1
|
Zhang J, Zhao Z, Zhang Z, Guo L, Xu L, Sun P, Wang M, Gao M, Li Y, Li D, Boukherroub R. Construction of flexible fiber-shaped boron-doped diamond film and its supercapacitor application. J Colloid Interface Sci 2022; 629:813-821. [DOI: 10.1016/j.jcis.2022.08.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
2
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
3
|
Yang N, Swain GM, Jiang X. Nanocarbon Electrochemistry and Electroanalysis: Current Status and Future Perspectives. ELECTROANAL 2015. [DOI: 10.1002/elan.201500577] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
|
5
|
Shi S, Wang X, Sun W, Wang X, Yao T, Ji L. Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials. Methods 2013; 64:305-14. [DOI: 10.1016/j.ymeth.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022] Open
|
6
|
Chai S, Zhao G, Zhang YN, Wang Y, Nong F, Li M, Li D. Selective photoelectrocatalytic degradation of recalcitrant contaminant driven by an n-P heterojunction nanoelectrode with molecular recognition ability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10182-10190. [PMID: 22920667 DOI: 10.1021/es3021342] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With in situ molecular imprinting technique, a novel nanoelectrode (MI, n-P)-TiO(2) with n-P heterojunction and molecular recognition ability was fabricated by liquid phase deposition at low temperature. Using bisphenol A (BPA) as template, the spindle-like TiO(2) particles 40-80 nm in size compactly grew on the boron-doped diamond (BDD) substrate. Several spectroscopy measurements demonstrate that the BPA molecules were successfully imprinted on the TiO(2) matrix and numerous specific recognition sites to template were formed after calcination. The transient photocurrent response experiments have confirmed that the (MI, n-P)-TiO(2) nanoelectrode displays outstanding photoelectrocatalytic (PEC) activity and selectivity. The (MI, n-P)-TiO(2) is further employed in degrading the mixture containing BPA and interference 2-naphthol (2-NP). After 2 h, BPA removal reaches 97%, and corresponding kinetic constant is 1.76 h(-1), which is 4.6 times that of 2-NP removal even if 2-NP is much more concentrated. On the electrode without molecular imprint, the removal rate constants of BPA and 2-NP approximately equal, only about 0.5 h(-1). The results indicate that selective PEC oxidation can be realized readily on the (MI, n-P)-TiO(2) nanoelectrode due to the synergetic effects including strong recognition adsorption, formation of n-P heteojunction, and external electrostatic field. The effect of formation of n-P heterojunction on the enhanced PEC performances is also discussed.
Collapse
Affiliation(s)
- Shouning Chai
- Department of Chemistry, Tongji University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y. Development of electrochemical DNA biosensors. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.03.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, SantaAna M, Danley D, West T, Lanfranchi G. Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. SENSORS (BASEL, SWITZERLAND) 2009; 9:3122-48. [PMID: 22574066 PMCID: PMC3348825 DOI: 10.3390/s90403122] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 12/25/2022]
Abstract
DNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout. In this review, we will consider the different methods proposed for biochip construction, focusing on electrochemical detection of DNA. We also introduce a novel single-stranded DNA platform performing high-throughput SNP detection and gene expression profiling.
Collapse
Affiliation(s)
- Stefano Cagnin
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| | - Marcelo Caraballo
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Carlotta Guiducci
- DEIS Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; E-Mail:
- IBI-EPFL, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Station 15 CH-1015 Lausanne, Switzerland
| | - Paolo Martini
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| | - Marty Ross
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Mark SantaAna
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - David Danley
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Todd West
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Gerolamo Lanfranchi
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| |
Collapse
|
9
|
Abstract
Aptamers are oligonucleotides (typically 10-60 bases in length) capable of binding target ligands with affinities similar to antibodies. The generation of high density multiplexed aptamer arrays for molecular diagnostics was first proposed nearly ten years ago for the quantification of the thousands of proteins within biological samples, including blood and urine. The tagless aptameric detection of small molecular compounds extends the application of such arrays to bioanalyses at the metabolite level. We present here a minireview on some existing technologies and highlight recent innovations that are being applied to this field, which may facilitate the vision of highly multi-parallelized arrays for the quantitative analysis of biological systems.
Collapse
Affiliation(s)
- William Rowe
- Manchester Interdisciplinary Biocentre, The University of Manchester, UK
| | | | | |
Collapse
|