1
|
Yang C, Jiang L, Leng Z, Yuan S, Wang Y, Liu G, Jiang Q, Tan Y, Yu H, Yang F, Ji H, Du J, Li W. Overexpression of NtEXPA7 promotes seedling growth and resistance to root-knot nematode in tobacco. Biochem Biophys Res Commun 2024; 720:150086. [PMID: 38761478 DOI: 10.1016/j.bbrc.2024.150086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Root-knot nematode (RKN) is one of the most damaging plant pathogen in the world. They exhibit a wide host range and cause serious crop losses. The cell wall, encasing every plant cell, plays a crucial role in defending of RKN invasion. Expansins are a group of cell wall proteins inducing cell wall loosening and extensibility. They are widely involved in the regulation of plant growth and the response to biotic and abiotic stresses. In this study, we have characterized the biological function of tobacco (Nicotiana tabacum) NtEXPA7, the homologue of Solyc08g080060.2 (SlEXPA18), of which the transcription level was significantly reduced in susceptible tomato upon RKN infection. The expression of NtEXPA7 was up-regulated after inoculation of RKNs. The NtEXPA7 protein resided in the cell wall. Overexpression of NtEXPA7 promoted the seedling growth of transgenic tobacco. Meanwhile the increased expression of NtEXPA7 was beneficial to enhance the resistance against RKNs. This study expands the understanding of biological role of expansin in coordinate plant growth and disease resistance.
Collapse
Affiliation(s)
- Cheng Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lianqiang Jiang
- Sichuan Provincial Tobacco Company Liangshanzhou Company, Liangshanzhou, 615000, China.
| | - Zhengmei Leng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Shuai Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yong Wang
- Sichuan Provincial Tobacco Company Liangshanzhou Company, Liangshanzhou, 615000, China
| | - Guo Liu
- Sichuan Provincial Tobacco Company Liangshanzhou Company, Liangshanzhou, 615000, China
| | - Qipeng Jiang
- College of Plant Protection, Southwest University, Chongqing, 400715, China.
| | - Yanni Tan
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Hongli Ji
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| | - Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Chen M, Zhang L, Yao Z, Cao X, Ma Q, Chen S, Zhang X, Zhao S. Integrated Transcriptome and Proteome Analysis Reveals That Cell Wall Activity Affects Phelipanche aegyptiaca Parasitism. PLANTS (BASEL, SWITZERLAND) 2024; 13:869. [PMID: 38592861 PMCID: PMC10974318 DOI: 10.3390/plants13060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Phelipanche aegyptiaca can infect many crops, causing large agricultural production losses. It is important to study the parasitism mechanism of P. aegyptiaca to control its harm. In this experiment, the P. aegyptiaca HY13M and TE9M from Tacheng Prefecture and Hami City in Xinjiang, respectively, were used to analyze the parasitical mechanism of P. aegyptiaca by means of transcriptome and proteome analyses. The parasitic capacity of TE9M was significantly stronger than that of HY13M in Citrullus lanatus. The results showed that the DEGs and DEPs were prominently enriched in the cell wall metabolism pathways, including "cell wall organization or biogenesis", "cell wall organization", and "cell wall". Moreover, the functions of the pectinesterase enzyme gene (TR138070_c0_g), which is involved in the cell wall metabolism of P. aegyptiaca in its parasitism, were studied by means HIGS. The number and weight of P. aegyptiaca were significantly reduced when TR138070_c0_g1, which encodes a cell-wall-degrading protease, was silenced, indicating that it positively regulates P. aegyptiaca parasitism. Thus, these results suggest that the cell wall metabolism pathway is involved in P. aegyptiaca differentiation of the parasitic ability and that the TR138070_c0_g1 gene plays an important role in P. aegyptiaca's parasitism.
Collapse
Affiliation(s)
- Meixiu Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China; (M.C.); (L.Z.)
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Lu Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China; (M.C.); (L.Z.)
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Xiaolei Cao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Qianqian Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Siyu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Xuekun Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Sifeng Zhao
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China; (M.C.); (L.Z.)
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| |
Collapse
|
3
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
4
|
Han S, Smith JM, Du Y, Bent AF. Soybean transporter AAT Rhg1 abundance increases along the nematode migration path and impacts vesiculation and ROS. PLANT PHYSIOLOGY 2023; 192:133-153. [PMID: 36805759 PMCID: PMC10152651 DOI: 10.1093/plphys/kiad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Rhg1 (Resistance to Heterodera glycines 1) mediates soybean (Glycine max) resistance to soybean cyst nematode (SCN; H. glycines). Rhg1 is a 4-gene, ∼30-kb block that exhibits copy number variation, and the common PI 88788-type rhg1-b haplotype carries 9 to 10 tandem Rhg1 repeats. Glyma.18G022400 (Rhg1-GmAAT), 1 of 3 resistance-conferring genes at the complex Rhg1 locus, encodes the putative amino acid transporter AATRhg1 whose mode of action is largely unknown. We discovered that AATRhg1 protein abundance increases 7- to 15-fold throughout root cells along the migration path of SCN. These root cells develop an increased abundance of vesicles and large vesicle-like bodies (VLB) as well as multivesicular and paramural bodies. AATRhg1 protein is often present in these structures. AATRhg1 abundance remained low in syncytia (plant cells reprogrammed by SCN for feeding), unlike the Rhg1 α-SNAP protein, whose abundance has previously been shown to increase in syncytia. In Nicotiana benthamiana, if soybean AATRhg1 was present, oxidative stress promoted the formation of large VLB, many of which contained AATRhg1. AATRhg1 interacted with the soybean NADPH oxidase GmRBOHG, the ortholog of Arabidopsis thaliana RBOHD previously found to exhibit upregulated expression upon SCN infection. AATRhg1 stimulated reactive oxygen species (ROS) generation when AATRhg1 and GmRBOHG were co-expressed. These findings suggest that AATRhg1 contributes to SCN resistance along the migration path as SCN invades the plant and does so, at least in part, by increasing ROS production. In light of previous findings about α-SNAPRhg1, this study also shows that different Rhg1 resistance proteins function via at least 2 spatially and temporally separate modes of action.
Collapse
Affiliation(s)
- Shaojie Han
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 311121, China
| | - John M Smith
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Yulin Du
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| |
Collapse
|
5
|
Kumar A, Fitoussi N, Sanadhya P, Sichov N, Bucki P, Bornstein M, Belausuv E, Brown Miyara S. Two Candidate Meloidogyne javanica Effector Genes, MjShKT and MjPUT3: A Functional Investigation of Their Roles in Regulating Nematode Parasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:79-94. [PMID: 36324054 DOI: 10.1094/mpmi-10-22-0212-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During parasitism, root-knot nematode Meloidogyne spp. inject molecules termed effectors that have multifunctional roles in construction and maintenance of nematode feeding sites. As an outcome of transcriptomic analysis of Meloidogyne javanica, we identified and characterized two differentially expressed genes encoding the predicted proteins MjShKT, carrying a Stichodactyla toxin (ShKT) domain, and MjPUT3, carrying a ground-like domain, both expressed during nematode parasitism of the tomato plant. Fluorescence in-situ hybridization revealed expression of MjShKT and MjPUT3 in the dorsal esophageal glands, suggesting their injection into host cells. MjShKT expression was upregulated during the parasitic life stages, to a maximum at the mature female stage, whereas MjPUT3 expression increased in third- to fourth-stage juveniles. Subcellular in-planta localization of MjShKT and MjPUT3 using a fused fluorescence marker indicated MjShKT co-occurrence with the endoplasmic reticulum, the perinuclear endoplasmatic reticulum, and the Golgi organelle markers, while MjPUT3 localized, to some extent, within the endoplasmatic reticulum and was clearly observed within the nucleoplasm. MjShKT inhibited programmed cell death induced by overexpression of MAPKKKα and Gpa2/RBP-1. Overexpression of MjShKT in tomato hairy roots allowed an increase in nematode reproduction, as indicated by the high number of eggs produced on roots overexpressing MjShKT. Roots overexpressing MjPUT3 were characterized by enhanced root growth, with no effect on nematode development on those roots. Investigation of the two candidate effectors suggested that MjShKT is mainly involved in manipulating the plant effector-triggered immune response toward establishment and maintenance of active feeding sites, whereas MjPUT3 might modulate roots morphology in favor of nematode fitness in the host roots. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Payal Sanadhya
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Menachem Bornstein
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
6
|
Cosgrove DJ, Hepler NK, Wagner ER, Durachko DM. Biomechanical Weakening of Paper and Plant Cell Walls by Bacterial Expansins. Methods Mol Biol 2023; 2657:79-88. [PMID: 37149523 DOI: 10.1007/978-1-0716-3151-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on the weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Nathan K Hepler
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Edward R Wagner
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Daniel M Durachko
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Acoustic force spectroscopy reveals subtle differences in cellulose unbinding behavior of carbohydrate-binding modules. Proc Natl Acad Sci U S A 2022; 119:e2117467119. [PMID: 36215467 PMCID: PMC9586272 DOI: 10.1073/pnas.2117467119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.
Collapse
|
8
|
AtWAKL10, a Cell Wall Associated Receptor-Like Kinase, Negatively Regulates Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22094885. [PMID: 34063046 PMCID: PMC8124439 DOI: 10.3390/ijms22094885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
Receptor-like kinases (RLKs) constitute a large group of cell surface receptors that play crucial roles in multiple biological processes. However, the function of most RLKs in plants has not been extensively explored, and much less for the class of cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs). In this study, analyses of developmental expression patterns uncovered a putative role of AtWAKL10 in modulating leaf senescence, which was further investigated at physiological and molecular levels. The expression level of AtWAKL10 increased with the developmental progression and was rapidly upregulated in senescing leaf tissues. The promoter of AtWAKL10 contains various defense and hormone responsive elements, and its expression could be significantly induced by exogenous ABA, JA and SA. Moreover, the loss-of-function atwakl10 mutant showed earlier senescence along the course of natural development and accelerated leaf senescence under darkness and hormonal stresses, while plants overexpressing AtWAKL10 showed an opposite trend. Additionally, some defense and senescence related WRKY transcription factors could bind to the promoter of AtWAKL10. In addition, deletion and overexpression of AtWAKL10 caused several specific transcriptional alterations, including genes involved in cell extension, cell wall modification, defense response and senescence related WRKYs, which may be implicated in regulatory mechanisms adopted by AtWAKL10 in controlling leaf senescence. Taken together, these results revealed that AtWAKL10 negatively regulated leaf senescence.
Collapse
|
9
|
Price JA, Coyne D, Blok VC, Jones JT. Potato cyst nematodes Globodera rostochiensis and G. pallida. MOLECULAR PLANT PATHOLOGY 2021; 22:495-507. [PMID: 33709540 PMCID: PMC8035638 DOI: 10.1111/mpp.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 05/12/2023]
Abstract
TAXONOMY Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES Genomic information for PCN is accessible through WormBase ParaSite.
Collapse
Affiliation(s)
- James A. Price
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Vivian C. Blok
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - John T. Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
10
|
Jiang Z, Zhao Q, Bai R, Yu R, Diao P, Yan T, Duan H, Ma X, Zhou Z, Fan Y, Wuriyanghan H. Host sunflower-induced silencing of parasitism-related genes confers resistance to invading Orobanche cumana. PLANT PHYSIOLOGY 2021; 185:424-440. [PMID: 33721890 PMCID: PMC8133596 DOI: 10.1093/plphys/kiaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/08/2020] [Indexed: 05/04/2023]
Abstract
Orobanche cumana is a holoparasitic plant that attaches to host-plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA-VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%-92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.
Collapse
Affiliation(s)
- Zhengqiang Jiang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xuesong Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
- Author for communication:
| |
Collapse
|
11
|
Feng H, Zhou D, Daly P, Wang X, Wei L. Characterization and Functional Importance of Two Glycoside Hydrolase Family 16 Genes from the Rice White Tip Nematode Aphelenchoides besseyi. Animals (Basel) 2021; 11:ani11020374. [PMID: 33540794 PMCID: PMC7913077 DOI: 10.3390/ani11020374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The rice white tip nematode Aphelenchoides besseyi is a plant parasite but can also feed on fungi if this alternative nutrient source is available. Glucans are a major nutrient source found in fungi, and β-linked glucans from fungi can be hydrolyzed by β-glucanases from the glycoside hydrolase family 16 (GH16). The GH16 family is abundant in A. besseyi, but their functions have not been well studied, prompting the analysis of two GH16 members (AbGH16-1 and AbGH16-2). AbGH16-1 and AbGH16-2 are most similar to GH16s from fungi and probably originated from fungi via a horizontal gene transfer event. These two genes are important for feeding on fungi: transcript levels increased when cultured with the fungus Botrytis cinerea, and the purified AbGH16-1 and AbGH16-2 proteins inhibited the growth of B. cinerea. When AbGH16-1 and AbGH16-2 expression was silenced, the reproduction ability of A. besseyi was reduced. These findings have proved for the first time that GH16s contribute to the feeding and reproduction of A. besseyi, which thus provides novel insights into how plant-parasitic nematodes can obtain nutrition from sources other than their plant hosts. Abstract The glycoside hydrolase family 16 (GH16) is widely found in prokaryotes and eukaryotes, and hydrolyzes the β-1,3(4)-linkages in polysaccharides. Notably, the rice white tip nematode Aphelenchoides besseyi harbors a higher number of GH16s compared with other plant-parasitic nematodes. In this work, two GH16 genes, namely AbGH16-1 and AbGH16-2, were isolated and characterized from A. besseyi. The deduced amino acid sequences of AbGH16-1 and AbGH16-2 contained an N-terminal signal peptide and a fungal Lam16A glucanase domain. Phylogenetic analysis revealed that AbGH16-1 and AbGH16-2 clustered with ascomycete GH16s, suggesting AbGH16-1 and AbGH16-2 were acquired by horizontal gene transfer from fungi. In situ hybridization showed that both AbGH16-1 and AbGH16-2 were specifically expressed in the nematode gonads, correlating with qPCR analysis that showed the high transcript levels of the two genes in the female nematodes. AbGH16-1 and AbGH16-2 were also significantly induced in nematodes feeding on Botrytis cinerea. Characterization of the recombinant protein showed AbGH16-1 and AbGH16-2 displayed pronounced inhibition of both conidial germination and germ tube elongation of B. cinerea. In addition, silencing of AbGH16-1 and AbGH16-2 by RNA interference significantly decreased the reproduction ability of A. besseyi and had a profound impact on the development process of offspring in this nematode. These findings have firstly proved that GH16s may play important roles in A.besseyi feeding and reproduction on fungi, which thus provides novel insights into the function of GH16s in plant-parasitic nematodes.
Collapse
|
12
|
Gartner U, Hein I, Brown LH, Chen X, Mantelin S, Sharma SK, Dandurand LM, Kuhl JC, Jones JT, Bryan GJ, Blok VC. Resisting Potato Cyst Nematodes With Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:661194. [PMID: 33841485 PMCID: PMC8027921 DOI: 10.3389/fpls.2021.661194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 05/17/2023]
Abstract
Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.
Collapse
Affiliation(s)
- Ulrike Gartner
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lynn H. Brown
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Xinwei Chen
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sophie Mantelin
- INRAE UMR Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Sanjeev K. Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Louise-Marie Dandurand
- Entomology, Plant Pathology and Nematology Department, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - John T. Jones
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Vivian C. Blok,
| |
Collapse
|
13
|
Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C. Expansin-related proteins: biology, microbe-plant interactions and associated plant-defense responses. MICROBIOLOGY-SGM 2020; 166:1007-1018. [PMID: 33141007 DOI: 10.1099/mic.0.000984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Omar E Tovar-Herrera
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, BeerSheva, Israel
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Claudia Martinez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| |
Collapse
|
14
|
Ghaemi R, Pourjam E, Safaie N, Verstraeten B, Mahmoudi SB, Mehrabi R, De Meyer T, Kyndt T. Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode. BMC PLANT BIOLOGY 2020; 20:483. [PMID: 33092522 PMCID: PMC7583174 DOI: 10.1186/s12870-020-02706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/18/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris subsp. vulgaris) is an economically important crop that provides nearly one third of the global sugar production. The beet cyst nematode (BCN), Heterodera schachtii, causes major yield losses in sugar beet and other crops worldwide. The most effective and economic approach to control this nematode is growing tolerant or resistant cultivars. To identify candidate genes involved in susceptibility and resistance, the transcriptome of sugar beet and BCN in compatible and incompatible interactions at two time points was studied using mRNA-seq. RESULTS In the susceptible cultivar, most defense-related genes were induced at 4 dai while suppressed at 10 dai but in the resistant cultivar Nemakill, induction of genes involved in the plant defense response was observed at both time points. In the compatible interaction, alterations in phytohormone-related genes were detected. The effect of exogenous application of Methyl Jasmonate and ET-generator ethephon on susceptible plants was therefore investigated and the results revealed significant reduction in plant susceptibility. Genes putatively involved in the resistance of Nemakill were identified, such as genes involved in phenylpropanoid pathway and genes encoding CYSTM domain-containing proteins, F-box proteins, chitinase, galactono-1,4-lactone dehydrogenase and CASP-like protein. Also, the transcriptome of the BCN was analyzed in infected root samples and several novel potential nematode effector genes were found. CONCLUSIONS Our data provides detailed insights into the plant and nematode transcriptional changes occurring during compatible and incompatible interactions between sugar beet and BCN. Many important genes playing potential roles in susceptibility or resistance of sugar beet against BCN, as well as some BCN effectors with a potential role as avr proteins were identified. In addition, our findings indicate the effective role of jasmonate and ethylene in enhancing sugar beet defense response against BCN. This research provides new molecular insights into the plant-nematode interactions that can be used to design novel management strategies against BCN.
Collapse
Affiliation(s)
- Razieh Ghaemi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Pourjam
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Bruno Verstraeten
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Seyed Bagher Mahmoudi
- Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
15
|
Pokhare SS, Thorpe P, Hedley P, Morris J, Habash SS, Elashry A, Eves-van den Akker S, Grundler FMW, Jones JT. Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1263-1274. [PMID: 32623778 DOI: 10.1111/tpj.14910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.
Collapse
Affiliation(s)
- Somnath S Pokhare
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Peter Thorpe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Pete Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jennifer Morris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Samer S Habash
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - Abdelnaser Elashry
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | | | - Florian M W Grundler
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
16
|
Bacterial Community Structure Dynamics in Meloidogyne incognita-Infected Roots and Its Role in Worm-Microbiome Interactions. mSphere 2020; 5:5/4/e00306-20. [PMID: 32669465 PMCID: PMC7364209 DOI: 10.1128/msphere.00306-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant parasitic nematodes such as Meloidogyne incognita have a complex life cycle, occurring sequentially in various niches of the root and rhizosphere. They are known to form a range of interactions with bacteria and other microorganisms that can affect their densities and virulence. High-throughput sequencing can reveal these interactions in high temporal and geographic resolutions, although thus far we have only scratched the surface. In this study, we have carried out a longitudinal sampling scheme, repeatedly collecting rhizosphere soil, roots, galls, and second-stage juveniles from 20 plants to provide a high-resolution view of bacterial succession in these niches, using 16S rRNA metabarcoding. Our findings indicate that a structured community develops in the root, in which gall communities diverge from root segments lacking a gall, and that this structure is maintained throughout the crop season. We describe the successional process leading toward this structure, which is driven by interactions with the nematode and later by an increase in bacteria often found in hypoxic and anaerobic environments. We present evidence that this structure may play a role in the nematode's chemotaxis toward uninfected root segments. Finally, we describe the J2 epibiotic microenvironment as ecologically deterministic, in part, due to the active bacterial attraction of second-stage juveniles.IMPORTANCE The study of high-resolution successional processes within tightly linked microniches is rare. Using the power and relatively low cost of metabarcoding, we describe the bacterial succession and community structure in roots infected with root-knot nematodes and in the nematodes themselves. We reveal separate successional processes in galls and adjacent non-gall root sections, which are driven by the nematode's life cycle and the progression of the crop season. With their relatively low genetic diversity, large geographic range, spatially complex life cycle, and the simplified agricultural ecosystems they occupy, root-knot nematodes can serve as a model organism for terrestrial holobiont ecology. This perspective can improve our understanding of the temporal and spatial aspects of biological control efficacy.
Collapse
|
17
|
Vieira P, Nemchinov LG. An Expansin-Like Candidate Effector Protein from Pratylenchus penetrans Modulates Immune Responses in Nicotiana benthamiana. PHYTOPATHOLOGY 2020; 110:684-693. [PMID: 31680651 DOI: 10.1094/phyto-09-19-0336-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The root lesion nematode (RLN) Pratylenchus penetrans is a migratory species that attacks a broad range of crops. After the RLN is initially attracted to host roots by root exudates and compounds, it releases secretions that are critical for successful parasitism. Among those secretions are nematode virulence factors or effectors that facilitate the entry and migration of nematodes through the roots and modulate plant immune defenses. The recognition of the effectors by host resistance proteins leads to effector-triggered immunity and incompatible plant-nematode interactions. Although many candidate effectors of the RLN and other plant-parasitic nematodes have been identified, the detailed mechanisms of their functions and particularly, their host targets remain largely unexplored. In this study, we sequenced and annotated genes encoding expansin-like proteins, which are major candidate effectors of P. penetrans. One of the genes, Pp-EXPB1, which was the most highly expressed during nematode infection in different plant species, was further functionally characterized via transient expression in the model plant Nicotiana benthamiana and global transcriptome profiling of gene expression changes triggered by this candidate effector in plants. As a result of this investigation, the biological roles of Pp-EXPB1 in nematode parasitism were proposed, the putative cellular targets of the proteins were identified, and the molecular mechanisms of plant responses to the nematode-secreted proteins were outlined.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
| |
Collapse
|
18
|
Meng X, Miao Y, Liu Q, Ma L, Guo K, Liu D, Ran W, Shen Q. TgSWO from Trichoderma guizhouense NJAU4742 promotes growth in cucumber plants by modifying the root morphology and the cell wall architecture. Microb Cell Fact 2019; 18:148. [PMID: 31481065 PMCID: PMC6721366 DOI: 10.1186/s12934-019-1196-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colonization of Trichoderma spp. is essential for exerting their beneficial functions on the plant. However, the interactions between Trichoderma spp. and plant roots are still not completely understood. The aim of this study was to investigate how TgSWO affect Trichoderma guizhouense to establish themselves in the plant rhizosphere and promote plant growth. In this study, we deeply analyzed the molecular mechanism by which the functional characterization of the TgSWO by expressing different functional region deletion proteins (FRDP) of TgSWO. RESULTS Root scanning analysis results showed that TgSWO could dramatically increase root density and promote growth. In addition, we also found that TgSWO could expand root cell walls, subsequently increase root colonization. Moreover, knockout of TgSWO mutants (KO) or overexpression of TgSWO mutants (OE) produced greatly reduced or increased the number of cucumber root, respectively. To clarify the molecular mechanism of TgSWO in plant-growth-promotion, we analyzed the ability of different FRDP to expand the root cell wall. The root cell wall architecture were considerably altered when treated by ΔCBD protein (the TgSWO gene of lacking in the CBD domain was cloned and heterologously expressed), in correlation with the present YoaJ domain of TgSWO. In contrast, neither the expansion of cell walls nor the increase of roots was detectable in ΔYoaJ protein. CONCLUSIONS Our results emphasize the YoaJ domain is the most critical functional area of TgSWO during the alteration of cell wall architecture. Simultaneously, the results obtained in this study also indicate that TgSWO might play a plant-growth-promotion role in the Trichoderma-plant interactions by targeting the root cell wall.
Collapse
Affiliation(s)
- Xiaohui Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiumei Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lei Ma
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| | - Wei Ran
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.00532-19. [PMID: 31126941 DOI: 10.1128/aem.00532-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension.IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.
Collapse
|
20
|
Luo S, Liu S, Kong L, Peng H, Huang W, Jian H, Peng D. Two venom allergen-like proteins, HaVAP1 and HaVAP2, are involved in the parasitism of Heterodera avenae. MOLECULAR PLANT PATHOLOGY 2019; 20:471-484. [PMID: 30422356 PMCID: PMC6637866 DOI: 10.1111/mpp.12768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite the fact that venom allergen-like proteins (VAPs) have been identified in many animal- and plant-parasitic nematodes, studies on VAPs in Heterodera avenae, which is an important phytonematode, are still in their infancy. Here, we isolated, cloned and characterized two VAPs, named HaVAP1 and HaVAP2, from H. avenae. The two encoded proteins, HaVAP1 and HaVAP2, harbour an SCP-like domain each, but share only 38% identity with each other. HaVAP1 and HaVAP2 are expressed in subventral and dorsal oesophageal glands, respectively. HaVAP1 is expressed mainly at the early stages, whereas HaVAP2 accumulates principally at the late stages. Both HaVAP1 and HaVAP2 are secreted when expressed in Nicotiana benthamiana leaves, but HaVAP1 is delivered into chloroplasts, whereas HaVAP2 is translocated to the nucleus without signal peptides. Knocking down HaVAP1 increased the virulence of H. avenae. In contrast, silencing of HaVAP2 hampered the parasitism of H. avenae. Both HaVAP1 and HaVAP2 suppressed the cell death induced by BAX in N. benthamiana leaves. Moreover, HaVAP2 physically interacted with a CYPRO4-like protein (HvCLP) of Hordeum vulgare in the nucleus of the plant. It is reasonable to speculate that the changes in the transcript of HvCLP are associated with HaVAP2 during the parasitism of H. avenae. All results obtained in this study show that both HaVAP1 and HaVAP2 are involved in the parasitism of H. avenae, but they possess different functions, broadening our understanding of the parasitic mechanism of H. avenae.
Collapse
Affiliation(s)
- Shujie Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Heng Jian
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
21
|
Perrine-Walker F. Interactions of endoparasitic and ectoparasitic nematodes within the plant root system. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:295-303. [PMID: 32172739 DOI: 10.1071/fp18176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 05/27/2023]
Abstract
Root-knot and cyst nematodes have sophisticated mechanisms to invade their plant hosts to reprogram the plant developmental program to induce feeding structures essential for nematode survival and reproduction. This has a detrimental effect on the plant as this sedentary endoparasitic interaction affects the growth and yields of many crop plants. However, other migratory endoparasitic nematodes that do not establish root feeding sites are as aggressive on many crop plants. With new information gained from the genome and transcriptomes of the migratory endoparasitic nematode, Pratylenchus spp., this review compares the different lifestyles and the pathogenic interactions these nematodes have with their plant host. Pratylenchus spp. utilises a common arsenal of effectors involved in plant cell wall degradation and the manipulation of plant host innate immunity. The absence of specific cell reprogramming effector genes may explain its migratory endoparasitic lifestyle, making it relevant to pest management approaches in Australia.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia. Email
| |
Collapse
|
22
|
Tan J, Wang M, Shi Z, Miao X. OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. PLANT CELL REPORTS 2018; 37:993-1002. [PMID: 29619515 DOI: 10.1007/s00299-018-2284-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
OsEXPA10 gene coordinates the balance between rice development and biotic resistance. Expansins are proteins that can loosen the cell wall. Previous studies have indicated that expansin-encoding genes were involved in defense against abiotic stress, but little is known about the involvement of expansins in biotic stress. Brown planthopper (BPH) is one of the worst insect pests of rice in the Asia-Pacific planting area, and many efforts have been made to identify and clone BPH-resistance genes for use in breeding resistant cultivars. At the same time, rice blast caused by Magnaporthe grisea is one of the three major diseases that severely affect rice production worldwide. Here, we demonstrated that one rice expansin-encoding gene, OsEXPA10, functions in both rice growth and biotic resistance. Over expression of OsEXPA10 improved rice growth but also increased susceptibility to BPH infestation and blast attack, while knock-down OsEXPA10 gene expression resulted in reduced plant height and grain size, but also increased resistance to BPH and the blast pathogen. These results imply that OsEXPA10 mediates the balance between rice development and biotic resistance.
Collapse
Affiliation(s)
- Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Meiling Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
23
|
Verma A, Lee C, Morriss S, Odu F, Kenning C, Rizzo N, Spollen WG, Lin M, McRae AG, Givan SA, Hewezi T, Hussey R, Davis EL, Baum TJ, Mitchum MG. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. THE NEW PHYTOLOGIST 2018; 219:697-713. [PMID: 29726613 DOI: 10.1111/nph.15179] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/15/2018] [Indexed: 05/29/2023]
Abstract
Cyst nematodes deliver effector proteins into host cells to manipulate cellular processes and establish a metabolically hyperactive feeding site. The novel 30D08 effector protein is produced in the dorsal gland of parasitic juveniles, but its function has remained unknown. We demonstrate that expression of 30D08 contributes to nematode parasitism, the protein is packaged into secretory granules and it is targeted to the plant nucleus where it interacts with SMU2 (homolog of suppressor of mec-8 and unc-52 2), an auxiliary spliceosomal protein. We show that SMU2 is expressed in feeding sites and an smu2 mutant is less susceptible to nematode infection. In Arabidopsis expressing 30D08 under the SMU2 promoter, several genes were found to be alternatively spliced and the most abundant functional classes represented among differentially expressed genes were involved in RNA processing, transcription and binding, as well as in development, and hormone and secondary metabolism, representing key cellular processes known to be important for feeding site formation. In conclusion, we demonstrated that the 30D08 effector is secreted from the nematode and targeted to the plant nucleus where its interaction with a host auxiliary spliceosomal protein may alter the pre-mRNA splicing and expression of a subset of genes important for feeding site formation.
Collapse
Affiliation(s)
- Anju Verma
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Chris Lee
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Stephanie Morriss
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Fiona Odu
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Charlotte Kenning
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - William G Spollen
- Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Amanda G McRae
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Scott A Givan
- Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
24
|
|
25
|
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 2018; 8:2505. [PMID: 29410430 PMCID: PMC5802810 DOI: 10.1038/s41598-018-20536-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the secretion of effector proteins to manipulate host cellular processes that favor the formation of a feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome assembly representing the early life stages of SCN in both a compatible and an incompatible host interaction to facilitate global effector mining efforts in the absence of an available annotated SCN genome. We then employed a dual effector prediction strategy coupling a newly developed nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a core function in parasitism and demonstrated that alternative splicing is one mechanism used to diversify the effector pool. In addition, we confirmed the presence of viral and microbial inhabitants with molecular sequence information. This transcriptome represents the most comprehensive whole-nematode sequence currently available for SCN and can be used as a tool for annotation of expected genome assemblies.
Collapse
Affiliation(s)
- Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Nathan Johnson
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA.
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA.
| |
Collapse
|
26
|
|
27
|
Rancurel C, Legrand L, Danchin EGJ. Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life. Genes (Basel) 2017; 8:E248. [PMID: 28961181 PMCID: PMC5664098 DOI: 10.3390/genes8100248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI) protein library. The user defines recipient (e.g., Metazoa) and donor (e.g., bacteria, fungi) branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI) for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.
Collapse
Affiliation(s)
- Corinne Rancurel
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| | - Ludovic Legrand
- LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan Cedex, France.
| | - Etienne G J Danchin
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
28
|
Affiliation(s)
- Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
29
|
Bairwa A, Venkatasalam EP, Sudha R, Umamaheswari R, Singh BP. Techniques for characterization and eradication of potato cyst nematode: a review. J Parasit Dis 2017; 41:607-620. [PMID: 28848248 PMCID: PMC5555919 DOI: 10.1007/s12639-016-0873-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida. Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.
Collapse
Affiliation(s)
| | | | - R. Sudha
- ICAR-CPRI, Shimla, Himachal Pradesh India
| | | | | |
Collapse
|
30
|
Santos CA, Ferreira-Filho JA, O'Donovan A, Gupta VK, Tuohy MG, Souza AP. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microb Cell Fact 2017; 16:83. [PMID: 28511724 PMCID: PMC5432999 DOI: 10.1186/s12934-017-0697-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023] Open
Abstract
Background Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Results Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. Conclusions Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0697-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clelton A Santos
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jaire A Ferreira-Filho
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anthonia O'Donovan
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland.,Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Maria G Tuohy
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland
| | - Anete P Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil. .,Department of Plant Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
31
|
Ye DY, Qi YH, Cao SF, Wei BQ, Zhang HS. Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:115-124. [PMID: 28314173 DOI: 10.1016/j.jplph.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 05/08/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) cause serious threat to cucumber production. Cucumis metuliferus, a relative of cucumber, is reported to be resistant to Meloidogyne incognita, yet the underlying resistance mechanism remains unclear. In this study, the response of resistant C. metuliferus accession PI482443 following nematode infection was studied in comparison with susceptible C. sativus cv. Jinlv No.3. Roots of selected Cucumis seedings were analysed using histological and biochemical techniques. Transcriptome changes of the resistance reaction were investigated by RNA-seq. The results showed that penetration and development of the nematode in resistant plants were reduced when compared to susceptible plants. Infection of a resistant genotype with M. incognita resulted in a hypersensitive reaction. The induction of phenylalanine ammonia lyase and peroxidase activities after infection was greater in resistant than susceptible roots. Several of the most relevant genes for phenylpropanoid biosynthesis, plant hormone signal transduction, and the plant-pathogen interaction pathway that are involved in resistance to the nematode were significantly altered. The resistance in C. metuliferus PI482443 to M. incognita was associated with reduced nematode penetration, retardation of nematode development, and hypersensitive necrosis. The expression of genes resulting in the deposition of lignin, toxic compounds synthesis, cell wall reinforcement, suppression of nematode feeding and resistance protein accumulation, and activation of several transcription factors might all contribute to the resistance response to the pest. These results may lead to a better understanding of the resistance mechanism and aid in the identification of potential targets resistant to pests for cucumber improvement.
Collapse
Affiliation(s)
- De-You Ye
- Institute of Vegetables, Gansu Academy of Agricultural Sciences, Scientific Observations Experiment Station of Vegetables, Ministry of Agriculture in the Northwest of China, Lanzhou 730070, China.
| | - Yong-Hong Qi
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Su-Fang Cao
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Bing-Qiang Wei
- Institute of Vegetables, Gansu Academy of Agricultural Sciences, Scientific Observations Experiment Station of Vegetables, Ministry of Agriculture in the Northwest of China, Lanzhou 730070, China
| | - Hua-Sheng Zhang
- Institute of Vegetables, Gansu Academy of Agricultural Sciences, Scientific Observations Experiment Station of Vegetables, Ministry of Agriculture in the Northwest of China, Lanzhou 730070, China
| |
Collapse
|
32
|
Olsen S, Krause K. Activity of xyloglucan endotransglucosylases/hydrolases suggests a role during host invasion by the parasitic plant Cuscuta reflexa. PLoS One 2017; 12:e0176754. [PMID: 28448560 PMCID: PMC5407826 DOI: 10.1371/journal.pone.0176754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/17/2017] [Indexed: 01/12/2023] Open
Abstract
The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue.
Collapse
Affiliation(s)
- Stian Olsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Kirsten Krause
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
33
|
Abstract
Plant-parasitic nematodes cause considerable damage to global agriculture. The ability to
parasitize plants is a derived character that appears to have independently emerged
several times in the phylum Nematoda. Morphological convergence to feeding style has been
observed, but whether this is emergent from molecular convergence is less obvious. To
address this, we assess whether genomic signatures can be associated with plant parasitism
by nematodes. In this review, we report genomic features and characteristics that appear
to be common in plant-parasitic nematodes while absent or rare in animal parasites,
predators or free-living species. Candidate horizontal acquisitions of parasitism genes
have systematically been found in all plant-parasitic species investigated at the sequence
level. Presence of peptides that mimic plant hormones also appears to be a trait of
plant-parasitic species. Annotations of the few genomes of plant-parasitic nematodes
available to date have revealed a set of apparently species-specific genes on every
occasion. Effector genes, important for parasitism are frequently found among those
species-specific genes, indicating poor overlap. Overall, nematodes appear to have
developed convergent genomic solutions to adapt to plant parasitism.
Collapse
|
34
|
Ali MA, Azeem F, Li H, Bohlmann H. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1699. [PMID: 29046680 PMCID: PMC5632807 DOI: 10.3389/fpls.2017.01699] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 05/03/2023]
Abstract
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad A. Ali ;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
35
|
Cosgrove DJ, Hepler NK, Wagner ER, Durachko DM. Measuring the Biomechanical Loosening Action of Bacterial Expansins on Paper and Plant Cell Walls. Methods Mol Biol 2017; 1588:157-165. [PMID: 28417367 DOI: 10.1007/978-1-4939-6899-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here, we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA.
| | - Nathan K Hepler
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA
| | - Edward R Wagner
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA
| | - Daniel M Durachko
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA
| |
Collapse
|
36
|
Liu J, Peng H, Cui J, Huang W, Kong L, Clarke JL, Jian H, Wang GL, Peng D. Molecular Characterization of A Novel Effector Expansin-like Protein from Heterodera avenae that Induces Cell Death in Nicotiana benthamiana. Sci Rep 2016; 6:35677. [PMID: 27808156 PMCID: PMC5093861 DOI: 10.1038/srep35677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/04/2016] [Indexed: 11/09/2022] Open
Abstract
Cereal cyst nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands and are secreted into plant tissues through the stylet. To understand the function of nematode effectors in parasitic plants, we cloned predicted effectors genes from Heterodera avenae and transiently expressed them in Nicotiana benthamiana. Infiltration assays showed that HaEXPB2, a predicted expansin-like protein, caused cell death in N. benthamiana. In situ hybridization showed that HaEXPB2 transcripts were localised within the subventral gland cells of the pre-parasitic second-stage nematode. HaEXPB2 had the highest expression levels in parasitic second-stage juveniles. Subcellular localization assays revealed that HaEXPB2 could be localized in the plant cell wall after H. avenae infection.This The cell wall localization was likely affected by its N-terminal and C-terminal regions. In addition, we found that HaEXPB2 bound to cellulose and its carbohydrate-binding domain was required for this binding. The infectivity of H. avenae was significantly reduced when HaEXPB2 was knocked down by RNA interference in vitro. This study indicates that HaEXPB2 may play an important role in the parasitism of H. avenae through targeting the host cell wall.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiangkuan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jihong Liu Clarke
- Plant Health and Biotechnology Division, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430 Ås, Norway
| | - Heng Jian
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guo Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
37
|
Ju Y, Wang X, Guan T, Peng D, Li H. Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol 2016; 46:819-828. [PMID: 27641827 DOI: 10.1016/j.ijpara.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022]
Abstract
The glycoside hydrolase family 18 (GH18) of chitinases is a gene family widely expressed in archaes, prokaryotes and eukaryotes, and hydrolyzes the β-1,4-linkages in chitin. The pinewood nematode Bursaphelenchus xylophilus is one of the organisms that produces GH18 chitinases. Notably, B. xylophilus has a higher number of GH18 chitinases compared with the obligate plant-parasitic nematodes Meloidogyne incognita and Meloidogyne hapla. In this study, seven GH18 chitinases were identified and cloned from B. xylophilus based on genomic analyses. The deduced amino acid sequences of all these genes contained an N-terminal signal peptide and a GH18 catalytic domain. Phylogenetic analysis showed that the origin of B. xylophilus GH18 chitinases was independent of those from fungi and bacteria. Real-time quantitative reverse transcription PCR analysis indicated that GH18 chitinase genes had discrete expression patterns, representing almost all the life stages of B. xylophilus. In situ hybridisation showed that the mRNA of GH18 chitinase genes of B. xylophilus were detected mainly in the spermatheca, esophageal gland cells, seminal vesicle and eggs. RNA interference (RNAi) results revealed different roles of GH18 chitinase genes in B. xylophilus. Bx-chi-1, Bx-chi-2 and Bx-chi-7 were associated with reproduction, fungal cell-wall degradation and egg hatching, respectively. Bx-chi-5 and Bx-chi-6 may be involved in sperm metabolism. In conclusion, this study demonstrates that GH18 chitinases have multiple functions in the life cycle of B. xylophilus.
Collapse
Affiliation(s)
- Yuliang Ju
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Tinglong Guan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Hongmei Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
38
|
Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus. Int J Mol Sci 2016; 17:ijms17091492. [PMID: 27618012 PMCID: PMC5037770 DOI: 10.3390/ijms17091492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 01/05/2023] Open
Abstract
Bursaphelenchus mucronatus (B. mucronatus) isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus' pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future.
Collapse
|
39
|
Fosu-Nyarko J, Jones MGK. Advances in Understanding the Molecular Mechanisms of Root Lesion Nematode Host Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:253-78. [PMID: 27296144 DOI: 10.1146/annurev-phyto-080615-100257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root lesion nematodes (RLNs) are one of the most economically important groups of plant nematodes. As migratory endoparasites, their presence in roots is less obvious than infestations of sedentary endoparasites; nevertheless, in many instances, they are the major crop pests. With increasing molecular information on nematode parasitism, available data now reflect the differences and, in particular, similarities in lifestyle between migratory and sedentary endoparasites. Far from being unsophisticated compared with sedentary endoparasites, migratory endoparasites are exquisitely suited to their parasitic lifestyle. What they lack in effectors required for induction of permanent feeding sites, they make up for with their versatile host range and their ability to move and feed from new host roots and survive adverse conditions. In this review, we summarize the current molecular data available for RLNs and highlight differences and similarities in effectors and molecular mechanisms between migratory and sedentary endoparasitic nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| | - Michael G K Jones
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| |
Collapse
|
40
|
Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EGJ, Da Rocha M, Rancurel C, Holroyd NE, Cotton JA, Szitenberg A, Grenier E, Montarry J, Mimee B, Duceppe MO, Boyes I, Marvin JMC, Jones LM, Yusup HB, Lafond-Lapalme J, Esquibet M, Sabeh M, Rott M, Overmars H, Finkers-Tomczak A, Smant G, Koutsovoulos G, Blok V, Mantelin S, Cock PJA, Phillips W, Henrissat B, Urwin PE, Blaxter M, Jones JT. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 2016; 17:124. [PMID: 27286965 PMCID: PMC4901422 DOI: 10.1186/s13059-016-0985-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. Results We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. Conclusions These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0985-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Peter Thorpe
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Etienne G J Danchin
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Martine Da Rocha
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Corinne Rancurel
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nancy E Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Amir Szitenberg
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Eric Grenier
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Josselin Montarry
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Benjamin Mimee
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Marc-Olivier Duceppe
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Ian Boyes
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | | | - Laura M Jones
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazijah B Yusup
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Joël Lafond-Lapalme
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Magali Esquibet
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Michael Sabeh
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Michael Rott
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Anna Finkers-Tomczak
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | | | - Vivian Blok
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Sophie Mantelin
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Peter J A Cock
- Information and Computational Sciences Group, James Hutton Institute, Dundee, UK
| | - Wendy Phillips
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Bernard Henrissat
- CNRS UMR 7257, INRA, USC 1408, Aix-Marseille University, AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK.,School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
41
|
Rehman S, Gupta VK, Goyal AK. Identification and functional analysis of secreted effectors from phytoparasitic nematodes. BMC Microbiol 2016; 16:48. [PMID: 27001199 PMCID: PMC4802876 DOI: 10.1186/s12866-016-0632-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. RESEARCH Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. CONCLUSION Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes.
Collapse
Affiliation(s)
- Sajid Rehman
- />International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat-Instituts-Morocco, P.O.Box 6299, Rabat, Morocco
| | - Vijai K. Gupta
- />National University of Ireland Galway, Galway, Ireland
| | - Aakash K. Goyal
- />International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat-Instituts-Morocco, P.O.Box 6299, Rabat, Morocco
| |
Collapse
|
42
|
Palomares-Rius JE, Hedley P, Cock PJ, Morris JA, Jones JT, Blok VC. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate. PeerJ 2016; 4:e1654. [PMID: 26870612 PMCID: PMC4748719 DOI: 10.7717/peerj.1654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/13/2016] [Indexed: 01/01/2023] Open
Abstract
Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).
Collapse
Affiliation(s)
- Juan Emilio Palomares-Rius
- Institute for Sustainble Agriculture-CSIC, Córdoba, Spain
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Pete Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Peter J.A. Cock
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jenny A. Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - John T. Jones
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Department of Biology, University of St. Andrews, St Andrews, United Kingdom
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
43
|
Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MGK. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii. PLoS One 2016; 11:e0147511. [PMID: 26824923 PMCID: PMC4733053 DOI: 10.1371/journal.pone.0147511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668) with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.). Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- NemGenix Pty Ltd, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| | - Paul Nicol
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Fareeha Naz
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Michael G. K. Jones
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| |
Collapse
|
44
|
Characterization and expression analysis of the expansin gene NnEXPA1 in lotus Nelumbo nucifera. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Research advances in expansins and expansion-like proteins involved in lignocellulose degradation. Biotechnol Lett 2015; 37:1541-51. [DOI: 10.1007/s10529-015-1842-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
|
46
|
Georgelis N, Nikolaidis N, Cosgrove DJ. Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 2015; 99:3807-23. [PMID: 25833181 PMCID: PMC4427351 DOI: 10.1007/s00253-015-6534-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means ("amorphogenesis"). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures.
Collapse
Affiliation(s)
| | - Nikolas Nikolaidis
- Department of Biological Science, California State University, Fullerton, CA 92831, USA
| | - Daniel J. Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
47
|
Xu XL, Wu XQ, Ye JR, Huang L. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea). Int J Mol Sci 2015; 16:5216-34. [PMID: 25756378 PMCID: PMC4394472 DOI: 10.3390/ijms16035216] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/05/2015] [Accepted: 02/15/2015] [Indexed: 01/08/2023] Open
Abstract
Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.
Collapse
Affiliation(s)
- Xiao-Lu Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
48
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
49
|
Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. PLoS One 2015; 10:e0115042. [PMID: 25606855 PMCID: PMC4301866 DOI: 10.1371/journal.pone.0115042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Collapse
|
50
|
Quist CW, Smant G, Helder J. Evolution of plant parasitism in the phylum Nematoda. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:289-310. [PMID: 26047569 DOI: 10.1146/annurev-phyto-080614-120057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Within the species-rich and trophically diverse phylum Nematoda, at least four independent major lineages of plant parasites have evolved, and in at least one of these major lineages plant parasitism arose independently multiple times. Ribosomal DNA data, sequence information from nematode-produced, plant cell wall-modifying enzymes, and the morphology and origin of the style(t), a protrusible piercing device used to penetrate the plant cell wall, all suggest that facultative and obligate plant parasites originate from fungivorous ancestors. Data on the nature and diversification of plant cell wall-modifying enzymes point at multiple horizontal gene transfer events from soil bacteria to bacterivorous nematodes resulting in several distinct lineages of fungal or oomycete-feeding nematodes. Ribosomal DNA frameworks with sequence data from more than 2,700 nematode taxa combined with detailed morphological information allow for explicit hypotheses on the origin of agronomically important plant parasites, such as root-knot, cyst, and lesion nematodes.
Collapse
Affiliation(s)
- Casper W Quist
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands; , ,
| | | | | |
Collapse
|