1
|
Kreger J, Komarova NL, Wodarz D. A hybrid stochastic-deterministic approach to explore multiple infection and evolution in HIV. PLoS Comput Biol 2021; 17:e1009713. [PMID: 34936647 PMCID: PMC8730440 DOI: 10.1371/journal.pcbi.1009713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/05/2022] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
To study viral evolutionary processes within patients, mathematical models have been instrumental. Yet, the need for stochastic simulations of minority mutant dynamics can pose computational challenges, especially in heterogeneous systems where very large and very small sub-populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm to simulate mutant evolution in large viral populations, such as acute HIV-1 infection, and further include the multiple infection of cells. We demonstrate that the hybrid method can approximate the fully stochastic dynamics with sufficient accuracy at a fraction of the computational time, and quantify evolutionary end points that cannot be expressed by deterministic models, such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We apply this method to study the role of multiple infection and intracellular interactions among different virus strains (such as complementation and interference) for mutant evolution. Multiple infection is predicted to increase the number of mutants at a given infected cell population size, due to a larger number of infection events. We further find that viral complementation can significantly enhance the spread of disadvantageous mutants, but only in select circumstances: it requires the occurrence of direct cell-to-cell transmission through virological synapses, as well as a substantial fitness disadvantage of the mutant, most likely corresponding to defective virus particles. This, however, likely has strong biological consequences because defective viruses can carry genetic diversity that can be incorporated into functional virus genomes via recombination. Through this mechanism, synaptic transmission in HIV might promote virus evolvability. The evolution of human immunodeficiency virus within patients is an important part of the disease process. In particular, the presence of mutants that are resistant against anti-viral drugs can result in challenges to the long-term control of the infection. To study disease progression, computer simulations have been useful. However, in some cases these simulations can be difficult because of the complexity of the model. Here, we use a computational complexity reducing algorithm to simulate mutant dynamics in large populations, which can approximate the full model at a fraction of the time. The use of this algorithm allows us to study different transmission methods, viral processes that occur between virus strains within individual cells, and important quantities such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We find that the direct synaptic cell-to-cell transmission of the virus through virological synapses can have strong biological consequences because it can promote potentially defective viruses that carry genetic diversity which can be incorporated into functional virus genomes during infection. Through this process, synaptic transmission in human immunodeficiency virus might promote virus evolvability.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Dominik Wodarz
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- Department of Population Health and Disease Prevention Program in Public Health Susan and Henry Samueli College of Health Sciences, University of California, Irvine, California, United States of America
| |
Collapse
|
2
|
Kreger J, Garcia J, Zhang H, Komarova NL, Wodarz D, Levy DN. Quantifying the dynamics of viral recombination during free virus and cell-to-cell transmission in HIV-1 infection. Virus Evol 2021; 7:veab026. [PMID: 34012557 PMCID: PMC8117450 DOI: 10.1093/ve/veab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | - Josephine Garcia
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| | - Hongtao Zhang
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| | - Natalia L Komarova
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | - Dominik Wodarz
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA.,Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| |
Collapse
|
3
|
Kreger J, Komarova NL, Wodarz D. Effect of synaptic cell-to-cell transmission and recombination on the evolution of double mutants in HIV. J R Soc Interface 2020; 17:20190832. [PMID: 32208824 DOI: 10.1098/rsif.2019.0832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination in HIV infection can impact virus evolution in vivo in complex ways, as has been shown both experimentally and mathematically. The effect of free virus versus synaptic, cell-to-cell transmission on the evolution of double mutants, however, has not been investigated. Here, we do so by using a stochastic agent-based model. Consistent with data, we assume spatial constraints for synaptic but not for free-virus transmission. Two important effects of the viral spread mode are observed: (i) for disadvantageous mutants, synaptic transmission protects against detrimental effects of recombination on double mutant persistence. Under free virus transmission, recombination increases double mutant levels for negative epistasis, but reduces them for positive epistasis. This reduction for positive epistasis is much diminished under predominantly synaptic transmission, and recombination can, in fact, lead to increased mutant levels. (ii) The mode of virus spread also directly influences the evolutionary fate of double mutants. For disadvantageous mutants, double mutant production is the predominant driving force, and hence synaptic transmission leads to highest double mutant levels due to increased transmission efficiency. For advantageous mutants, double mutant spread is the most important force, and hence free virus transmission leads to fastest invasion due to better mixing. For neutral mutants, both production and spread of double mutants are important, and hence an optimal mixture of free virus and synaptic transmission maximizes double mutant fractions. Therefore, both free virus and synaptic transmission can enhance or delay double mutant evolution. Implications for drug resistance in HIV are discussed.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Natalia L Komarova
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Dominik Wodarz
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA.,Department of Population Health and Disease Prevention Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Dang Q, Goeken RM, Brown CR, Plishka RJ, Buckler-White A, Byrum R, Foley BT, Hirsch VM. Adaptive evolution of simian immunodeficiency viruses isolated from 2 conventional-progressor macaques with encephalitis. J Infect Dis 2008; 197:1695-700. [PMID: 18454679 DOI: 10.1086/588671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Simian immunodeficiency virus-infected macaques may develop encephalitis, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. In this report, an analysis of 2 conventional progressors with encephalitis is described. Phylogenetic analyses of viruses isolated from the cerebrospinal fluid and plasma of both macaques demonstrated compartmentalization. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets of monocyte-derived macrophages and peripheral blood mononuclear cells. A statistically significant loss of potential N-linked glycosylation sites in glycoprotein 160 was observed in viruses isolated from the central nervous system.
Collapse
Affiliation(s)
- Que Dang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wodarz D, Levy DN. Human immunodeficiency virus evolution towards reduced replicative fitness in vivo and the development of AIDS. Proc Biol Sci 2007; 274:2481-90. [PMID: 17666377 PMCID: PMC2274968 DOI: 10.1098/rspb.2007.0413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection progresses to AIDS following an asymptomatic period during which the virus is thought to evolve towards increased fitness and pathogenicity. We show mathematically that progression to the strongest HIV-induced pathology requires evolution of the virus towards reduced replicative fitness in vivo. This counter-intuitive outcome can happen if multiple viruses co-infect the same cell frequently, which has been shown to occur in recent experiments. According to our model, in the absence of frequent co-infection, the less fit AIDS-inducing strains might never emerge. The frequency of co-infection can correlate with virus load, which in turn is determined by immune responses. Thus, at the beginning of infection when immunity is strong and virus load is low, co-infection is rare and pathogenic virus variants with reduced replicative fitness go extinct. At later stages of infection when immunity is less efficient and virus load is higher, co-infection occurs more frequently and pathogenic virus variants with reduced replicative fitness can emerge, resulting in T-cell depletion. In support of these notions, recent data indicate that pathogenic simian immunodeficiency virus (SIV) strains occurring late in the infection are less fit in specific in vitro experiments than those isolated at earlier stages. If co-infection is blocked, the model predicts the absence of any disease even if virus loads are high. We hypothesize that non-pathogenic SIV infection within its natural hosts, which is characterized by the absence of disease even in the presence of high virus loads, could be explained by a reduced occurrence of co-infection in this system.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | | |
Collapse
|
6
|
Diamond TL, Kimata J, Kim B. Identification of a simian immunodeficiency virus reverse transcriptase variant with enhanced replicational fidelity in the late stage of viral infection. J Biol Chem 2001; 276:23624-31. [PMID: 11325971 DOI: 10.1074/jbc.m102496200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic hypermutation of human and simian immunodeficiency viruses (HIV and SIV) enables these viruses to adapt and escape from various types of anti-viral selection by altering the molecular properties of viral gene products. In this study, we examined whether the biochemical and catalytic properties of SIV DNA polymerases (reverse transcriptases; RT) can change during the course of viral infection. For this test, we analyzed RTs obtained from two SIV clones, SIVMNE CL8 and SIVMNE 170. SIVMNE 170 was isolated during the late symptomatic phase of infection with the parental strain, SIVMNE CL8. We found these two RTs have identical DNA polymerase specific activities and kinetics with three different DNA and RNA templates. In addition, the processivity of these two SIV RT proteins were also similar. However, as demonstrated by a misincorporation assay, the SIVMNE 170 RT showed much higher fidelity than SIVMNE CL8. The fidelity difference between these two SIV RTs was also confirmed by a steady state kinetic fidelity assay. These findings suggest that the fidelity of lentiviral RTs may change during the course of viral infection, possibly in response to alterations of host anti-viral immune capability. In addition, our sequence analysis of these two RT genes proposes possible structural strategies that the virus may employ to alter RT fidelity.
Collapse
Affiliation(s)
- T L Diamond
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642 and the Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245-0549
| | | | | |
Collapse
|
7
|
Holguín A, Soriano V. [Origin and evolution of human immunodeficiency virus]. Med Clin (Barc) 2000; 115:775-8. [PMID: 11171451 DOI: 10.1016/s0025-7753(00)71689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A Holguín
- Laboratorio de Biología Molecular. Servicio de Enfermedades Infecciosas. Hospital Carlos III. Instituto de Salud Carlos III. Madrid
| | | |
Collapse
|
8
|
Abstract
Many clinicians who care for patients with HIV infection are dissatisfied with the existing recommendations on antiretroviral therapy. Current practice focuses on the early suppression of viremia, yet the outcome of that approach may not be in the best interest of individual patients or populations. The major goal of HIV therapy is to maintain the long-term health of the patient while avoiding drug-related toxicity and preserving viable future treatment options. Recent studies have challenged the principles on which recommendations for early, aggressive treatment were based. Key studies that lead to licensure of antiretroviral medications usually involve short-term results in treatment-naive patients; it is difficult to apply these results to long-term management of therapy-experienced patients. Early, aggressive therapy often prematurely exposes patients to risks for medication-related side effects and resistance. A more cautious, patient-focused, long-term approach to therapy would help foster studies of alternate strategies, such as delayed initiation of therapy, protease-sparing therapy, class-sparing therapy, planned drug interruptions, switches in therapy, and immune-based therapy. It is time for clinicians to rethink their approach to the treatment of HIV infection.
Collapse
Affiliation(s)
- K Henry
- HIV Program, Regions Hospital and the University of Minnesota, St. Paul 55101, USA.
| |
Collapse
|
9
|
Holterman L, Niphuis H, Ten Haaft PJF, Goudsmit J, Baskin G, Heeney JL. Specific passage of simian immunodeficiency virus from end-stage disease results in accelerated progression to AIDS in rhesus macaques. J Gen Virol 1999; 80 ( Pt 12):3089-3097. [PMID: 10567639 DOI: 10.1099/0022-1317-80-12-3089] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine whether passage of late-stage variants of simian immunodeficiency virus (SIV) would lead to a more virulent infection and rapid disease progression, a study was designed to examine the effects of selective transmission of SIV from late-stage cases of AIDS in Macaca mulatta. In a uniform group of 10 age-matched animals from the same genetic breeding stock infected with SIV(B670), it took 7 months before one of the ten animals developed AIDS. Passage of virus taken from this animal immediately prior to death resulted in death of the recipient due to AIDS within 4 months. Again, subsequent passage of virus taken late in disease resulted in an accelerated disease course, with AIDS developing within 2.5 and 1.8 months in two recipients. The fourth passage of virus taken late in disease from the most rapid progressor (1.8 months) resulted in AIDS developing in this recipient within 1 month of infection. During each consecutive passage in vivo, the loss of memory T cells became more acute. Evidence that the virus became more virulent with selective passage of late-stage variants was provided by the markedly increased levels of both plasma antigen and viral RNA. Subsequent in vivo passage from end-stage AIDS selected for a strain of SIV capable of causing the acute development of AIDS as rapidly as 1 month post-infection. The pathology of acute AIDS in these cases closely resembled that seen after a chronic disease course.
Collapse
Affiliation(s)
- Lennart Holterman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 157, 2288 GJ, Rijswijk, The Netherlands1
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 157, 2288 GJ, Rijswijk, The Netherlands1
| | - Peter J F Ten Haaft
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 157, 2288 GJ, Rijswijk, The Netherlands1
| | - Jaap Goudsmit
- Department of Human Retrovirology, Academic Medical Centre, Amsterdam, The Netherlands2
| | - Gary Baskin
- Department of Pathology, Tulane Regional Primate Research Centre, Tulane University, Covington, LA 70433, USA3
| | - Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 157, 2288 GJ, Rijswijk, The Netherlands1
| |
Collapse
|