1
|
Diering GH, Huganir RL. The AMPA Receptor Code of Synaptic Plasticity. Neuron 2019; 100:314-329. [PMID: 30359599 DOI: 10.1016/j.neuron.2018.10.018] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
Changes in the properties and postsynaptic abundance of AMPA-type glutamate receptors (AMPARs) are major mechanisms underlying various forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic scaling. The function and the trafficking of AMPARs to and from synapses is modulated by specific AMPAR GluA1-GluA4 subunits, subunit-specific protein interactors, auxiliary subunits, and posttranslational modifications. Layers of regulation are added to AMPAR tetramers through these different interactions and modifications, increasing the computational power of synapses. Here we review the reliance of synaptic plasticity on AMPAR variants and propose "the AMPAR code" as a conceptual framework. The AMPAR code suggests that AMPAR variants will be predictive of the types and extent of synaptic plasticity that can occur and that a hierarchy exists such that certain AMPARs will be disproportionally recruited to synapses during LTP/homeostatic scaling up, or removed during LTD/homeostatic scaling down.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Cell Biology and Physiology, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Wakayama S, Kiyonaka S, Arai I, Kakegawa W, Matsuda S, Ibata K, Nemoto YL, Kusumi A, Yuzaki M, Hamachi I. Chemical labelling for visualizing native AMPA receptors in live neurons. Nat Commun 2017; 8:14850. [PMID: 28387242 PMCID: PMC5385570 DOI: 10.1038/ncomms14850] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/08/2017] [Indexed: 11/09/2022] Open
Abstract
The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sho Wakayama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan
| | - Itaru Arai
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Wataru Kakegawa
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shinji Matsuda
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan.,Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communication, Tokyo 182-8585, Japan.,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Keiji Ibata
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuri L Nemoto
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan.,CREST(Core Research for Evolutional Science and Technology, JST), Chiyodaku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan.,CREST(Core Research for Evolutional Science and Technology, JST), Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
3
|
Mills F, Globa AK, Liu S, Cowan CM, Mobasser M, Phillips AG, Borgland SL, Bamji SX. Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning. Nat Neurosci 2017; 20:540-549. [PMID: 28192395 PMCID: PMC5373847 DOI: 10.1038/nn.4503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023]
Abstract
Drugs of abuse alter synaptic connections in the ‘reward circuit’ of the brain, which leads to long-lasting behavioral changes that underlie addiction. Here we show that cadherin adhesion molecules play a critical role in mediating synaptic plasticity and behavioral changes driven by cocaine. We demonstrate that cadherin is essential for long-term potentiation (LTP) in the ventral tegmental area (VTA), and is recruited to the synaptic membrane of excitatory inputs onto dopaminergic neurons following cocaine-mediated behavioral conditioning. Furthermore, we show that stabilization of cadherin at the membrane of these synapses blocks cocaine-induced synaptic plasticity, leading to a significant reduction in conditioned place preference induced by cocaine. Our findings identify cadherins and associated molecules as targets of interest for understanding pathological plasticity associated with addiction.
Collapse
Affiliation(s)
- Fergil Mills
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea K Globa
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuai Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M Cowan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mahsan Mobasser
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony G Phillips
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC. Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 2014; 8:142. [PMID: 25538570 PMCID: PMC4255500 DOI: 10.3389/fnana.2014.00142] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022] Open
Abstract
Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development - both experimental and theoretical - that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation.
Collapse
Affiliation(s)
- Max Adrian
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Remy Kusters
- Department of Applied Physics, Eindhoven University of TechnologyEindhoven, Netherlands
| | - Corette J. Wierenga
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of TechnologyEindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of TechnologyEindhoven, Netherlands
| | - Casper C. Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
5
|
Abstract
Plasticity models invoke the synaptic delivery of AMPARs, yet we know little about how receptors move in vivo. In this issue of Neuron, Hoerndli et al. (2013) show that lateral diffusion and kinesin-mediated transport move AMPARs between synapses in vivo.
Collapse
Affiliation(s)
- Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Lohmann C, Kessels HW. The developmental stages of synaptic plasticity. J Physiol 2014; 592:13-31. [PMID: 24144877 PMCID: PMC3903349 DOI: 10.1113/jphysiol.2012.235119] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 01/17/2023] Open
Abstract
The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development of the brain, from birth to independence. We focus on the changes that occur at the postsynaptic side of excitatory glutamatergic synapses in the rodent hippocampus and neocortex. First we summarize the current data on the structure of synapses and the developmental expression patterns of the key molecular players of synaptic plasticity, N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as pivotal kinases (Ca(2+)/calmodulin-dependent protein kinase II, protein kinase A, protein kinase C) and phosphatases (PP1, PP2A, PP2B). In the second part we relate these findings to important characteristics of the emerging network. We argue that the concerted and gradual shifts in the usage of plasticity molecules comply with the changing need for (re)wiring neuronal circuits.
Collapse
Affiliation(s)
- Christian Lohmann
- C. Lohmann and H. W. Kessels: The Netherlands Institute for Neuroscience, the Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands. Emails: ,
| | | |
Collapse
|
7
|
Sheng M, Ertürk A. Long-term depression: a cell biological view. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130138. [PMID: 24298141 DOI: 10.1098/rstb.2013.0138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies of the molecular mechanisms of long-term depression (LTD) suggest a crucial role for the signalling pathways of apoptosis (programmed cell death) in the weakening and elimination of synapses and dendritic spines. With this backdrop, we suggest that LTD can be considered as the electrophysiological aspect of a larger cell biological programme of synapse involution, which uses localized apoptotic mechanisms to sculpt synapses and circuits without causing cell death.
Collapse
Affiliation(s)
- Morgan Sheng
- Department of Neuroscience, Genentech, Inc., , 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
8
|
Granger AJ, Nicoll RA. Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130136. [PMID: 24298139 DOI: 10.1098/rstb.2013.0136] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the magnitude of this LTP is similar to that evoked by pairing synaptic stimulation and depolarization leaves little room for a substantial presynaptic component. Finally, recent data also require a revision in our thinking about the way AMPA receptors (AMPARs) are recruited to the postsynaptic density during LTP. This recruitment is independent of subunit type, but does require an adequate reserve pool of extrasynaptic receptors.
Collapse
Affiliation(s)
- Adam J Granger
- Neuroscience Graduate Program, University of California San Francisco, , San Francisco, CA 94158, USA
| | | |
Collapse
|