1
|
Ütkür K, Mayer K, Liu S, Brinkmann U, Schaffrath R. Functional Integrity of Radical SAM Enzyme Dph1•Dph2 Requires Non-Canonical Cofactor Motifs with Tandem Cysteines. Biomolecules 2024; 14:470. [PMID: 38672486 PMCID: PMC11048331 DOI: 10.3390/biom14040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo.
Collapse
Affiliation(s)
- Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany;
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Shihui Liu
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany;
| |
Collapse
|
2
|
Ütkür K, Schmidt S, Mayer K, Klassen R, Brinkmann U, Schaffrath R. DPH1 Gene Mutations Identify a Candidate SAM Pocket in Radical Enzyme Dph1•Dph2 for Diphthamide Synthesis on EF2. Biomolecules 2023; 13:1655. [PMID: 38002337 PMCID: PMC10669111 DOI: 10.3390/biom13111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotes, the Dph1•Dph2 dimer is a non-canonical radical SAM enzyme. Using iron-sulfur (FeS) clusters, it cleaves the cosubstrate S-adenosyl-methionine (SAM) to form a 3-amino-3-carboxy-propyl (ACP) radical for the synthesis of diphthamide. The latter decorates a histidine residue on elongation factor 2 (EF2) conserved from archaea to yeast and humans and is important for accurate mRNA translation and protein synthesis. Guided by evidence from archaeal orthologues, we searched for a putative SAM-binding pocket in Dph1•Dph2 from Saccharomyces cerevisiae. We predict an SAM-binding pocket near the FeS cluster domain that is conserved across eukaryotes in Dph1 but not Dph2. Site-directed DPH1 mutagenesis and functional characterization through assay diagnostics for the loss of diphthamide reveal that the SAM pocket is essential for synthesis of the décor on EF2 in vivo. Further evidence from structural modeling suggests particularly critical residues close to the methionine moiety of SAM. Presumably, they facilitate a geometry specific for SAM cleavage and ACP radical formation that distinguishes Dph1•Dph2 from classical radical SAM enzymes, which generate canonical 5'-deoxyadenosyl (dAdo) radicals.
Collapse
Affiliation(s)
- Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany; (K.Ü.); (S.S.); (R.K.)
| | - Sarina Schmidt
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany; (K.Ü.); (S.S.); (R.K.)
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany; (K.Ü.); (S.S.); (R.K.)
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Raffael Schaffrath
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| |
Collapse
|
3
|
Wang X, Xun X, Song H, Liu Y, Wang Q. Palladium Metallaphotoredox-Catalyzed 2-Arylation of Indole Derivatives. Org Lett 2022; 24:4580-4585. [PMID: 35727313 DOI: 10.1021/acs.orglett.2c01674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given that biaryl motifs are found in many useful molecules, including pesticides, pharmaceuticals, functional materials, and polymers, the development of methods for their construction is important. Herein, we report a two-step method for C(sp2)-H/C(sp2)-H cross-coupling reactions to synthesize 2-arylindole derivatives by combining palladium catalysis and photocatalysis. This mild, dual-catalysis method showed good functional group tolerance and a wide substrate scope and could be used for late-stage functionalization of oligopeptides, drugs, and natural products.
Collapse
Affiliation(s)
- Xinmou Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republicof China
| | - Xiwei Xun
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republicof China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republicof China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republicof China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republicof China
| |
Collapse
|
4
|
Feng JQ, Wang BJ. Super-exchange and exchange-enhanced reactivity in Fe4S4-mediated activation of SAM by radical SAM enzymes. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-qiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin-ju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Feng J, Shaik S, Wang B. Spin‐Regulated Electron Transfer and Exchange‐Enhanced Reactivity in Fe
4
S
4
‐Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
6
|
Feng J, Shaik S, Wang B. Spin-Regulated Electron Transfer and Exchange-Enhanced Reactivity in Fe 4 S 4 -Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021; 60:20430-20436. [PMID: 34302311 DOI: 10.1002/anie.202107008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/06/2022]
Abstract
The [4Fe-4S]-dependent radical S-adenosylmethionine (SAM) proteins is one of large families of redox enzymes that are able to carry a panoply of challenging transformations. Despite the extensive studies of structure-function relationships of radical SAM (RS) enzymes, the electronic state-dependent reactivity of the [4Fe-4S] cluster in these enzymes remains elusive. Using combined MD simulations and QM/MM calculations, we deciphered the electronic state-dependent reactivity of the [4Fe-4S] cluster in Dph2, a key enzyme involved in the biosynthesis of diphthamide. Our calculations show that the reductive cleavage of the S-C(γ) bond is highly dependent on the electronic structure of [4Fe-4S]. Interestingly, the six electronic states can be classified into a low-energy and a high-energy groups, which are correlated with the net spin of Fe4 atom ligated to SAM. Due to the driving force of Fe4-C(γ) bonding, the net spin on the Fe4 moiety dictate the shift of the opposite spin electron from the Fe1-Fe2-Fe3 block to SAM. Such spin-regulated electron transfer results in the exchange-enhanced reactivity in the lower-energy group compared with those in the higher-energy group. This reactivity principle provides fundamental mechanistic insights into reactivities of [4Fe-4S] cluster in RS enzymes.
Collapse
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Chen C, Wang ZJ, Lu H, Zhao Y, Shi Z. Generation of non-stabilized alkyl radicals from thianthrenium salts for C-B and C-C bond formation. Nat Commun 2021; 12:4526. [PMID: 34312381 PMCID: PMC8313578 DOI: 10.1038/s41467-021-24716-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Sulfonium salts bearing a positively charged sulfur atom with three organic substituents have intrigued chemists for more than a century for their unusual structures and high chemical reactivity. These compounds are known to undergo facile single-electron reduction to emerge as a valuable and alternative source of aryl radicals for organic synthesis. However, the generation of non-stabilized alkyl radicals from sulfonium salts has been a challenge for several decades. Here we report the treatment of S-(alkyl) thianthrenium salts to generate non-stabilized alkyl radicals as key intermediates granting the controlled and selective outcome of the ensuing reactions under mild photoredox conditions. The value of these reagents has been demonstrated through the efficient construction of alkylboronates and other transformations, including heteroarylation, alkylation, alkenylation, and alkynylation. The developed method is practical, and provides the opportunity to convert C-OH bond to C-B and C-C bonds.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zheng-Jun Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
8
|
Zhao C, Li Y, Wang C, Chen H. Mechanistic Dichotomy in the Activation of SAM by Radical SAM Enzymes: QM/MM Modeling Deciphers the Determinant. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chengxin Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Yang H, Impano S, Shepard EM, James CD, Broderick WE, Broderick JB, Hoffman BM. Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an S-Adenosylmethionine Derived Methyl Radical. J Am Chem Soc 2019; 141:16117-16124. [PMID: 31509404 DOI: 10.1021/jacs.9b08541] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical SAM (RS) enzymes use S-adenosyl-l-methionine (SAM) and a [4Fe-4S] cluster to initiate a broad spectrum of radical transformations throughout all kingdoms of life. We report here that low-temperature photoinduced electron transfer from the [4Fe-4S]1+ cluster to bound SAM in the active site of the hydrogenase maturase RS enzyme, HydG, results in specific homolytic cleavage of the S-CH3 bond of SAM, rather than the S-C5' bond as in the enzyme-catalyzed (thermal) HydG reaction. This result is in stark contrast to a recent report in which photoinduced ET in the RS enzyme pyruvate formate-lyase activating enzyme cleaved the S-C5' bond to generate a 5'-deoxyadenosyl radical, and provides the first direct evidence for homolytic S-CH3 bond cleavage in a RS enzyme. Photoinduced ET in HydG generates a trapped •CH3 radical, as well as a small population of an organometallic species with an Fe-CH3 bond, denoted ΩM. The •CH3 radical is surprisingly found to exhibit rotational diffusion in the HydG active site at temperatures as low as 40 K, and is rapidly quenched: whereas 5'-dAdo• is stable indefinitely at 77 K, •CH3 quenches with a half-time of ∼2 min at this temperature. The rapid quenching and rotational/translational freedom of •CH3 shows that enzymes would be unable to harness this radical as a regio- and stereospecific H atom abstractor during catalysis, in contrast to the exquisite control achieved with the enzymatically generated 5'-dAdo•.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Stella Impano
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Eric M Shepard
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Christopher D James
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - William E Broderick
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Joan B Broderick
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
10
|
Bame J, Hoeck C, Carrington MJ, Butts CP, Jäger CM, Croft AK. Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with S-adenosylmethionine. Phys Chem Chem Phys 2018; 20:7523-7531. [DOI: 10.1039/c7cp07265a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the important biomolecule S-adenosyl methionine as an exemplar, we provide a new, enhanced approach for fitting MD data to high-accuracy NOE data, providing improvements in structure determination.
Collapse
Affiliation(s)
- Jessica Bame
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Casper Hoeck
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Matthew J. Carrington
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| | - Craig P. Butts
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Christof M. Jäger
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| | - Anna K. Croft
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| |
Collapse
|
11
|
Density functional theory calculations on the active site of biotin synthase: mechanism of S transfer from the Fe2S2 cluster and the role of 1st and 2nd sphere residues. J Biol Inorg Chem 2015; 20:1147-62. [DOI: 10.1007/s00775-015-1296-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
|
12
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
13
|
Broderick JB, Duffus B, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114:4229-317. [PMID: 24476342 PMCID: PMC4002137 DOI: 10.1021/cr4004709] [Citation(s) in RCA: 591] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
14
|
Shisler KA, Broderick JB. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions. Arch Biochem Biophys 2014; 546:64-71. [PMID: 24486374 PMCID: PMC4083501 DOI: 10.1016/j.abb.2014.01.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/20/2022]
Abstract
The glycyl radical enzyme activating enzymes (GRE-AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe-4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE-AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE-AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE-AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes.
Collapse
Affiliation(s)
- Krista A Shisler
- Department of Chemistry & Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT 59717, United States
| | - Joan B Broderick
- Department of Chemistry & Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
15
|
Selvaraj B, Pierik AJ, Bill E, Martins BM. 4-Hydroxyphenylacetate decarboxylase activating enzyme catalyses a classical S-adenosylmethionine reductive cleavage reaction. J Biol Inorg Chem 2013; 18:633-43. [DOI: 10.1007/s00775-013-1008-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
16
|
Shisler KA, Broderick JB. Emerging themes in radical SAM chemistry. Curr Opin Struct Biol 2012; 22:701-10. [PMID: 23141873 DOI: 10.1016/j.sbi.2012.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 12/21/2022]
Abstract
Enzymes in the radical SAM (RS) superfamily catalyze a wide variety of reactions through unique radical chemistry. The characteristic markers of the superfamily include a [4Fe-4S] cluster coordinated to the protein via a cysteine triad motif, typically CX(3)CX(2)C, with the fourth iron coordinated by S-adenosylmethionine (SAM). The SAM serves as a precursor for a 5'-deoxyadenosyl radical, the central intermediate in nearly all RS enzymes studied to date. The SAM-bound [4Fe-4S] cluster is located within a partial or full triosephosphate isomerase (TIM) barrel where the radical chemistry occurs protected from the surroundings. In addition to the TIM barrel and a RS [4Fe-4S] cluster, many members of the superfamily contain additional domains and/or additional Fe-S clusters. Recently characterized superfamily members are providing new examples of the remarkable range of reactions that can be catalyzed, as well as new structural and mechanistic insights into these fascinating reactions.
Collapse
Affiliation(s)
- Krista A Shisler
- Department of Chemistry & Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT 59717, United States
| | | |
Collapse
|
17
|
Hutcheson RU, Broderick JB. Radical SAM enzymes in methylation and methylthiolation. Metallomics 2012; 4:1149-54. [PMID: 22992596 DOI: 10.1039/c2mt20136d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes are a large and diverse superfamily with functions ranging from enzyme activation through a single H atom abstraction to complex organic and metal cofactor synthesis involving a series of steps. Though these enzymes carry out a variety of functions, they share common structural and mechanistic characteristics. All of them contain a site-differentiated [4Fe-4S] cluster, ligated by a CX(3)CX(2)C or similar motif, which binds SAM at the unique iron. The [4Fe-4S](1+) state of the cluster reductively cleaves SAM to produce a 5'-deoxyadenosyl radical, which serves to initiate the diverse reactions catalyzed by these enzymes. Recent highlights in the understanding of radical SAM enzymes will be presented, with a particular emphasis on enzymes catalyzing methylation and methythiolation reactions.
Collapse
Affiliation(s)
- Rachel U Hutcheson
- Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
18
|
Lin H. S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used? Bioorg Chem 2011; 39:161-70. [PMID: 21762947 DOI: 10.1016/j.bioorg.2011.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
S-Adenosylmethionine (SAM) is a versatile small molecule used in many biological reactions. This review focuses on the mechanistic consideration of SAM-dependent methylation and 3-amino-3-carboxypropylation reactions. Special emphasis is given to methylation and 3-amino-3-carboxypropylation of carbon atoms, for which both nucleophilic mechanisms and radical mechanisms are used, depending on the specific enzymatic reactions. What is the logic behind Nature's choice of different reaction mechanisms? Here I aim to rationalize the choice of different reaction mechanisms in SAM-dependent alkylation reaction by analyzing a few enzymatic reactions in depth. These reactions include SAM-dependent cyclopropane fatty acid synthesis, DNA cytosine methylation, RNA adenosine C2 and C8 methylation, and 3-amino-3-carboxypropylation involved in diphthamide biosynthesis and wybutosine biosynthesis.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
19
|
Demick JM, Lanzilotta WN. Radical SAM Activation of the B12-Independent Glycerol Dehydratase Results in Formation of 5′-Deoxy-5′-(methylthio)adenosine and Not 5′-Deoxyadenosine. Biochemistry 2011; 50:440-2. [DOI: 10.1021/bi101255e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan M. Demick
- Department of Biochemistry and Molecular Biology, A220B Davison Life Sciences Building, University of Georgia, Athens, Georgia 30602, United States
| | - William N. Lanzilotta
- Department of Biochemistry and Molecular Biology, A220B Davison Life Sciences Building, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Roach PL. Radicals from S-adenosylmethionine and their application to biosynthesis. Curr Opin Chem Biol 2010; 15:267-75. [PMID: 21159543 DOI: 10.1016/j.cbpa.2010.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/04/2010] [Accepted: 11/16/2010] [Indexed: 01/15/2023]
Abstract
The radical SAM superfamily of enzymes catalyzes a broad spectrum of biotransformations by employing a common obligate intermediate, the 5'-deoxyadenosyl radical (DOA). Radical formation occurs via the reductive cleavage of S-adenosylmethionine (SAM or AdoMet). The resultant highly reactive primary radical is a potent oxidant that enables the functionalization of relatively inert substrates, including unactivated C-H bonds. The reactions initiated by the DOA are breathtaking in their efficiency, elegance and in many cases, the complexity of the biotransformation achieved. This review describes the common features shared by enzymes that generate the DOA and the intriguing variations or modifications that have recently been reported. The review also highlights selected examples of the diverse biotransformations that ensue.
Collapse
Affiliation(s)
- Peter L Roach
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
21
|
Kampmeier JA. Regioselectivity in the homolytic cleavage of S-adenosylmethionine. Biochemistry 2010; 49:10770-2. [PMID: 21117660 DOI: 10.1021/bi101509u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The observed regioselectivity of the homolytic cleavage of S-adenosylmethionine (SAM) by the radical SAM enzymes is modeled by free radical displacement reactions at sulfoxide centers. These displacements are also regioselective, in direct consequence of the reaction mechanism. The selectivity in the radical SAM reactions is explained by the geometry of the free radical displacement mechanism, required by the chemical reaction and arranged in the active site by the radical SAM proteins.
Collapse
Affiliation(s)
- Jack A Kampmeier
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States.
| |
Collapse
|