1
|
Xu G, Ma J, Fang Q, Peng Q, Jiao X, Hu W, Zhao Q, Kong Y, Liu F, Shi X, Tang DJ, Tang JL, Ming Z. Structural insights into Xanthomonas campestris pv. campestris NAD + biosynthesis via the NAM salvage pathway. Commun Biol 2024; 7:255. [PMID: 38429435 PMCID: PMC10907753 DOI: 10.1038/s42003-024-05921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) via the nicotinamide (NAM) salvage pathway. While the structural biochemistry of eukaryote NAMPT has been well studied, the catalysis mechanism of prokaryote NAMPT at the molecular level remains largely unclear. Here, we demonstrated the NAMPT-mediated salvage pathway is functional in the Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) for the synthesis of NAD+, and the enzyme activity of NAMPT in this bacterium is significantly higher than that of human NAMPT in vitro. Our structural analyses of Xcc NAMPT, both in isolation and in complex with either the substrate NAM or the product nicotinamide mononucleotide (NMN), uncovered significant details of substrate recognition. Specifically, we revealed the presence of a NAM binding tunnel that connects the active site, and this tunnel is essential for both catalysis and inhibitor binding. We further demonstrated that NAM binding in the tunnel has a positive cooperative effect with NAM binding in the catalytic site. Additionally, we discovered that phosphorylation of the His residue at position 229 enhances the substrate binding affinity of Xcc NAMPT and is important for its catalytic activity. This work reveals the importance of NAMPT in bacterial NAD+ synthesis and provides insights into the substrate recognition and the catalytic mechanism of bacterial type II phosphoribosyltransferases.
Collapse
Affiliation(s)
- Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Jinxue Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Qi Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Qiong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Xi Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Wei Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Qiaoqiao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Yanqiong Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Fenmei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Xueqi Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Dong-Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
2
|
Hayashi M, Tomita M, Yoshizato K. Production of EGF-collagen chimeric protein which shows the mitogenic activity. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1528:187-95. [PMID: 11687306 DOI: 10.1016/s0304-4165(01)00187-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Collagen has been utilized as a natural biomaterial because of its high biocompatibility, adhesiveness to cells and tissues, and biodegradability. The present study developed a recombinant technology to confer a mitogenic activity on type III collagen by fusing it to epidermal growth factor (EGF) at the collagen's N-terminus. The chimeric protein of EGF-collagen was synthesized in insect cells by the baculovirus-insect cell expression system. The fusion protein was shown to hold the triple helical conformation of collagen and the mitogenic activity of EGF. It was also demonstrated that the chimeric protein can be immobilized on tissue culture dishes as a fibrous form and in collagen fibrils without abolishing the original mitogenic activity of EGF. This fusion protein can be utilized as a biocompatible, biodegradable, and adhesive fibrous mitogen for a variety of purposes in the area of tissue engineering.
Collapse
Affiliation(s)
- M Hayashi
- Developmental Biology Laboratory, Department of Biological Science, Graduate School of Science, Hiroshima University, Japan
| | | | | |
Collapse
|