on the permeability and selectivity of ions through the membrane. The interactions between these groups lead to significant differences in the electrical properties of biomimetic models of inner- and outer- leaflets of the plasma cell membranes.
Collapse
Affiliation(s)
- Vitalii I Silin
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville MD 20850, USA.
| | - David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
45
|
Dziubak D, Sek S. Physicochemical Characterization of Sparsely Tethered Bilayer Lipid Membranes: Structure of Submembrane Water and Nanomechanical Properties. ChemElectroChem 2021. [DOI: 10.1002/celc.202100721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Damian Dziubak
- Faculty of Chemistry, Biological & Chemical Research Centre University of Warsaw Zwirki i Wigury 101 02-089 Warsaw Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological & Chemical Research Centre University of Warsaw Zwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
46
|
Cellular interactions with polystyrene nanoplastics-The role of particle size and protein corona. Biointerphases 2021; 16:041001. [PMID: 34241329 DOI: 10.1116/6.0001124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plastic waste is ubiquitously spread across the world and its smaller analogs-microplastics and nanoplastics-raise particular health concerns. While biological impacts of microplastics and nanoplastics have been actively studied, the chemical and biological bases for the adverse effects are sought after. This work explores contributory factors by combining results from in vitro and model mammalian membrane experimentation to assess the outcome of cell/nanoplastic interactions in molecular detail, inspecting the individual contribution of nanoplastics and different types of protein coronae. The in vitro study showed mild cytotoxicity and cellular uptake of polystyrene (PS) nanoplastics, with no clear trend based on nanoplastic size (20 and 200 nm) or surface charge. In contrast, a nanoplastic size-dependency on bilayer disruption was observed in the model system. This suggests that membrane disruption resulting from direct interaction with PS nanoplastics has little correlation with cytotoxicity. Furthermore, the level of bilayer disruption was found to be limited to the hydrophilic headgroup, indicating that transmembrane diffusion was an unlikely pathway for cellular uptake-endocytosis is the viable mechanism. In rare cases, small PS nanoplastics (20 nm) were found in the vicinity of chromosomes without a nuclear membrane surrounding them; however, this was not observed for larger PS nanoplastics (200 nm). We hypothesize that the nanoplastics can interact with chromosomes prior to nuclear membrane formation. Overall, precoating PS particles with protein coronae reduced the cytotoxicity, irrespective of the corona type. When comparing the two types, the extent of reduction was more apparent with soft than hard corona.
Collapse
|
47
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
48
|
Abstract
Biological membranes composed of a lipid bilayer and associated proteins work as a platform for highly selective and sensitive detection in nature. Substrate-supported lipid bilayers (SLBs) are a model system of the biological membrane that are mechanically stable, accessible to highly sensitive analytical techniques, and amenable to micro-fabrication, such as patterning. The surface of SLBs can effectively suppress the non-specific binding of proteins, and enhance selective detection by specific interactions. These features render SLBs highly attractive for the development of devices that utilize artificially mimicked cellular functions. Furthermore, SLBs can be combined with nanoscopic spaces, such as nano-channels and nano-pores, that can reduce the detection volume and suppress the non-specific background noise, enhancing the signal-to-background noise (S/B) ratio. SLBs therefore provide promising platforms for a wide range of biomedical and environmental analyses.
Collapse
Affiliation(s)
- Kenichi Morigaki
- Biosignal Research Center, Kobe University.,Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
49
|
El-Beyrouthy J, Freeman E. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. MEMBRANES 2021; 11:319. [PMID: 33925756 PMCID: PMC8145864 DOI: 10.3390/membranes11050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.
Collapse
Affiliation(s)
| | - Eric Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
50
|
Gruhle K, Tuchtenhagen M, Müller S, Hause G, Meister A, Drescher S. Synthesis and aggregation behaviour of single-chain, 1,32-alkyl-branched bis(phosphocholines) - part 2: lateral chain length triggers self-assembling from sheets to fibres to vesicles. Org Biomol Chem 2021; 18:3585-3598. [PMID: 32347287 DOI: 10.1039/d0ob00534g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Six single-chain, 1,32-alkyl-branched bis(phosphocholines) PC-C32(1,32Cm)-PC have been synthesized as model lipids for naturally occurring archaeal membrane lipids. The preparation of these bipolar amphiphiles bearing lateral alkyl chains of different lengths (C4-C15) was realized using a Cu-catalyzed Grignard bis-coupling reaction of various primary alkyl-branched bromides as side parts and a 1,22-dibromide as the centre part. The aggregation behaviour of these bolalipids in water was initially investigated by differential scanning calorimetry and transmission electron microscopy. As a main result, the types of aggregates found and their stability upon heating were strongly connected to the length of the lateral alkyl chain of the bolalipid: short and long lateral chains led to lamellar structures, whereas side chains of medium length led to fibrous aggregates. In future, these bolalipids could be used to produce tailored and stabilized liposomes for oral drug delivery.
Collapse
Affiliation(s)
- Kai Gruhle
- Institute of Pharmacy - Biophysical Pharmacy, Martin Luther University (MLU), Wolfgang-Langenbeck-Strasse 4, 01620 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|