1
|
Leydon AR, Gala HP, Guiziou S, Nemhauser JL. Engineering Synthetic Signaling in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:767-788. [PMID: 32092279 DOI: 10.1146/annurev-arplant-081519-035852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic signaling is a branch of synthetic biology that aims to understand native genetic regulatory mechanisms and to use these insights to engineer interventions and devices that achieve specified design parameters. Applying synthetic signaling approaches to plants offers the promise of mitigating the worst effects of climate change and providing a means to engineer crops for entirely novel environments, such as those in space travel. The ability to engineer new traits using synthetic signaling methods will require standardized libraries of biological parts and methods to assemble them; the decoupling of complex processes into simpler subsystems; and mathematical models that can accelerate the design-build-test-learn cycle. The field of plant synthetic signaling is relatively new, but it is poised for rapid advancement. Translation from the laboratory to the field is likely to be slowed, however, by the lack of constructive dialogue between researchers and other stakeholders.
Collapse
Affiliation(s)
- Alexander R Leydon
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| | - Hardik P Gala
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| | - Sarah Guiziou
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| | - Jennifer L Nemhauser
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| |
Collapse
|
2
|
Ciarli T, Ràfols I. The relation between research priorities and societal demands: The case of rice. RESEARCH POLICY 2019. [DOI: 10.1016/j.respol.2018.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Pouvreau B, Vanhercke T, Singh S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:3-12. [PMID: 29907306 DOI: 10.1016/j.plantsci.2018.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 05/21/2023]
Abstract
Genetic improvement of crops started since the dawn of agriculture and has continuously evolved in parallel with emerging technological innovations. The use of genome engineering in crop improvement has already revolutionised modern agriculture in less than thirty years. Plant metabolic engineering is still at a development stage and faces several challenges, in particular with the time necessary to develop plant based solutions to bio-industrial demands. However the recent success of several metabolic engineering approaches applied to major crops are encouraging and the emerging field of plant synthetic biology offers new opportunities. Some pioneering studies have demonstrated that synthetic genetic circuits or orthogonal metabolic pathways can be introduced into plants to achieve a desired function. The combination of metabolic engineering and synthetic biology is expected to significantly accelerate crop improvement. A defining aspect of both fields is the design/build/test/learn cycle, or the use of iterative rounds of testing modifications to refine hypotheses and develop best solutions. Several technological and technical improvements are now available to make a better use of each design, build, test, and learn components of the cycle. All these advances should facilitate the rapid development of a wide variety of bio-products for a world in need of sustainable solutions.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia.
| | - Thomas Vanhercke
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder Singh
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Liu J, Dhungana B, Cobb GP. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:11-20. [PMID: 28796373 DOI: 10.1002/etc.3945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 05/27/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely used in many industries. The increasing release of CuO NPs from both intentional and unintentional sources into the environment may pose risks to rice plants, thereby reducing the quality or quantity of this staple grain in the human diet. Not only has arsenic (As) contamination decreased rice yield, but As accumulation in rice has also been a great human health concern for a few decades. New technologies have succeeded in removing As from water by nanomaterials. By all accounts, few studies have addressed CuO NP phytotoxicity to rice, and the interactions of CuO NPs with As are poorly described. The present study 1) reviews studies about the environmental behavior and phytotoxicity of CuO NPs and As and research about the interaction of CuO NPs with As in the environment, 2) discusses critically the potential mechanisms of CuO NP and As toxicity in plants and their interaction, and 3) proposes future research directions for solving the As problem in rice. Environ Toxicol Chem 2018;37:11-20. © 2017 SETAC.
Collapse
Affiliation(s)
- Jing Liu
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Birendra Dhungana
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
5
|
Nogueira M, Enfissi EM, Almeida J, Fraser PD. Creating plant molecular factories for industrial and nutritional isoprenoid production. Curr Opin Biotechnol 2017; 49:80-87. [PMID: 28837945 DOI: 10.1016/j.copbio.2017.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022]
Abstract
Chemical refining is a highly efficient process that has driven industrialisation and globalisation. However, dwindling fuel reserves and climatic fluctuation are now imposing key societal and economic challenges to health and welfare provision, agriculture, manufacturing outputs and energy. Plants are potentially exploitable 'green' chemical factories, with vast chemical diversity that can be used for the discovery and production of food, feed, medicines and biomaterials. Despite notable advances, plant based production under real-life scenarios remains, in most cases, economically uncompetitive when compared to inherently non-sustainable petrochemical based processes. In the present review the strategies available and those emerging will be described. Furthermore, how can the new evolving molecular tools such as genome editing be utilised to create a new paradigm of plant-based production? To illustrate the present status quo, we have chosen the isoprenoids as the class of natural products. These compounds display vast chemical diversity and have been used across multiple industrial sectors as medicines, supplements in food and feedstuffs, colourants and fragrances.
Collapse
Affiliation(s)
- Marilise Nogueira
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK
| | - Eugenia Ma Enfissi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK
| | - Juliana Almeida
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 ORB, UK.
| |
Collapse
|
6
|
Synthetic genetic circuits in crop plants. Curr Opin Biotechnol 2017; 49:16-22. [PMID: 28772191 DOI: 10.1016/j.copbio.2017.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
The love affair between crop breeding and genetics began over a century ago and has continued unabated, from mass selection programs to targeted genome modifications. Synthetic genetic circuits, a recent development, are combinations of regulatory and coding DNA introduced into a crop plant to achieve a desired function. Genetic circuits could accelerate crop improvement, allowing complex traits to be rationally designed and requisite DNA parts delivered directly into a genome of interest. However, there is not yet a standardized pipeline from exploratory laboratory testing to crop trials, and bringing transgenic products to market remains a considerable barrier. We highlight successes so far and future developments necessary to make genetic circuits a viable crop improvement technology over this century.
Collapse
|
7
|
Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. SUSTAINABILITY 2016. [DOI: 10.3390/su8050495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Malyska A, Bolla R, Twardowski T. The Role of Public Opinion in Shaping Trajectories of Agricultural Biotechnology. Trends Biotechnol 2016; 34:530-534. [PMID: 27059762 DOI: 10.1016/j.tibtech.2016.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
Abstract
Science and technology are not autonomous entities and research trajectories are largely influenced by public opinion. The role of political decisions becomes especially evident in light of rapidly developing new breeding techniques (NBTs) and other genome editing methods for crop improvement. Decisions on how those new techniques should be regulated may not be based entirely on scientific rationale, and even if it is decided that crops produced by NBTs do not fall under the umbrella of genetically modified organisms (GMOs), their commercialization is by no means certain at this time. If and when adopted regulations do not comply with the public's perception of risks, policy makers will find themselves under pressure to ban or restrict the use of the respective products.
Collapse
Affiliation(s)
| | - Robert Bolla
- Tin Duck Consulting Chesterfield, St Louis County, MO, USA
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
9
|
Bentley RA, O'Brien MJ. Collective behaviour, uncertainty and environmental change. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0461. [PMID: 26460111 DOI: 10.1098/rsta.2014.0461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A central aspect of cultural evolutionary theory concerns how human groups respond to environmental change. Although we are painting with a broad brush, it is fair to say that prior to the twenty-first century, adaptation often happened gradually over multiple human generations, through a combination of individual and social learning, cumulative cultural evolution and demographic shifts. The result was a generally resilient and sustainable population. In the twenty-first century, however, considerable change happens within small portions of a human generation, on a vastly larger range of geographical and population scales and involving a greater degree of horizontal learning. As a way of gauging the complexity of societal response to environmental change in a globalized future, we discuss several theoretical tools for understanding how human groups adapt to uncertainty. We use our analysis to estimate the limits of predictability of future societal change, in the belief that knowing when to hedge bets is better than relying on a false sense of predictability.
Collapse
Affiliation(s)
- R Alexander Bentley
- Department of Comparative Cultural Studies, University of Houston, Houston, TX 77204, USA
| | - Michael J O'Brien
- Department of Anthropology, University of Missouri, 317 Lowry Hall, Columbia, MO 65211, USA
| |
Collapse
|