1
|
Sai J, Zhou L, Jiang L, Xue D, Pei R, Liu A, Xu L. Dual Signal Amplification by Urease Catalysis and Silver Nanoparticles for Ultrasensitive Colorimetric Detection of Nucleic Acids. Anal Chem 2023. [PMID: 37464726 DOI: 10.1021/acs.analchem.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Signal amplification techniques are highly desirable for the analysis of low-level targets that are closely related with diseases and the monitoring of important biological processes. However, it is still challenging to achieve this goal in a facile and economical way. Herein, we developed a novel dual signal amplification strategy by combining urease catalysis with the release of Ag+ from silver nanoparticles (AgNPs). This strategy was used for quantifying a DNA sequence (HIV-1) related with human immunodeficiency virus (HIV). DNA target HIV-1 hybridizes with the capture DNA probe on magnetic beads and the reporter DNA probe on AgNPs, forming a sandwich complex. The captured AgNPs are then transformed into numerous Ag+ ions that inactivate numerous ureases. Without catalytic production of ammonia from urea, the substrate solution shows a low pH 5.8 that will increase otherwise. The pH change is monitored by a pH indicator (phenol red), which allows for colorimetric detection. The proposed approach is sensitive, easy to use, economic, and universal, exhibiting a low detection limit of 9.7 fM (i.e., 1.94 attomoles) and a dynamic linear range of 4 orders for HIV-1 sequence detection.
Collapse
Affiliation(s)
- Jialin Sai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lu Zhou
- Department of Neurology, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai 317000, China
| | - Lin Jiang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Dongguo Xue
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lijun Xu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Kesler V, Fu K, Chen Y, Park CH, Eisenstein M, Murmann B, Soh HT. Tailoring electrode surface charge to achieve discrimination and quantification of chemically similar small molecules with electrochemical aptamers. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2208534. [PMID: 36819738 PMCID: PMC9937077 DOI: 10.1002/adfm.202208534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 06/18/2023]
Abstract
Electrochemical biosensors based on structure-switching aptamers offer many advantages because they can operate directly in complex samples and offer the potential to integrate with miniaturized electronics. Unfortunately, these biosensors often suffer from cross-reactivity problems when measuring a target in samples containing other chemically similar molecules, such as precursors or metabolites. While some progress has been made in selecting highly specific aptamers, the discovery of these reagents remains slow and costly. In this work, we demonstrate a novel strategy to distinguish molecules with miniscule difference in chemical composition (such as a single hydroxyl group) - with cross reactive aptamer probes - by tuning the charge state of the surface on which the aptamer probes are immobilized. As an exemplar, we show that our strategy can distinguish between DOX and many structurally similar analytes, including its primary metabolite doxorubicinol (DOXol). We then demonstrate the ability to accurately quantify mixtures of these two molecules based on their differential response to sensors with different surface-charge properties. We believe this methodology is general and can be extended to a broad range of applications.
Collapse
Affiliation(s)
- Vladimir Kesler
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Kaiyu Fu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Yihang Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chan Ho Park
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Boris Murmann
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - H. Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Fyta M. Functionalized electrodes embedded in nanopores: read-out enhancement? Chem Asian J 2023; 18:e202200916. [PMID: 36372991 PMCID: PMC10107472 DOI: 10.1002/asia.202200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
In this review, functionalized nanogaps embedded in nanopores are discussed in view of their high biosensitivity in detecting biomolecules, their length, type, and sequence. Specific focus is given on nanoelectrodes functionalized with tiny nanometer-sized diamond-like particles offering vast functionalization possibilities for gold junction electrodes. This choice of the functionalization, in turn, offers nucleotide-specific binding possibilities improving the detection signals arising from such functionalized electrodes potentially embedded in a nanopore. The review sheds light onto the use and enhancement of the tunnelling recognition in functionalized nanogaps towards sensing DNA nucleotides and mutation detection, providing important input for a practical realization.
Collapse
Affiliation(s)
- Maria Fyta
- Computational Biotechnology, RWTH-Aachen University, Worringerweg 3, 52072, Aachen, Germany
| |
Collapse
|
4
|
Wan C, Qu A, Li M, Tang R, Fu L, Liu X, Wang P, Wu C. Electrochemical Sensor for Directional Recognition and Measurement of Antibiotic Resistance Genes in Water. Anal Chem 2021; 94:732-739. [PMID: 34932901 DOI: 10.1021/acs.analchem.1c03100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The establishment of rapid targeted identification and analysis of antibiotic resistance genes (ARGs) is very important. In this study, an electrochemical sensor, which can detect ARGs was obtained by modifying the sulfhydryl single-stranded DNA probe onto the thin-film gold electrode through self-assembly. The sensor can perform a hybridization reaction with a target sequence to obtain an electrochemical impedance spectroscopy signal. The results showed that when the concentration of the probe used to modify thin-film gold electrodes during preparation was 1 μM, the hybridization time was 1 h, and the hybridization temperature was 35 °C, the self-assembled sensor showed good detection performance for the ARGs encoding β-lactam hydrolase. The measurement ARG concentration linear range is 6.3-900.0 ng/mL, and the R2 is 0.9992. The sensor shows good specific recognition ability for single-base, double-base, and three-base mismatch DNA. In addition, after 30 days of storage at 4 °C, the accurate identification and analysis of ARGs can still be maintained.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Aoxuan Qu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Li
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Liya Fu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Panxin Wang
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Attachment of Single-Stranded DNA to Certain SERS-Active Gold and Silver Substrates: Selected Practical Tips. Molecules 2021; 26:molecules26144246. [PMID: 34299520 PMCID: PMC8305401 DOI: 10.3390/molecules26144246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Layers formed from single-stranded DNA on nanostructured plasmonic metals can be applied as “working elements” in surface–enhanced Raman scattering (SERS) sensors used to sensitively and accurately identify specific DNA fragments in various biological samples (for example, in samples of blood). Therefore, the proper formation of the desired DNA layers on SERS substrates is of great practical importance, and many research groups are working to improve the process in forming such structures. In this work, we propose two modifications of a standard method used for depositing DNA with an attached linking thiol moiety on certain SERS-active structures; the modifications yield DNA layers that generate a stronger SERS signal. We propose: (i) freezing the sample when forming DNA layers on the nanoparticles, and (ii) when forming DNA layers on SERS-active macroscopic silver substrates, using ω-substituted alkanethiols with very short alkane chains (such as cysteamine or mercaptopropionic acid) to backfill the empty spaces on the metal surface unoccupied by DNA. When 6-mercapto-1-hexanol is used to fill the unoccupied places on a silver surface (as in experiments on standard gold substrates), a quick detachment of chemisorbed DNA from the silver surface is observed. Whereas, using ω-substituted alkanethiols with a shorter alkane chain makes it possible to easily form mixed DNA/backfilling thiol monolayers. Probably, the significantly lower desorption rate of the thiolated DNA induced by alkanethiols with shorter chains is due to the lower stabilization energy in monolayers formed from such compounds.
Collapse
|
6
|
Wei G, Zhang W, Cui H, Liao F, Cheng L, Ma G, Fan H, Hong N, Zhang J. Immobilization-free electrochemical DNA sensor based on signal cascade amplification strategy. Biotechnol Appl Biochem 2021; 69:1036-1046. [PMID: 33891320 DOI: 10.1002/bab.2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/12/2021] [Indexed: 11/09/2022]
Abstract
The development of convenient and efficient strategies without using complex nanomaterials or enzymes for signal amplification is very important for bioanalytical applications. Herein, a novel electrochemical DNA sensor was developed by harnessing the signal amplification efficiency of catalytic hairpin assembly (CHA) and a brand-new signal marker tetraferrocene. The prepared sensor had both ends of the probe H2 labeled with tetraferrocene; both ends have a large number of unhybridized T bases, which cause tetraferrocene to move closer to the electrode surface, generating a high-efficiency amplification signal. In the presence of target DNA, it induced strand exchange reactions promoting the formation of double-stranded DNA and recycling of target DNA. Under optimal conditions, the sensor showed a good linear correlation between the peak currents and logarithm of target DNA concentrations (ranging from 0.1 fM to 0.3125 pM) with a detection limit of 0.06 fM, which is obtained by a triple signal-to-noise ratio. Additionally, the prepared sensor possesses excellent selectivity, reproducibility, and stability, demonstrating efficient and stable DNA detection methodology.
Collapse
Affiliation(s)
- Guobing Wei
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenxing Zhang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Hanfeng Cui
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Fusheng Liao
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Lin Cheng
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Guangqiang Ma
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Hao Fan
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Nian Hong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
|
8
|
Electrochemical CYFRA21-1 DNA sensor with PCR-like sensitivity based on AgNPs and cascade polymerization. Anal Bioanal Chem 2020; 412:4155-4163. [PMID: 32306069 DOI: 10.1007/s00216-020-02652-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
In this work, a new method of CYFRA21-1 DNA (tDNA) detection based on electrochemically mediated atom transfer radical polymerization (e-ATRP) and surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) cascade polymerization and AgNP deposition is proposed. Firstly, the peptide nucleic acid (PNA) probe is captured on a gold electrode by Au-S bonds for specific recognition of tDNA. After hybridization, PNA/DNA strands provide high-density phosphate groups for the subsequent ATRP initiator by the identified carboxylate-Zr4+-phosphate chemistry. Then, a large number of monomers are successfully grafted from the DNA through the e-ATRP reaction. After that, the chain transfer agent of SI-RAFT and methacrylic acid (MAA) are connected by recognized carboxylate-Zr4+-carboxylate chemistry. Subsequently, through SI-RAFT, the resulting polymer introduces numerous aldehyde groups, which could deposit many AgNPs on tDNA through silver mirror reaction, causing significant amplification of the electrochemical signal. Under optimal conditions, this designed method exhibits a low detection limit of 0.487 aM. Moreover, the method enables us to detect DNA at the level of PCR-like and shows high selectivity and strong anti-interference ability in the presence of serum. It suggests that this new sensing signal amplification technology exhibits excellent potential of application in the early diagnosis of non-small cell lung cancer (NSCLC). Graphical abstract Electrochemical detection principle for CYFRA21-1 DNA based on e-ATRP and SI-RAFT signal amplification technology.
Collapse
|
9
|
Wang J, Guo X, Liu R, Guo J, Zhang Y, Zhang W, Sang S. Detection of carcinoembryonic antigen using a magnetoelastic nano-biosensor amplified with DNA-templated silver nanoclusters. NANOTECHNOLOGY 2020; 31:015501. [PMID: 31530749 DOI: 10.1088/1361-6528/ab4506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we develop a magnetoelastic (ME) nano-biosensor based on the competitive strategy for the detection of a carcinoembryonic antigen (CEA). Specifically, the gold-coated ME material provided a platform and the thiolated single-stranded DNA (HS-DNA) containing a half-complementary sequence towards the CEA aptamer was modified on the surface via Au-S bonding. DNA-templated silver nanoclusters (DNA-AgNCs) containing another half-complementary sequence towards the aptamer were used to amplify the signals by about 2.1 times, compared to those obtained using just the aptamer. CEA aptamers as a bio-recognition element were employed to link HS-DNA and DNA-AgNCs through DNA hybridization. The CEA aptamer preferentially combined with CEA rather than hybridized with DNA. Due to the magnetostrictive nature of the ME materials, the resonant frequency of the nano-biosensor would increase along with the release of DNA-AgNCs and CEA aptamers. The modification process was demonstrated by UV-vis spectra, x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscope (TEM) and an atomic force microscope (AFM). The nano-biosensor has a linear response to the logarithmic CEA concentrations ranging from 2 pg ml-1 to 6.25 ng ml-1, with a limit of detection (LOD) of 1 pg ml-1 and a sensitivity of 105.05 Hz/ng · ml-1. This study provides a low-cost, highly sensitive and wireless method for selective detection of CEA.
Collapse
Affiliation(s)
- Jingzhe Wang
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Gambardella A, Üçüncü M, Geng J, Clavadetscher J, Bradley M, Lilienkampf A. Multifunctional, histidine-tagged polymers: antibody conjugation and signal amplification. Chem Commun (Camb) 2020; 56:13856-13859. [DOI: 10.1039/d0cc04591h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer scaffold, with multiple reactive centres, was synthesised by RAFT polymerisation and conjugated to the antibody herceptin. A hexahistidine RAFT agent enabled simple purification of polymer–protein conjugates.
Collapse
Affiliation(s)
- Yichuan Zhang
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Shenzhen Institutes of Advanced Technology
| | | | - Muhammed Üçüncü
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Department of Analytical Chemistry, Faculty of Pharmacy
| | - Jin Geng
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Shenzhen Institutes of Advanced Technology
| | | | - Mark Bradley
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| | | |
Collapse
|
11
|
Sadat Mousavi P, Smith SJ, Chen JB, Karlikow M, Tinafar A, Robinson C, Liu W, Ma D, Green AA, Kelley SO, Pardee K. A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat Chem 2019; 12:48-55. [PMID: 31767994 PMCID: PMC7700015 DOI: 10.1038/s41557-019-0366-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
The field of synthetic biology has used the engineered assembly of synthetic gene networks to create a wide range of function in biological systems. As part of this work, gene circuit-based sensors have primarily used optical proteins (e.g. fluorescent, colorimetric) as reporter outputs, which has limited the potential to measure multiple distinct signals. Here we present an electrochemical interface that permits expanded multiplexed reporting for cell-free gene circuit-based sensors. We have engineered a scalable system of reporter enzymes that cleave specific DNA sequences in solution, which results in an electrochemical signal when these newly liberated strands are captured at the surface of a nanostructured microelectrode. We describe the development of this interface and show its utility using a ligand-inducible gene circuit and toehold switch-based sensors, including the detection of multiple antibiotic resistance genes in parallel. This technology has the potential to expand the field of synthetic biology by providing an interface with materials, hardware and software.
Collapse
Affiliation(s)
| | - Sarah J Smith
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Jenise B Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Margot Karlikow
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Clare Robinson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Wenhan Liu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019; 214:119215. [DOI: 10.1016/j.biomaterials.2019.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
13
|
Veselinovic J, Alangari M, Li Y, Matharu Z, Artés JM, Seker E, Hihath J. Two-tiered electrical detection, purification, and identification of nucleic acids in complex media. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Dou M, Maier FC, Fyta M. The influence of a solvent on the electronic transport across diamondoid-functionalized biosensing electrodes. NANOSCALE 2019; 11:14216-14225. [PMID: 31317158 DOI: 10.1039/c9nr03235e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrodes embedded in nanopores have the potential to detect the identity of biomolecules, such as DNA. This identification is typically being done through electronic current measurements across the electrodes in a solvent. In this work, using quantum-mechanical calculations, we qualitatively present the influence of this solvent on the current signals. For this, we model electrodes functionalized with a small diamond-like molecule known as diamondoid and place a DNA nucleotide within the electrode gap. The influence of an aqueous solvent is taken explicitly into account through Quantum-Mechanics/Molecular Mechanics (QM/MM) simulations. From these, we could clearly reveal that at the (111) surface of the Au electrode, water molecules form an adlayer-like structure through hydrogen bond networks. From the temporal evolution of the hydrogen bond between a nucleotide and the functionalizing diamondoid, we could extract information on the conductance across the device. In order to evaluate the influence of the solvent, we compare these results with ground-state electronic structure calculations in combination with the non-equilibrium Green's function (NEGF) approach. These allow access to the electronic transport across the electrodes and show a difference in the detection signals with and without the aqueous solution. We analyze the results with respect to the density of states in the device. In the end, we demonstrate that the presence of water does not hinder the detection of a mutation over a healthy DNA nucleotide. We discuss these results in view of sequencing DNA with nanopores.
Collapse
Affiliation(s)
- Maofeng Dou
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
15
|
Fluorometric determination of HIV DNA using molybdenum disulfide nanosheets and exonuclease III-assisted amplification. Mikrochim Acta 2019; 186:286. [DOI: 10.1007/s00604-019-3368-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
|
16
|
Fu Y, Duan X, Huang J, Huang L, Zhang L, Cheng W, Ding S, Min X. Detection of KRAS mutation via ligation-initiated LAMP reaction. Sci Rep 2019; 9:5955. [PMID: 30976068 PMCID: PMC6459849 DOI: 10.1038/s41598-019-42542-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations are abnormalities widely found in genomic DNA and circulating tumor DNA (ctDNA) of various types of cancers. Thus, highly sensitive detection of KRAS mutations in genomic DNA is of great significance in disease diagnosis and personalized medicine. Here, we developed a ligation-initiated loop-mediated isothermal amplification (LAMP) assaying method for ultrasensitive detection of KRAS mutation. In the presence of mutant KRAS DNA (mutDNA), the dumbbell-shaped structure (DSS) is formed by the specific ligation of two substrates (SLS1 and SLS2), which act as a template to initiate the following LAMP amplification. Making use of the outstanding specificity of ligation reaction and superior amplification of LAMP, 10 aM mutDNA can be accurately determined. In addition, as low as 0.1% mutDNA can be detected in the presence of a large excess of wild-type KRAS DNA (wtDNA), indicating the high sensitivity and specificity of the method. Furthermore, this strategy has been successfully applied for detection of a KRAS mutation from tissue samples of colorectal cancer patients. Thus, the developed ligation-initiated LAMP fluorescence assaying strategy presents a promising prospect for ultrasensitive detection of mutations.
Collapse
Affiliation(s)
- Yixin Fu
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P.R. China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China
| | - Xiaolei Duan
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Jian Huang
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P.R. China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China
| | - Lizhen Huang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Lutan Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Xun Min
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P.R. China. .,School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China.
| |
Collapse
|
17
|
Faria HAM, Zucolotto V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens Bioelectron 2019; 131:149-155. [DOI: 10.1016/j.bios.2019.02.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 11/29/2022]
|
18
|
Wang J, Li Q, Peng Y, Yang H, Wang Z, Luo L, Song Q, Stanely D. Methamidophos Influences Midgut Proteinase Activity and Subcellular Structures in the Wolf Spider Pardosa pseudoamulata (Araneae: Lycosidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:335-340. [PMID: 30321348 DOI: 10.1093/jee/toy318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 06/08/2023]
Abstract
A piezoelectric quartz crystal impedance (PQCI) sensor was used to investigate influences of the insecticide methamidophos on proteinase activity in midguts of the wolf spider, Pardosa pseudoamulata (Araneae: Lycosidae). Results from PQCI indicated that low-concentration dose methamidophos (0.008%) can activate the proteinase but high-concentration dose methamidophos (0.016-0.032%) can inhibit the enzyme activity. The changes in subcellular structure of spider midgut cells were also observed. Electron micrographs of spider midgut epithelial cells showed that the low-dose methamidophos did not visibly impact the structure of these cells. Conversely, high-concentration dose methamidophos led to severe changes in the cell structure, including the karyotheca dissolved, the nucleolus, and the endoplasmic reticulum disappeared. These may contribute to changes in proteinase activity of spider. This work documents a feasible method for rapid and reliable detection of proteinase activity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
| | - Qinjin Li
- College of Resources and Environment, Hunan Agriculture University, Changsha, China
- Tourism Department, Hunan Women's University, Changsha, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Huilin Yang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
| | - Zhi Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agriculture University, Changsha, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO
| | - David Stanely
- USDA-ARS, Biological Control of Insects Research Laboratory, Columbia, MO
| |
Collapse
|
19
|
Fapyane D, Nielsen JS, Ferapontova EE. Electrochemical Enzyme-Linked Sandwich Assay with a Cellulase Label for Ultrasensitive Analysis of Synthetic DNA and Cell-Isolated RNA. ACS Sens 2018; 3:2104-2111. [PMID: 30257555 DOI: 10.1021/acssensors.8b00662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Electrochemical enzyme-linked sandwich assays on magnetic beads (MBs) refer to one of the most sensitive approaches for analysis of nonamplified nucleic acid samples, with redox enzymes being routinely used as labels. Here, we report a sensitive and inexpensive electrochemical nucleic acid sandwich assay on MBs that exploits a hydrolytic enzyme cellulase as a label, while MBs are used for preconcentration and bioseparation of analyzed samples. Binding of target DNA or RNA to capture DNA-modified MB triggers sandwich assembly and its labeling with cellulase. Application of the assembled sandwich to the electrodes covered with insulating nitrocellulose films induces film digestion by the cellulase label and pronounced changes in the electrical properties of the electrodes, the extent of the changes being proportional to the concentration of the analyzed nucleic acids. Down to 1 amol of Lactobacillus brevis specific synthetic DNA and rRNA isolated from L. brevis cells could be detected in 1 mL samples in the overall from 2 to 3 h assay. The assay is universal and can be adapted for point-of-care-testing and for in-field environmental and microbiomic analysis of unamplified samples of any DNA/RNA sequences.
Collapse
Affiliation(s)
- Deby Fapyane
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jesper S. Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Yan Y, Lu Y, Liu X, Zhang Y, Chen J. pH-Driven Precise Control of Hybridization Reaction Kinetics for Rapid DNA Assay. ChemistrySelect 2018. [DOI: 10.1002/slct.201801786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yishu Yan
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Pharmaceutical Sciences; Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| | - Yuan Lu
- Key Lab of Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University Beijing; 100084 P.R.China
| | - Xiaoni Liu
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Pharmaceutical Sciences; Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| | - Yan Zhang
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Pharmaceutical Sciences; Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| | - Jinghua Chen
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; School of Pharmaceutical Sciences; Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| |
Collapse
|
21
|
Ferapontova EE. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:197-218. [PMID: 29894229 DOI: 10.1146/annurev-anchem-061417-125811] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.
Collapse
Affiliation(s)
- Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
22
|
Tripathy S, Gangwar R, Supraja P, Rao AVSSN, Vanjari SRK, Singh SG. Graphene Doped Mn2
O3
Nanofibers as a Facile Electroanalytical DNA Point Mutation Detection Platform for Early Diagnosis of Breast/Ovarian Cancer. ELECTROANAL 2018. [DOI: 10.1002/elan.201800220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Rahul Gangwar
- Indian Institute of Technology; Hyderabad, Telangana India- 502285
| | - Patta Supraja
- Indian Institute of Technology; Hyderabad, Telangana India- 502285
| | | | | | | |
Collapse
|
23
|
Zhou Z, Luo G, Wulf V, Willner I. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins. Anal Chem 2018; 90:6468-6476. [PMID: 29737162 DOI: 10.1021/acs.analchem.7b04916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Guofeng Luo
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Verena Wulf
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
24
|
Su X, Liang R, Stolee JA. A facile one-step fluorescence method for the quantitation of low-content single base deamination impurity in synthetic oligonucleotides. J Pharm Biomed Anal 2018; 155:50-55. [PMID: 29614399 DOI: 10.1016/j.jpba.2018.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 11/27/2022]
Abstract
Oligonucleotides are being researched and developed as potential drug candidates for the treatment of a broad spectrum of diseases. The characterization of antisense oligonucleotide (ASO) impurities caused by base mutations (e.g. deamination) which are closely related to the target ASO is a significant analytical challenge. Herein, we describe a novel one-step method, utilizing a strategy that combines fluorescence-ON detection with competitive hybridization, to achieve single base mutation quantitation in extensively modified synthetic ASOs. Given that this method is highly specific and sensitive (LoQ = 4 nM), we envision that it will find utility for screening other impurities as well as sequencing modified oligonucleotides.
Collapse
Affiliation(s)
- Xiaoye Su
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States.
| | - Ruiting Liang
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States.
| | - Jessica A Stolee
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States.
| |
Collapse
|
25
|
Pei X, Lai T, Tao G, Hong H, Liu F, Li N. Ultraspecific Multiplexed Detection of Low-Abundance Single-Nucleotide Variants by Combining a Masking Tactic with Fluorescent Nanoparticle Counting. Anal Chem 2018; 90:4226-4233. [PMID: 29504392 DOI: 10.1021/acs.analchem.8b00685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To be able to detect simultaneously multiple single-nucleotide variants (SNVs) with both ultrahigh specificity and low-abundance sensitivity is of pivotal importance for molecular diagnostics and biological research. In this contribution, we for the first time developed a multiplex SNV detection method that combines the masking tactic with fluorescent nanoparticle (FNP) counting based on the sandwich design. The method presents a rivaling performance due to its advantageous features: the masking reagent was designed to hybridize with an extremely large amount of the wild-type sequence to render the assay with high specificity; FNP counting provides a sensitive multiplexed SNV detection; the sandwich design facilitates an easy separation to make the detection free of interferences from the matrix. For single SNV target discrimination, including the 6 most frequently occurring DNA KRAS gene mutations and 2 possible RNA KRAS gene mutations as well as 11 artificial mutations, the discrimination factor ranged from 204 to 1177 with the median being 545. Among the tested 19 SNVs, abundances as low as 0.05% were successfully identified in 14 cases, and an abundance as low as 0.1% was identified for the remaining 5 cases. For multiplexed detection of SNVs in the KRAS gene, abundances as low as 0.05-0.1% were achieved for multiple SNVs occurring at the same and different codons. As low as 0.05% low-abundance detection sensitivity was also achieved for PCR amplicons of human genomic DNA extracted from cell samples. This proposed method presents the potential for ultrahigh specific multiplexed detection of SNVs with low-abundance detection capability, which may be applied to practical applications.
Collapse
Affiliation(s)
- Xiaojing Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Hu Hong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| |
Collapse
|
26
|
Ruiz-Valdepeñas Montiel V, Povedano E, Vargas E, Torrente-Rodríguez RM, Pedrero M, Reviejo AJ, Campuzano S, Pingarrón JM. Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification. ACS Sens 2018; 3:211-221. [PMID: 29282977 DOI: 10.1021/acssensors.7b00869] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Currently, electrochemical nucleic acid-based biosensing methodologies involving hybridization assays, specific recognition of RNA/DNA and RNA/RNA duplexes, and amplification systems provide an attractive alternative to conventional quantification strategies for the routine determination of relevant nucleic acids at different settings. A particularly relevant objective in the development of such nucleic acid biosensors is the design of as many as possible affordable, quick, and simple methods while keeping the required sensitivity. With this aim in mind, this work reports, for the first time, a thorough comparison between 11 methodologies that involve different assay formats and labeling strategies for targeting the same DNA. The assayed approaches use conventional sandwich and competitive hybridization assays, direct hybridization coupled to bioreceptors with affinity for RNA/DNA duplexes, multienzyme labeling bioreagents, and DNA concatamers. All of them have been implemented on the surface of magnetic beads (MBs) and involve amperometric transduction at screen-printed carbon electrodes (SPCEs). The influence of the formed duplex length and of the labeling strategy have also been evaluated. Results demonstrate that these strategies can provide very sensitive methods without the need for using nanomaterials or polymerase chain reaction (PCR). In addition, the sensitivity can be tailored within several orders of magnitude simply by varying the bioassay format, hybrid length or labeling strategy. This comparative study allowed us to conclude that the use of strategies involving longer hybrids, the use of antibodies with specificity for RNA/DNA heteroduplexes and labeling with bacterial antibody binding proteins conjugated with multiple enzyme molecules, provides the best sensitivity.
Collapse
Affiliation(s)
| | - Eloy Povedano
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Eva Vargas
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rebeca M. Torrente-Rodríguez
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - A. Julio Reviejo
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
27
|
Li J, Liu Y, Zhu X, Chang G, He H, Zhang X, Wang S. A Novel Electrochemical Biosensor Based on a Double-Signal Technique for d(CAG) n Trinucleotide Repeats. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44231-44240. [PMID: 29155546 DOI: 10.1021/acsami.7b15014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrochemical sensors now play an important role in analysis and detection of nucleic acids. In this work, we present a novel double-signal technique for electrochemically measuring the sequence and length of the d(CAG)n repeat. The double-signal technique used an electrochemical molecular beacon (a hairpin DNA labeled with ferrocene), which was directly modified on the surface of a gold electrode, while a reporter probe (a DNA sequence labeled with horseradish peroxidase) was hybridized to the target DNA. First a simple single-signal sensor was characterized in which d(CAG)n repeats were detected using a short reporter DNA strand labeled with horseradish peroxidase. To obtain a reliable signal that was dependent on repeat number, a double-signal biosensor was created in which the single strand capture DNA in single-signal sensor was replaced by an electrochemical molecular beacon labeled with ferrocene. When the hairpin DNA hybridized to the target-reporter DNA complex, it opened, resulting in a decreased ferrocene current. Both electrochemical biosensors exhibited high selectivity and sensitivity with low detection limits of 0.21 and 0.15 pM, respectively, for the detection of d(CAG)n repeats. The double-signal sensor was more accurate for the determination of repeat length, which was measured from the ratio of signals for HRP and ferrocene (H/F). A linear relationship was found between H/F and the number of repeats (n), H/F = 0.1398n + 9.89788, with a correlation coefficient of 0.974. Only 10 nM of target DNA was required for measurements based on the value of H/F in the double-signal technique. These results indicated that this new double-signal electrochemical sensor provided a reliable method for the analysis of CAG trinucleotide repeats.
Collapse
Affiliation(s)
| | | | | | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University , Youyi Road 368, Wuchang, Wuhan, Hubei 430062, China
| | | | | | | |
Collapse
|
28
|
Zhou Y, Wang Y, Wang X, Lu J. Polystyrene Microspheres Coupled with Hybridization Chain Reaction for Dual-Amplified Chemiluminescence Detection of Specific DNA Sequences. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0042-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017; 56:15210-15233. [PMID: 28444822 DOI: 10.1002/anie.201701868] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Triplex nucleic acids have recently attracted interest as part of the rich "toolbox" of structures used to develop DNA-based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH-induced, switchable assembly and dissociation of triplex-DNA-bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH-responsive systems and materials are described. Examples include semiconductor-loaded DNA-stabilized microcapsules, DNA-functionalized dye-loaded metal-organic frameworks (MOFs), and the pH-induced release of the loads. Furthermore, the design of stimuli-responsive DNA-based hydrogels undergoing reversible pH-induced hydrogel-to-solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape-memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alessandro Cecconello
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Andrea Idili
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
30
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex-DNA-Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701868] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | | | - Andrea Idili
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Francesco Ricci
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Itamar Willner
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|
31
|
Ghosh R, Chatterjee DP, Das S, Mukhopadhyay TK, Datta A, Nandi AK. Influence of Hofmeister I - on Tuning Optoelectronic Properties of Ampholytic Polythiophene by Varying pH and Conjugating with RNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12739-12749. [PMID: 29028346 DOI: 10.1021/acs.langmuir.7b03147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A significant tuning of optoelectronic properties of polythiophene (PT) chains due to Hofmeister iodide (I-) ion is demonstrated in ampholytic polythiophene [polythiophene-g-poly{(N,N,N-trimethylamino iodide)ethyl methacrylate-co-methacrylic acid}, APT] at different pHs. In acidic medium, the absorption and emission signals of PT chromophore exhibit appreciable blue shift in the presence of I- as counteranion only. The cooperative effect of undissociated -COOH and quaternary ammonium groups immobilize I- near the apolar PT chain causing threading of grafted chains and hence twisting of the backbone attributing to the blue shift. As medium pH is increased, dethreading of the PT backbone occurs due to ionization of -COOH group, releasing quencher iodide ions from the vicinity of the PT chains resulting in a red shift in absorption and a sharp hike in fluorescence intensity (390 times) for an increase of excitons lifetime. With an increase of pH, morphology changes from a multivesicular aggregate with vacuoles to smaller size vesicles and finally to nanofibrillar network structure. Dethreading is also found when APT interacts with RNA showing a significant hike of fluorescence (22 times) for displacing iodide ions forming a nanofibrillar network morphology. Threading and dethreading also affect the resistance, capacitance, and Warburg impedance values of APT. Molecular dynamics simulation of a model APT chain in a water box supports the threading at lower pH where the iodide ions pose nearer to the PT chain than that at higher pH causing dethreading. So the influence of Hofmeister I- ion is established for tuning the optoelectronic properties of a novel PT based polyampholyte by changing pH or by conjugating with RNA.
Collapse
Affiliation(s)
- Radhakanta Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Dhruba P Chatterjee
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Sujoy Das
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Titas K Mukhopadhyay
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Ayan Datta
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Arun K Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
32
|
Liu G, Arnaud P, Offmann B, Picimbon JF. Genotyping and Bio-Sensing Chemosensory Proteins in Insects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1801. [PMID: 28777348 PMCID: PMC5579523 DOI: 10.3390/s17081801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022]
Abstract
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, but none at the level of individuals, which could be extremely useful in the biotyping of insect pest species necessary for the agricultural, medical and veterinary industries. Proposed methods of genotyping CSPs include not only restriction enzymatic cleavage and amplification of cleaved polymorphic sequences, but also detection of retroposons in some specific regions of the insect chromosome. Design of biosensors using CSPs addresses tissue-specific RNA mutations in a particular subtype of the protein, which could be used as a marker of specific physiological conditions. Additionally, we refer to the binding properties of CSP proteins tuned to lipids and xenobiotic insecticides for the development of a new generation of biosensor chips, monitoring lipid blood concentration and chemical environmental pollution.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
- QILU University of Technology, School of Bioengineering, Jinan 250353, China.
| |
Collapse
|
33
|
An electrochemical DNA sensor without electrode pre-modification. Biosens Bioelectron 2017; 91:110-114. [DOI: 10.1016/j.bios.2016.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/19/2023]
|
34
|
Jin S, Ye Z, Wang Y, Ying Y. A Novel Impedimetric Microfluidic Analysis System for Transgenic Protein Cry1Ab Detection. Sci Rep 2017; 7:43175. [PMID: 28251986 PMCID: PMC5333080 DOI: 10.1038/srep43175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
Impedimetric analysis method is an important tool for food safety detection. In this work, a novel impedimetric microfluidic analysis system consisted of a printed gold electrode chip and a microfluidic flow cell was developed for sensitive and selective detection of transgenic protein Cry1Ab. Anti-Cry1Ab aptamer coated magnetic beads were used to recognize transgenic protein Cry1Ab and form Cry1Ab-aptamer modified magnetic beads. After separation, the obtained Cry1Ab-aptamer modified magnetic beads were dissolved in 0.01 M mannitol and followed by injection into the microfluidic flow cell for impedimetric measurement. At the frequency of 358.3 Hz, the impedance signal shows a good linearity with the concentrations of Cry1Ab protein at a range from 0 to 0.2 nM, and the detection limit is 0.015 nM. The results demonstrate that the impedimetric microfluidic analysis system provides an alternative way to enable sensitive, rapid and specific detection of transgenic protein Cry1Ab.
Collapse
Affiliation(s)
- Shunru Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yixian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
35
|
Sivaraman G, Amorim RG, Scheicher RH, Fyta M. Insights into the detection of mutations and epigenetic markers using diamondoid-functionalized sensors. RSC Adv 2017. [DOI: 10.1039/c7ra06889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This work focuses on the detection of mutations and epigenetic markers using devices based on nanogaps functionalized with diamondoids. Quantum mechanical simulations, allow us to provide deeper insight into the inherent differences when detecting modified nucleotides.
Collapse
Affiliation(s)
- Ganesh Sivaraman
- Institute for Computational Physics
- Universität Stuttgart
- Stuttgart
- Germany
| | - Rodrigo G. Amorim
- Division of Materials Theory
- Department of Physics and Astronomy
- Uppsala University
- Sweden
- Departamento de Física
| | - Ralph H. Scheicher
- Division of Materials Theory
- Department of Physics and Astronomy
- Uppsala University
- Sweden
| | - Maria Fyta
- Institute for Computational Physics
- Universität Stuttgart
- Stuttgart
- Germany
| |
Collapse
|
36
|
Shen J, Wang H, Li C, Zhao Y, Yu X, Luo X. Label-free electrochemical aptasensor for adenosine detection based on cascade signal amplification strategy. Biosens Bioelectron 2016; 90:356-362. [PMID: 27940239 DOI: 10.1016/j.bios.2016.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 12/19/2022]
Abstract
In this work, a simple and highly sensitive label-free electrochemical aptasensor for adenosine detection was developed based on target-aptamer binding triggered nicking endonuclease-assisted strand-replacement DNA polymerization and rolling circle amplification (RCA) strategy. The magnetic beads (MB) probe, which was attached the aptamer of adenosine and mDNA, was firstly fabricated. In the presence of adenosine, mDNA was released from MB upon recognition of the aptamer to target adenosine. The released mDNA as the primer activated autonomous DNA polymerization/nicking process and accompanied by the continuous release of replicated DNA fragments. Subsequently, numerous released DNA fragments were captured on the working electrode, and then as initiators to trigger the downstream RCA process leading to the formation of a long ssDNA concatemer for loading large amounts of Ru(NH3)63+. Therefore, a conspicuously amplified electrochemical signal through the developed dual-amplification strategy could be achieved. This method exhibited a high sensitivity toward adenosine with a detection limit of 0.032nM. Also, it exhibited high selectivity to different nucleoside families and good reproducibility. This design opens new horizons for integrating different disciplines, presenting a versatile tool for ultrasensitive detecting organic small molecules in medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Jing Shen
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Hongyang Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Chunxiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| | - Yanyan Zhao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Xijuan Yu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
37
|
Xu H, Wu D, Li CQ, Lu Z, Liao XY, Huang J, Wu ZS. Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron 2016; 90:314-320. [PMID: 27936442 DOI: 10.1016/j.bios.2016.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023]
Abstract
Highly sensitive detection of K-ras gene is of great significance in biomedical research and clinical diagnosis. Here, we developed a colorimetric biosensing system for the detection of proto-oncogene K-ras based on enhanced amplification effect of DNA molecular machine, where dual isothermal circular strand-displacement amplification (D-SDA) occurs on two arms in one-to-one correspondence. Specifically, we designed a primer-locked hairpin probe (HP) and a primer-contained linear polymerization template (PPT). In the presence of target gene, HP can hybridize with PPT, forming a DNA molecular machine with dual functional arms (called DFA-machine). Each of the two probes in this machine is able to be extended by polymerase on its counterpart species. Moreover, with the help of nicking endonuclease, the dual isothermal polymerization is converted into dual circular strand-displacement amplification, generating a large amount of anti-hemin aptamer-contained products. After binding to hemins, the aptamer/hemin duplex, horseradish peroxidase (HRP)-mimicking DNAzyme, was formed and catalyzed the oxidation of colorless ABTS by H2O2, producing a visible green color. The proposed colorimetric assay exhibits a wide linear range from 0.01 to 150nM with a low detection limit of 10pM. More interestingly, the mutations existing in target gene are easily observed by the naked eye. It should be noted that this colorimetric system was proved by the analysis of K-ras gene of SW620 cell lines. The simple and powerful DFA-machine is expected to provide promising potential in the sensitive detection of biomarkers for cancer diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Huo Xu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Dong Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chen-Qiao Li
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zheng Lu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiao-Yun Liao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jie Huang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Sanromán-Iglesias M, Lawrie CH, Schäfer T, Grzelczak M, Liz-Marzán LM. Sensitivity Limit of Nanoparticle Biosensors in the Discrimination of Single Nucleotide Polymorphism. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María Sanromán-Iglesias
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Molecular
Oncology Group, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
| | - Charles H. Lawrie
- Molecular
Oncology Group, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thomas Schäfer
- Polymat, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marek Grzelczak
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20009 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20009 Donostia-San
Sebastián, Spain
| |
Collapse
|
39
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
40
|
Liu S, Wei W, Wang Y, Fang L, Wang L, Li F. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification. Biosens Bioelectron 2016; 80:208-214. [PMID: 26849348 DOI: 10.1016/j.bios.2016.01.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Owing to the intrinsic importance of nucleic acid as bio-targets, the development of isothermal and ultrasensitive electrochemical DNA biosensor is very essential for biological studies and medical diagnostics. Herein, the autonomous cascade DNA replication strategy was effectively married with the enzyme/gold nanoparticle-based post-amplification strategy to promote the detection performance toward target DNA. A hairpin DNA probe (HP) is designed that consists of an overhang at 3'-end as the recognition unit for target DNA, a recognition site for nicking endonuclease, and an alkane spacer to terminate polymerization reaction. The autonomous DNA replication-scission-displacement reaction operated by the nicking endonuclease/KF polymerase induced the autocatalytic opening of HP, which was then specifically bound by the enzyme/gold nanoparticles for further dual-signal amplification toward target-related sensing events. A low detection limit of 0.065 fM with an excellent selectivity toward target DNA could be achieved. The proposed biosensor could be also easily regenerated for target detection. The developed biosensor creates an opportunity for the effective coupling of the target replication with post-amplification strategies and thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine.
Collapse
Affiliation(s)
- Shufeng Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No.53, Rd. Zhengzhou, Qingdao, Shandong 266042, China.
| | - Wenji Wei
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No.53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| | - Yanqun Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No.53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| | - Li Fang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No.53, Rd. Zhengzhou, Qingdao, Shandong 266042, China
| | - Li Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No.53, Rd. Zhengzhou, Qingdao, Shandong 266042, China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
41
|
Wang H, Wang Y, Liu S, Yu J, Guo Y, Xu Y, Huang J. Signal-on electrochemical detection of antibiotics based on exonuclease III-assisted autocatalytic DNA biosensing platform. RSC Adv 2016. [DOI: 10.1039/c6ra06061g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a novel electrochemical DNA sensor based on exonuclease III (Exo III)-assisted autocatalytic DNA biosensing platform for ultrasensitive detection of antibiotics has been reported.
Collapse
Affiliation(s)
- Hongzhi Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yu Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Su Liu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yuna Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Ying Xu
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
42
|
Zhao C, Gao F, Weng S, Liu Q, Lin L, Lin X. An electrochemical sensor based on DNA polymerase and HRP-SiO2 nanoparticles for the ultrasensitive detection of K-ras gene point mutation. RSC Adv 2016. [DOI: 10.1039/c5ra24737c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We developed a DNA sensor for the precise detection of point mutation of K-ras gene. The sensor was based on DNA replication, which employed the DNA polymerase I and the principle of base pairing, and can detect target DNA in mixture sample.
Collapse
Affiliation(s)
- Chengfei Zhao
- Pharmaceutical and Medical Technology College
- Putian University
- Putian 351100
- China
| | - Feng Gao
- Department of Pathology
- The First Affiliated Hospital of Fujian Medical University
- Fuzhou 350005
- China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis
- Faculty of Pharmacy
- Fujian Medical University
- Fuzhou 350108
- China
| | - Qicai Liu
- Department of Clinical Laboratory
- The First Affiliated Hospital of Fujian Medical University
- Fuzhou 350005
- China
| | - Liqing Lin
- Department of Pharmaceutical Analysis
- Faculty of Pharmacy
- Fujian Medical University
- Fuzhou 350108
- China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis
- Faculty of Pharmacy
- Fujian Medical University
- Fuzhou 350108
- China
| |
Collapse
|
43
|
Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal Bioanal Chem 2015; 408:2793-811. [DOI: 10.1007/s00216-015-9240-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
|
44
|
Huang J, Wang Z, Kim JK, Su X, Li Z. Detecting Arbitrary DNA Mutations Using Graphene Oxide and Ethidium Bromide. Anal Chem 2015; 87:12254-61. [DOI: 10.1021/acs.analchem.5b03369] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiahao Huang
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyu Wang
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jang-Kyo Kim
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuefen Su
- School of Public
Health and Primary Care, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong
| | - Zhigang Li
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
45
|
Moradi N, Noori A, Mehrgardi MA, Mousavi MF. Scanning Electrochemical Microscopy for Electrochemical Detection of Single-base Mismatches by Tagging Ferrocenecarboxylic Acid as a Redox Probe to DNA. ELECTROANAL 2015. [DOI: 10.1002/elan.201500598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Lee AC, Du D, Chen B, Heng CK, Lim TM, Lin Y. Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels. Analyst 2015; 139:4223-30. [PMID: 24961450 DOI: 10.1039/c3an01156a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe an ultrasensitive electrochemical nucleic acid assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL)-related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation and used to label and amplify the target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The signal-amplified assay achieved a detection limit of 83 fM (5 × 10(-18) mol in 60 μL) targets oligonucleotides and has a 4-order-wide dynamic range of target concentration. The resulting assay allowed robust discrimination between the perfect match and a three-base mismatch sequence. When exposed to the full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of 1 × 10(-16) mol in 60 μL, corresponding to approximately 33 pg of the target gene. The high sensitivity and specificity of the assay enabled a PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15 in comparison to those obtained from negative cell line HL-60. The approach enables a simple, low-cost and ultrasensitive electrochemical nucleic acid detection in portable devices, point-of-care and early disease diagnostic applications.
Collapse
Affiliation(s)
- Ai-Cheng Lee
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Khoshfetrat SM, Ranjbari M, Shayan M, Mehrgardi MA, Kiani A. Wireless Electrochemiluminescence Bipolar Electrode Array for Visualized Genotyping of Single Nucleotide Polymorphism. Anal Chem 2015; 87:8123-31. [DOI: 10.1021/acs.analchem.5b02515] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Mitra Ranjbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mohsen Shayan
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Abolfazl Kiani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
48
|
Galán T, Prieto-Simón B, Alvira M, Eritja R, Götz G, Bäuerle P, Samitier J. Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes. Biosens Bioelectron 2015. [PMID: 26210592 DOI: 10.1016/j.bios.2015.07.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we describe a label-free electrochemical DNA sensor based on poly(3,4-ethylenedioxythiophene)-modified (PEDOT-modified) electrodes. An acetylene-terminated DNA probe, complementary to a specific "Hepatitis C" virus sequence, was immobilized onto azido-derivatized conducting PEDOT electrodes using "click" chemistry. DNA hybridization was then detected by differential pulse voltammetry, evaluating the changes in the electrochemical properties of the polymer produced by the recognition event. A limit of detection of 0.13 nM was achieved using this highly selective PEDOT-based genosensor, without the need for labeling techniques or microelectrode fabrication processes. These results are promising for the development of label-free and reagentless DNA hybridization sensors based on conducting polymeric substrates. Biosensors can be easily prepared using any DNA sequence containing an alkyne moiety. The data presented here reveal the potential of this DNA sensor for diagnostic applications in the screening of diseases, such as "Hepatitis C", and genetic mutations.
Collapse
Affiliation(s)
- Teresa Galán
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain; Electronics Department, University of Barcelona (UB), Martí i Franquès 1-11, Barcelona 08028, Spain.
| | | | - Margarita Alvira
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain; Fundació Bosch i Gimpera, Baldiri Reixac, 4-8, Parc Científic Barcelona, Torre D, 08028 Barcelona, Spain.
| | - Ramón Eritja
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Günther Götz
- Institute of Organic Chemistry II and New Materials, University Ulm, Albert-Einstein-Allee 11, d-89081 Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and New Materials, University Ulm, Albert-Einstein-Allee 11, d-89081 Ulm, Germany.
| | - Josep Samitier
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Electronics Department, University of Barcelona (UB), Martí i Franquès 1-11, Barcelona 08028, Spain.
| |
Collapse
|
49
|
DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. SENSORS 2015; 15:14539-68. [PMID: 26102488 PMCID: PMC4507582 DOI: 10.3390/s150614539] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to simplify healthcare delivery of effective and personalized medicine, especially with regard to chronic diseases (e.g., diabetes and cardiovascular diseases) that have high healthcare costs. Up-to-date results suggest that DNA-based nanobiosensors could be used effectively to provide simple, fast, cost-effective, sensitive and specific detection of some genetic, cancer, and infectious diseases. In addition, they could potentially be used as a platform to detect immunodeficiency, and neurological and other diseases. This review examines different types of DNA-based nanobiosensors, the basic principles upon which they are based and their advantages and potential in diagnosis of acute and chronic diseases. We discuss recent trends and applications of new strategies for DNA-based nanobiosensors, and emphasize the challenges in translating basic research to the clinical laboratory.
Collapse
|
50
|
Chang K, Deng S, Chen M. Novel biosensing methodologies for improving the detection of single nucleotide polymorphism. Biosens Bioelectron 2015; 66:297-307. [DOI: 10.1016/j.bios.2014.11.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/28/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
|