1
|
Liang T, Guo Y, Li M, Ding C, Sang S, Zhou T, Shao Q, Liu X, Lu J, Ji Z, Wang T, Kang Q. Cytoskeleton protein 4.1R regulates B-cell fate by modulating the canonical NF-κB pathway. Immunology 2020; 161:314-324. [PMID: 32852059 DOI: 10.1111/imm.13250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/16/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022] Open
Abstract
During the immune response, B cells can enter the memory pathway, which is characterized by class switch recombination (CSR), or they may undergo plasma cell differentiation (PCD) to secrete immunoglobulin. Both of these processes occur in activated B cells, which are reported to relate to membrane-association proteins and adaptors. Protein 4.1R acts as an adaptor, linking membrane proteins to the cytoskeleton, and is involved in many cell events such as cell activation and differentiation, and cytokine secretion. However, the effect of 4.1R on regulating B-cell fate is unclear. Here, we show an important association between B-cell fate and 4.1R. In vitro, primary B cells were stimulated with lipopolysaccharide combined with interleukin-4; results showed that 4.1R-deficient (4.1R-/- ) cells compared with wild-type (4.1R+/+ ) B cells augmented expression of activation-induced cytidine deaminase and germline, resulting in increased IgG1+ B cells, whereas the secretion of IgG1 and IgM was reduced, and CD138+ B cells were also decreased. Throughout the process, 4.1R regulated canonical nuclear factor (NF-κB) rather than non-canonical NF-κB to promote the expression of CSR complex components, leading to up-regulation of B-cell CSR. In contrast, 4.1R-deficient B cells showed reduced expression of Blimp-1, which caused B cells to down-regulate PCD. Furthermore, over-activation of canonical NF-κB may induce apoptosis signaling to cause PCD apoptosis to reduce PCD number. In summary, our results suggest that 4.1R acts as a B-cell fate regulator by inhibiting the canonical NF-κB signaling pathway.
Collapse
Affiliation(s)
- Taotao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuying Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjia Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Cong Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Siyao Sang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingting Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qi Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Jang KJ, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y, Takahashi K, Itoh K, Taketani S, Nutt SL, Igarashi K, Shimizu A, Sugai M. Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat Commun 2015; 6:6750. [PMID: 25857523 PMCID: PMC4403446 DOI: 10.1038/ncomms7750] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/24/2015] [Indexed: 01/07/2023] Open
Abstract
During immune reactions, functionally distinct B-cell subsets are generated by stochastic processes, including class-switch recombination (CSR) and plasma cell differentiation (PCD). In this study, we show a strong association between individual B-cell fates and mitochondrial functions. CSR occurs specifically in activated B cells with increased mitochondrial mass and membrane potential, which augment mitochondrial reactive oxygen species (mROS), whereas PCD occurs in cells with decreased mitochondrial mass and potential. These events are consequences of initial slight changes in mROS in mitochondriahigh B-cell populations. In CSR-committed cells, mROS attenuates haeme synthesis by inhibiting ferrous ion addition to protoporphyrin IX, thereby maintaining Bach2 function. Reduced mROS then promotes PCD by increasing haeme synthesis. In PCD-committed cells, Blimp1 reduces mitochondrial mass, thereby reducing mROS levels. Identifying mROS as a haeme synthesis regulator increases the understanding of mechanisms regulating haeme homeostasis and cell fate determination after B-cell activation. Cell fate choices are often based on amplification of noise. Here the authors show that small initial differences in mitochondrial reactive oxygen species lead to bigger changes in mitochondrial mass and membrane potential, which then determine plasma cell fate choice of activated B cells.
Collapse
Affiliation(s)
- Kyoung-Jin Jang
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroto Mano
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koji Aoki
- Division of Pharmacology, School of Medicine, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Tatsunari Hayashi
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiko Muto
- 1] Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan [2] CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yukiko Nambu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsuhiko Itoh
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Stephen L Nutt
- 1] The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Kazuhiko Igarashi
- 1] Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan [2] CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Manabu Sugai
- 1] Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
3
|
Hasham MG, Snow KJ, Donghia NM, Branca JA, Lessard MD, Stavnezer J, Shopland LS, Mills KD. Activation-induced cytidine deaminase-initiated off-target DNA breaks are detected and resolved during S phase. THE JOURNAL OF IMMUNOLOGY 2012; 189:2374-82. [PMID: 22826323 DOI: 10.4049/jimmunol.1200414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates DNA double-strand breaks (DSBs) in the IgH gene (Igh) to stimulate isotype class switch recombination (CSR), and widespread breaks in non-Igh (off-target) loci throughout the genome. Because the DSBs that initiate class switching occur during the G₁ phase of the cell cycle, and are repaired via end joining, CSR is considered a predominantly G₁ reaction. By contrast, AID-induced non-Igh DSBs are repaired by homologous recombination. Although little is known about the connection between the cell cycle and either induction or resolution of AID-mediated non-Igh DSBs, their repair by homologous recombination implicates post-G₁ phases. Coordination of DNA breakage and repair during the cell cycle is critical to promote normal class switching and prevent genomic instability. To understand how AID-mediated events are regulated through the cell cycle, we have investigated G₁-to-S control in AID-dependent genome-wide DSBs. We find that AID-mediated off-target DSBs, like those induced in the Igh locus, are generated during G₁. These data suggest that AID-mediated DSBs can evade G₁/S checkpoint activation and persist beyond G₁, becoming resolved during S phase. Interestingly, DSB resolution during S phase can promote not only non-Igh break repair, but also Ig CSR. Our results reveal novel cell cycle dynamics in response to AID-initiated DSBs, and suggest that the regulation of the repair of these DSBs through the cell cycle may ensure proper class switching while preventing AID-induced genomic instability.
Collapse
|
4
|
Sugai M, Watanabe K, Nambu Y, Hayashi T, Shimizu A. Functions of Runx in IgA class switch recombination. J Cell Biochem 2011; 112:409-14. [PMID: 21268061 DOI: 10.1002/jcb.22971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Runt-related (Runx) transcriptional regulators play essential roles in various cell fate determination processes, and dysfunction of these regulators causes many human diseases. Considerable insight into the functions of Runx proteins was provided mainly by studies of hematopoietic and skeletal disorders. Recently, extensive investigations have revealed new functions of these transcription factors in immune cell differentiation and functioning. In the present review, we discuss the mechanisms of selective IgA production in the intestine and report the involvement of Runx proteins in this process.
Collapse
Affiliation(s)
- Manabu Sugai
- Translational Research Center, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
5
|
Schreck S, Buettner M, Kremmer E, Bogdan M, Herbst H, Niedobitek G. Activation-induced cytidine deaminase (AID) is expressed in normal spermatogenesis but only infrequently in testicular germ cell tumours. J Pathol 2006; 210:26-31. [PMID: 16783758 DOI: 10.1002/path.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes in antigen-dependent B-cell maturation. SHM is not restricted to immunoglobulin gene loci, raising the possibility of a function for AID in other cell types. In this study, it is shown that AID is expressed in spermatocytes in the human testis. AID was mostly cytoplasmic but nuclear AID was also observed in a proportion of cells, in keeping with the DNA deamination model of AID function. Intratubular germ cell neoplasia unclassified (IGCNU), the precursor lesion of testicular cancers, was AID-negative. Seminomas also lacked AID expression. Nuclear and cytoplasmic AID expression was observed in three of 32 mixed non-seminomatous germ cell tumours. The results provide evidence for a physiological role for AID outside the immune system. AID expression in spermatocytes points to a role in meiosis. It remains uncertain whether AID may also contribute to the genetic aberrations characteristically found in testicular germ cell tumours. The consistent absence of detectable AID expression in atypical spermatogonia of IGCNU and its rare expression in germ cell tumours suggest that continued expression of AID is not involved in the pathogenesis of germ cell tumours.
Collapse
Affiliation(s)
- S Schreck
- Institute for Pathology, Friedrich-Alexander-University, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|