1
|
Cipurko D, Ueda T, Mei L, Chevrier N. Repurposing large-format microarrays for scalable spatial transcriptomics. Nat Methods 2025; 22:145-155. [PMID: 39562752 DOI: 10.1038/s41592-024-02501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Spatiomolecular analyses are key to study tissue functions and malfunctions. However, we lack profiling tools for spatial transcriptomics that are easy to adopt, low cost and scalable in terms of sample size and number. Here, we describe a method, Array-seq, to repurpose classical oligonucleotide microarrays for spatial transcriptomics profiling. We generate Array-seq slides from microarrays carrying custom-design probes that contain common sequences flanking unique barcodes at known coordinates. Then we perform a simple, two-step reaction that produces mRNA capture probes across all spots on the microarray. We demonstrate that Array-seq yields spatial transcriptomes with high detection sensitivity and localization specificity using histological sections from mouse tissues as test systems. Moreover, we show that the large surface area of Array-seq slides yields spatial transcriptomes (i) at high throughput by profiling multi-organ sections, (ii) in three dimensions by processing serial sections from one sample, and (iii) across whole human organs. Thus, by combining classical DNA microarrays and next-generation sequencing, we have created a simple and flexible platform for spatiomolecular studies of small-to-large specimens at scale.
Collapse
Affiliation(s)
- Denis Cipurko
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Tatsuki Ueda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Linghan Mei
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Nicolas Chevrier
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Nur A, Lai JY, Ch'ng ACW, Choong YS, Wan Isa WYH, Lim TS. A review of in vitro stochastic and non-stochastic affinity maturation strategies for phage display derived monoclonal antibodies. Int J Biol Macromol 2024; 277:134217. [PMID: 39069045 DOI: 10.1016/j.ijbiomac.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies identified using display technologies like phage display occasionally suffers from a lack of affinity making it unsuitable for application. This drawback is circumvented with the application of affinity maturation. Affinity maturation is an essential step in the natural evolution of antibodies in the immune system. The evolution of molecular based methods has seen the development of various mutagenesis approaches. This allows for the natural evolutionary process during somatic hypermutation to be replicated in the laboratories for affinity maturation to fine-tune the affinity and selectivity of antibodies. In this review, we will discuss affinity maturation strategies for mAbs generated through phage display systems. The review will highlight various in vitro stochastic and non-stochastic affinity maturation approaches that includes but are not limited to random mutagenesis, site-directed mutagenesis, and gene synthesis.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
4
|
Jo S, Shin H, Joe SY, Baek D, Park C, Chun H. Recent progress in DNA data storage based on high-throughput DNA synthesis. Biomed Eng Lett 2024; 14:993-1009. [PMID: 39220021 PMCID: PMC11362454 DOI: 10.1007/s13534-024-00386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 09/04/2024] Open
Abstract
DNA data storage has emerged as a solution for storing massive volumes of data by utilizing nucleic acids as a digital information medium. DNA offers exceptionally high storage density, long durability, and low maintenance costs compared to conventional storage media such as flash memory and hard disk drives. DNA data storage consists of the following steps: encoding, DNA synthesis (i.e., writing), preservation, retrieval, DNA sequencing (i.e., reading), and decoding. Out of these steps, DNA synthesis presents a bottleneck due to imperfect coupling efficiency, low throughput, and excessive use of organic solvents. Overcoming these challenges is essential to establish DNA as a viable data storage medium. In this review, we provide the overall process of DNA data storage, presenting the recent progress of each step. Next, we examine a detailed overview of DNA synthesis methods with an emphasis on their limitations. Lastly, we discuss the efforts to overcome the constraints of each method and their prospects.
Collapse
Affiliation(s)
- Seokwoo Jo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Haewon Shin
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Sung-yune Joe
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - David Baek
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| |
Collapse
|
5
|
Yu M, Tang X, Li Z, Wang W, Wang S, Li M, Yu Q, Xie S, Zuo X, Chen C. High-throughput DNA synthesis for data storage. Chem Soc Rev 2024; 53:4463-4489. [PMID: 38498347 DOI: 10.1039/d3cs00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Weidong Wang
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Qiuliyang Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Sijia Xie
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Chang Chen
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| |
Collapse
|
6
|
Ma Y, Zhang Z, Jia B, Yuan Y. Automated high-throughput DNA synthesis and assembly. Heliyon 2024; 10:e26967. [PMID: 38500977 PMCID: PMC10945133 DOI: 10.1016/j.heliyon.2024.e26967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
DNA synthesis and assembly primarily revolve around the innovation and refinement of tools that facilitate the creation of specific genes and the manipulation of entire genomes. This multifaceted process encompasses two fundamental steps: the synthesis of lengthy oligonucleotides and the seamless assembly of numerous DNA fragments. With the advent of automated pipetting workstations and integrated experimental equipment, a substantial portion of repetitive tasks in the field of synthetic biology can now be efficiently accomplished through integrated liquid handling workstations. This not only reduces the need for manual labor but also enhances overall efficiency. This review explores the ongoing advancements in the oligonucleotide synthesis platform, automated DNA assembly techniques, and biofoundries. The development of accurate and high-throughput DNA synthesis and assembly technologies presents both challenges and opportunities.
Collapse
Affiliation(s)
- Yuxin Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Kim J, Kim H, Bang D. An open-source, 3D printed inkjet DNA synthesizer. Sci Rep 2024; 14:3773. [PMID: 38355610 PMCID: PMC10867077 DOI: 10.1038/s41598-024-53944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Synthetic oligonucleotides have become a fundamental tool in a wide range of biological fields, including synthetic biology, biosensing, and DNA storage. Reliable access to equipment for synthesizing high-density oligonucleotides in the laboratory ensures research security and the freedom of research expansion. In this study, we introduced the Open-Source Inkjet DNA Synthesizer (OpenIDS), an open-source inkjet-based microarray synthesizer that offers ease of construction, rapid deployment, and flexible scalability. Utilizing 3D printing, Arduino, and Raspberry Pi, this newly designed synthesizer achieved robust stability with an industrial inkjet printhead. OpenIDS maintains low production costs and is therefore suitable for self-fabrication and optimization in academic laboratories. Moreover, even non-experts can create and control the synthesizer with a high degree of freedom for structural modifications. Users can easily add printheads or alter the design of the microarray substrate according to their research needs. To validate its performance, we synthesized oligonucleotides on 144 spots on a 15 × 25-mm silicon wafer filled with controlled pore glass. The synthesized oligonucleotides were analyzed using urea polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Junhyeong Kim
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Haeun Kim
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea.
| |
Collapse
|
8
|
Wang ZK, Yuan ZX, Qian C, Liu XW. Plasmonic Probing of Deoxyribonucleic Acid Hybridization at the Single Base Pair Resolution. Anal Chem 2023; 95:18398-18406. [PMID: 38055795 DOI: 10.1021/acs.analchem.3c03316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Partial DNA duplex formation greatly impacts the quality of DNA hybridization and has been extensively studied due to its significance in many biological processes. However, traditional DNA sensing methods suffer from time-consuming amplification steps and hinder the acquisition of information about single-molecule behavior. In this work, we developed a plasmonic method to probe the hybridization process at a single base pair resolution and study the relationship between the complementarity of DNA analytes and DNA hybridization behaviors. We measured single-molecule hybridization events with Au NP-modified ssDNA probes in real time and found two hybridization adsorption events: stable and transient adsorption. The ratio of these two hybridization adsorption events was correlated with the length of the complementary sequences, distinguishing DNA analytes from different complementary sequences. By using dual incident angle excitation, we recognized different single-base complementary sequences. These results demonstrated that the plasmonic method can be applied to study partial DNA hybridization behavior and has the potential to be incorporated into the identification of similar DNA sequences, providing a sensitive and quantitative tool for DNA analysis.
Collapse
Affiliation(s)
- Zhao-Kun Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhen-Xuan Yuan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Verardo D, Adelizzi B, Rodriguez-Pinzon DA, Moghaddam N, Thomée E, Loman T, Godron X, Horgan A. Multiplex enzymatic synthesis of DNA with single-base resolution. SCIENCE ADVANCES 2023; 9:eadi0263. [PMID: 37418522 PMCID: PMC10328407 DOI: 10.1126/sciadv.adi0263] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.
Collapse
Affiliation(s)
| | | | | | | | | | - Tessa Loman
- DNA Script, 67 Avenue de Fontainebleau, 94270 Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
10
|
El-Shaikh A, Seeger B. Content-based filter queries on DNA data storage systems. Sci Rep 2023; 13:7053. [PMID: 37120614 PMCID: PMC10148835 DOI: 10.1038/s41598-023-34160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
Recent developments in DNA data storage systems have revealed the great potential to store large amounts of data at a very high density with extremely long persistence and low cost. However, despite recent contributions to robust data encoding, current DNA storage systems offer limited support for random access on DNA storage devices due to restrictive biochemical constraints. Moreover, state-of-the-art approaches do not support content-based filter queries on DNA storage. This paper introduces the first encoding for DNA that enables content-based searches on structured data like relational database tables. We provide the details of the methods for coding and decoding millions of directly accessible data objects on DNA. We evaluate the derived codes on real data sets and verify their robustness.
Collapse
Affiliation(s)
- Alex El-Shaikh
- Departement of Mathematics and Computer Science, University of Marburg, 35037, Marburg, Germany.
| | - Bernhard Seeger
- Departement of Mathematics and Computer Science, University of Marburg, 35037, Marburg, Germany
| |
Collapse
|
11
|
Schaudy E, Lietard J. In situ enzymatic template replication on DNA microarrays. Methods 2023; 213:33-41. [PMID: 37001684 DOI: 10.1016/j.ymeth.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
DNA microarrays are very useful tools to study the realm of nucleic acids interactions at high throughput. The conventional approach to microarray synthesis employs phosphoramidite chemistry and yields unmodified DNA generally attached to a surface at the 3' terminus. Having a freely accessible 3'-OH instead of 5'-OH is desirable too, and being able to introduce nucleoside analogs in a combinatorial manner is highly relevant in the context of nucleic acid therapeutics and in aptamer research. Here, we describe an enzymatic approach to the synthesis of high-density DNA microarrays that can also contain chemical modifications. The method uses a standard DNA microarray, to which a DNA primer is covalently bound through photocrosslinking. The extension of the primer with a DNA polymerase yields double-stranded DNA but is also amenable to the incorporation of modified dNTPs. Further processing with T7 exonuclease, which catalyzes the degradation of DNA in a specific (5'→3') direction, results in template strand removal. Overall, the method produces surface-bound natural and non-natural DNA oligonucleotides, is applicable to commercial microarrays and paves the way for the preparation of combinatorial, chemically modified aptamer libraries.
Collapse
|
12
|
Schaudy E, Lietard J, Somoza MM. Enzymatic Synthesis of High-Density RNA Microarrays. Curr Protoc 2023; 3:e667. [PMID: 36794904 PMCID: PMC10946701 DOI: 10.1002/cpz1.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Oligonucleotide microarrays are used to investigate the interactome of nucleic acids. DNA microarrays are commercially available, whereas equivalent RNA microarrays are not. This protocol describes a method to convert DNA microarrays of any density and complexity into RNA microarrays using only readily available materials and reagents. This simple conversion protocol will facilitate the accessibility of RNA microarrays to a wide range of researchers. In addition to general considerations for the design of a template DNA microarray, this procedure describes the experimental steps of hybridization of an RNA primer to the immobilized DNA, followed by its covalent attachment via psoralen-mediated photocrosslinking. The subsequent enzymatic processing steps comprise the extension of the primer with T7 RNA polymerase to generate complementary RNA, and finally the removal of the DNA template with TURBO DNase. Beyond the conversion process, we also describe approaches to detect the RNA product either by internal labeling with fluorescently labeled NTPs or via hybridization to the product strand, a step that can then be complemented by an RNase H assay to confirm the nature of the product. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Conversion of a DNA microarray to an RNA microarray Alternate Protocol: Detection of RNA via incorporation of Cy3-UTP Support Protocol 1: Detection of RNA via hybridization Support Protocol 2: RNase H assay.
Collapse
Affiliation(s)
- Erika Schaudy
- Faculty of Chemistry, Institute of Inorganic ChemistryUniversity of ViennaJosef‐Holaubek‐Platz 2 (UZA 2)ViennaAustria
| | - Jory Lietard
- Faculty of Chemistry, Institute of Inorganic ChemistryUniversity of ViennaJosef‐Holaubek‐Platz 2 (UZA 2)ViennaAustria
| | - Mark M. Somoza
- Faculty of Chemistry, Institute of Inorganic ChemistryUniversity of ViennaJosef‐Holaubek‐Platz 2 (UZA 2)ViennaAustria
- Chair of Food Chemistry and Molecular Sensory ScienceTechnical University of MunichLise‐Meitner‐Straße 34FreisingGermany
- Leibniz Institute for Food Systems Biology at the Technical University of MunichLise‐Meitner‐Straße 30FreisingGermany
| |
Collapse
|
13
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
14
|
Recent advancements in additive manufacturing techniques employed in the pharmaceutical industry: A bird's eye view. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Wei Y, Wang K, Luo S, Li F, Zuo X, Fan C, Li Q. Programmable DNA Hydrogels as Artificial Extracellular Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107640. [PMID: 35119201 DOI: 10.1002/smll.202107640] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The cell microenvironment plays a crucial role in regulating cell behavior and fate in physiological and pathological processes. As the fundamental component of the cell microenvironment, extracellular matrix (ECM) typically possesses complex ordered structures and provides essential physical and chemical cues to the cells. Hydrogels have attracted much attention in recapitulating the ECM. Compared to natural and synthetic polymer hydrogels, DNA hydrogels have unique programmable capability, which endows the material precise structural customization and tunable properties. This review focuses on recent advances in programmable DNA hydrogels as artificial extracellular matrix, particularly the pure DNA hydrogels. It introduces the classification, design, and assembly of DNA hydrogels, and then summarizes the state-of-the-art achievements in cell encapsulation, cell culture, and tissue engineering with DNA hydrogels. Ultimately, the challenges and prospects for cellular applications of DNA hydrogels are delivered.
Collapse
Affiliation(s)
- Yuhan Wei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaizhe Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| |
Collapse
|
16
|
Schaudy E, Hölz K, Lietard J, Somoza MM. Simple synthesis of massively parallel RNA microarrays via enzymatic conversion from DNA microarrays. Nat Commun 2022; 13:3772. [PMID: 35773271 PMCID: PMC9246885 DOI: 10.1038/s41467-022-31370-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
RNA catalytic and binding interactions with proteins and small molecules are fundamental elements of cellular life processes as well as the basis for RNA therapeutics and molecular engineering. In the absence of quantitative predictive capacity for such bioaffinity interactions, high throughput experimental approaches are needed to sufficiently sample RNA sequence space. Here we report on a simple and highly accessible approach to convert commercially available customized DNA microarrays of any complexity and density to RNA microarrays via a T7 RNA polymerase-mediated extension of photocrosslinked methyl RNA primers and subsequent degradation of the DNA templates.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Kathrin Hölz
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Mark M Somoza
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany.
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany.
| |
Collapse
|
17
|
Dale AG, Porcu A, Mann J, Neidle S. The mechanism of resistance in Escherichia coli to ridinilazole and other antibacterial head-to-head bis-benzimidazole compounds. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe appY gene has been characterised as conferring resistance to a novel series of antimicrobial benzimidazole derivatives in E. coli MC1061 cells when expressed in high copy-number. A microarray approach was used to identify genes involved in the mechanism of appY-mediated antibacterial resistance, that were up- or down-regulated following induction of the gene in the appY knockout strain JW0553. In total, expression of 90 genes was induced and 48 repressed greater than 2.5-fold (P < 0.05), 45 min after appY induction. Over half the genes up-regulated following appY expression had confirmed or putative roles in acid resistance (AR) and response to oxidative and antibiotic stresses. These included the genes for MdtE and MdtF, which form a multi-drug transporter with TolC and have been implicated in resistance to several antibiotics including erythromycin. Amongst the acid resistance genes were gadAB and adiAC encoding the glutamate-dependant (AR2) and arginine-dependant (AR3) acid resistance systems respectively, in addition to the transcriptional activators of these systems gadE and gadX. In agreement with earlier studies, appA, appCB and hyaA-F were also up-regulated following induction of appY. This study has also confirmed that over-expression of mdtEF confers resistance to these antibacterial benzimidazoles, indicating that the observation of appY conferring resistance to these compounds, proceeds through an appY-mediated up-regulation of this efflux transporter. To assess the importance of the AppY enzyme to acid stress responses, the percentage survival of bacteria in acidified media (pH ≤ 2) was measured. From an initial input of 1 × 106 CFU/ml, the wild-type strain MG1655 showed 7.29% and 0.46% survival after 2 and 4 h, respectively. In contrast, strain JW0553 in which appY is deleted was completely killed by the treatment. Transformation of JW0553 with a plasmid carrying appY returned survival to wild-type levels (7.85% and 1.03% survival at 2 and 4 h). Further dissection of the response by prior induction of each of the three AR systems has revealed that AR1 and AR3 were most affected by the absence of appY. This work highlights an important and previously unidentified role for the AppY enzyme in mediating the responses to several stress conditions. It is likely that the appY gene fits into a complex transcriptional regulatory network involving σS and gadE and gadX. Further work to pinpoint its position in such a hierarchy and to assess the contribution of appY to oxidative stress responses should help determine its full significance. This work is also consistent with recent studies in C. difficile showing that the mechanism of action of ridinilazole involves AT-rich DNA minor groove binding.
Collapse
|
18
|
Kleiner RE. Interrogating the transcriptome with metabolically incorporated ribonucleosides. Mol Omics 2021; 17:833-841. [PMID: 34635895 DOI: 10.1039/d1mo00334h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA is a central player in biological processes, but there remain major gaps in our understanding of transcriptomic processes and the underlying biochemical mechanisms regulating RNA in cells. A powerful strategy to facilitate molecular analysis of cellular RNA is the metabolic incorporation of chemical probes. In this review, we discuss current approaches for RNA metabolic labeling with modified ribonucleosides and their integration with Next-Generation Sequencing, mass spectrometry-based proteomics, and fluorescence microscopy in order to interrogate RNA behavior in its native context.
Collapse
Affiliation(s)
- Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
19
|
Sinyakov A, Ryabinin V, Kostina E, Zaytsev D, Chukanov N, Kamaev G. Linkers for oligonucleotide microarray synthesis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Kuiper BP, Prins RC, Billerbeck S. Oligo Pools as an Affordable Source of Synthetic DNA for Cost-Effective Library Construction in Protein- and Metabolic Pathway Engineering. Chembiochem 2021; 23:e202100507. [PMID: 34817110 PMCID: PMC9300125 DOI: 10.1002/cbic.202100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Indexed: 11/11/2022]
Abstract
The construction of custom libraries is critical for rational protein engineering and directed evolution. Array‐synthesized oligo pools of thousands of user‐defined sequences (up to ∼350 bases in length) have emerged as a low‐cost commercially available source of DNA. These pools cost ≤10 % (depending on error rate and length) of other commercial sources of custom DNA, and this significant cost difference can determine whether an enzyme engineering project can be realized on a given research budget. However, while being cheap, oligo pools do suffer from a low concentration of individual oligos and relatively high error rates. Several powerful techniques that specifically make use of oligo pools have been developed and proven valuable or even essential for next‐generation protein and pathway engineering strategies, such as sequence‐function mapping, enzyme minimization, or de‐novo design. Here we consolidate the knowledge on these techniques and their applications to facilitate the use of oligo pools within the protein engineering community.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Caron K, Craw P, Richardson MB, Bodrossy L, Voelcker NH, Thissen H, Sutherland TD. The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. SENSORS 2021; 21:s21196625. [PMID: 34640944 PMCID: PMC8513014 DOI: 10.3390/s21196625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Antimicrobial resistance (AMR) is threatening modern medicine. While the primary cost of AMR is paid in the healthcare domain, the agricultural and environmental domains are also reservoirs of resistant microorganisms and hence perpetual sources of AMR infections in humans. Consequently, the World Health Organisation and other international agencies are calling for surveillance of AMR in all three domains to guide intervention and risk reduction strategies. Technologies for detecting AMR that have been developed for healthcare settings are not immediately transferable to environmental and agricultural settings, and limited dialogue between the domains has hampered opportunities for cross-fertilisation to develop modified or new technologies. In this feature, we discuss the limitations of currently available AMR sensing technologies used in the clinic for sensing in other environments, and what is required to overcome these limitations.
Collapse
Affiliation(s)
- Karine Caron
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
| | - Pascal Craw
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Mark B. Richardson
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Levente Bodrossy
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Nicolas H. Voelcker
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Tara D. Sutherland
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
- Correspondence:
| |
Collapse
|
23
|
Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics 2021; 13:1373. [PMID: 34575448 PMCID: PMC8465948 DOI: 10.3390/pharmaceutics13091373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production. This review provides an extensive overview of 3D printing research applied to drug screening and drug delivery systems that represent pharmaceutical applications. We classify several elements required by each application for advanced pharmaceutical techniques and briefly describe state-of-the-art 3D printing technology consisting of cells, bioinks, and printing strategies that satisfy requirements. Furthermore, we discuss the limitations of traditional approaches by providing concrete examples of drug screening (organoid, organ-on-a-chip, and tissue/organ equivalent) and drug delivery systems (oral/vaginal/rectal and transdermal/surgical drug delivery), followed by the introduction of recent pharmaceutical investigations using 3D printing-based strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Minjun Ahn
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Won-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Kyungbuk, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| |
Collapse
|
24
|
Sinyakov AN, Ryabinin VA, Kostina EV. Application of Array-Based Oligonucleotides for Synthesis of Genetic Designs. Mol Biol 2021. [DOI: 10.1134/s0026893321030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Lietard J, Leger A, Erlich Y, Sadowski N, Timp W, Somoza MM. Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Res 2021; 49:6687-6701. [PMID: 34157124 PMCID: PMC8266620 DOI: 10.1093/nar/gkab505] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleic acid microarrays are the only tools that can supply very large oligonucleotide libraries, cornerstones of the nascent fields of de novo gene assembly and DNA data storage. Although the chemical synthesis of oligonucleotides is highly developed and robust, it is not error free, requiring the design of methods that can correct or compensate for errors, or select for high-fidelity oligomers. However, outside the realm of array manufacturers, little is known about the sources of errors and their extent. In this study, we look at the error rate of DNA libraries synthesized by photolithography and dissect the proportion of deletion, insertion and substitution errors. We find that the deletion rate is governed by the photolysis yield. We identify the most important substitution error and correlate it to phosphoramidite coupling. Besides synthetic failures originating from the coupling cycle, we uncover the role of imperfections and limitations related to optics, highlight the importance of absorbing UV light to avoid internal reflections and chart the dependence of error rate on both position on the array and position within individual oligonucleotides. Being able to precisely quantify all types of errors will allow for optimal choice of fabrication parameters and array design.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Norah Sadowski
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD, USA
| | - Winston Timp
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD, USA.,Johns Hopkins University, Departments of Biomedical Engineering, Molecular Biology and Genetics and Medicine, Division of Infectious Disease, Baltimore, MD, USA
| | - Mark M Somoza
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.,Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany.,Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
26
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
27
|
Xu C, Zhao C, Ma B, Liu H. Uncertainties in synthetic DNA-based data storage. Nucleic Acids Res 2021; 49:5451-5469. [PMID: 33836076 PMCID: PMC8191772 DOI: 10.1093/nar/gkab230] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/16/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxyribonucleic acid (DNA) has evolved to be a naturally selected, robust biomacromolecule for gene information storage, and biological evolution and various diseases can find their origin in uncertainties in DNA-related processes (e.g. replication and expression). Recently, synthetic DNA has emerged as a compelling molecular media for digital data storage, and it is superior to the conventional electronic memory devices in theoretical retention time, power consumption, storage density, and so forth. However, uncertainties in the in vitro DNA synthesis and sequencing, along with its conjugation chemistry and preservation conditions can lead to severe errors and data loss, which limit its practical application. To maintain data integrity, complicated error correction algorithms and substantial data redundancy are usually required, which can significantly limit the efficiency and scale-up of the technology. Herein, we summarize the general procedures of the state-of-the-art DNA-based digital data storage methods (e.g. write, read, and preservation), highlighting the uncertainties involved in each step as well as potential approaches to correct them. We also discuss challenges yet to overcome and research trends in the promising field of DNA-based data storage.
Collapse
Affiliation(s)
- Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
28
|
Glaab WE, Holder D, He YD, Bailey WJ, Gerhold DL, Beare C, Erdos Z, Lane P, Michna L, Muniappa N, Lawrence JW, Tanis KQ, Sina JF, Skopek TR, Sistare FD. Universal Toxicity Gene Signatures for Early Identification of Drug-Induced Tissue Injuries in Rats. Toxicol Sci 2021; 181:148-159. [PMID: 33837425 DOI: 10.1093/toxsci/kfab038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A new safety testing paradigm that relies on gene expression biomarker panels was developed to easily and quickly identify drug-induced injuries across tissues in rats prior to drug candidate selection. Here, we describe the development, qualification, and implementation of gene expression signatures that diagnose tissue degeneration/necrosis for use in early rat safety studies. Approximately 400 differentially expressed genes were first identified that were consistently regulated across 4 prioritized tissues (liver, kidney, heart, and skeletal muscle), following injuries induced by known toxicants. Hundred of these "universal" genes were chosen for quantitative PCR, and the most consistent and robustly responding transcripts selected, resulting in a final 22-gene set from which unique sets of 12 genes were chosen as optimal for each tissue. The approach was extended across 4 additional tissues (pancreas, gastrointestinal tract, bladder, and testes) where toxicities are less common. Mathematical algorithms were generated to convert each tissue's 12-gene expression values to a single metric, scaled between 0 and 1, and a positive threshold set. For liver, kidney, heart, and skeletal muscle, this was established using a training set of 22 compounds and performance determined by testing a set of approximately 100 additional compounds, resulting in 74%-94% sensitivity and 94%-100% specificity for liver, kidney, and skeletal muscle, and 54%-62% sensitivity and 95%-98% specificity for heart. Similar performance was observed across a set of 15 studies for pancreas, gastrointestinal tract, bladder, and testes. Bundled together, we have incorporated these tissue signatures into a 4-day rat study, providing a rapid assessment of commonly seen compound liabilities to guide selection of lead candidates without the necessity to perform time-consuming histopathologic analyses.
Collapse
Affiliation(s)
- Warren E Glaab
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Daniel Holder
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Yudong D He
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Wendy J Bailey
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - David L Gerhold
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Carolann Beare
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Zoltan Erdos
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Pamela Lane
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Laura Michna
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Nagaraja Muniappa
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Jeffrey W Lawrence
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Keith Q Tanis
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Joseph F Sina
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Thomas R Skopek
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Frank D Sistare
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| |
Collapse
|
29
|
Zhang Q, Willis-Fox N, Daly R. Capturing the value in printed pharmaceuticals - A study of inkjet droplets released from a polymer matrix. Int J Pharm 2021; 599:120436. [PMID: 33662470 DOI: 10.1016/j.ijpharm.2021.120436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
The future of personalised combination dosages will rely on the programming and delivery of multiple, separate APIs, their carrier fluids and excipients to a stable matrix, where each will remain separate until it is needed to be released. A recent technique has demonstrated how to print, capture and release materials from a polymer matrix using inkjet printing, a low cost and customisable technique. Droplets of a formulation are delivered to a fluid polymer matrix, where they are imbibed and remain pinned just under the upper surface, held in place by a balance of interfacial energies. Once the surrounding matrix cures and solidifies, the coating or matrix has trapped the formulation, but each drop has a small opening or pore to the outside that will allow delivery through diffusion. However, while the trapping mechanism has been explored in detail, to-date the release involved in this delivery has never been studied or quantified to the same level. Here we show a first study to quantify the release of a model system from a polymer matrix. An aqueous fluorescein solution is delivered and trapped, with release demonstrated to an agarose gel and aqueous environments. The work reveals that the balance of interfacial tensions prevents a reliable release until low concentrations of surfactant are included. This provides a route forward to further explore stabilising combinations of drugs within one material using a digitally controlled and affordable technique.
Collapse
Affiliation(s)
- Qingxin Zhang
- Institute for Manufacturing, Department of Engineering, University of Cambridge, UK
| | - Niamh Willis-Fox
- Institute for Manufacturing, Department of Engineering, University of Cambridge, UK
| | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge, UK.
| |
Collapse
|
30
|
van Eegher S, Perez-Lozano ML, Toillon I, Valour D, Pigenet A, Citadelle D, Bourrier C, Courtade-Gaïani S, Grégoire L, Cléret D, Malbos S, Nourissat G, Sautet A, Lafage-Proust MH, Pastoureau P, Rolland-Valognes G, De Ceuninck F, Berenbaum F, Houard X. The differentiation of prehypertrophic into hypertrophic chondrocytes drives an OA-remodeling program and IL-34 expression. Osteoarthritis Cartilage 2021; 29:257-268. [PMID: 33301945 DOI: 10.1016/j.joca.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We hypothesize that chondrocytes from the deepest articular cartilage layer are pivotal in maintaining cartilage integrity and that the modification of their prehypertrophic phenotype to a hypertrophic phenotype will drive cartilage degradation in osteoarthritis. DESIGN Murine immature articular chondrocytes (iMACs) were successively cultured into three different culture media to induce a progressive hypertrophic differentiation. Chondrocyte were phenotypically characterized by whole-genome microarray analysis. The expression of IL-34 and its receptors PTPRZ1 and CSF1R in chondrocytes and in human osteoarthritis tissues was assessed by RT-qPCR, ELISA and immunohistochemistry. The expression of bone remodeling and angiogenesis factors and the cell response to IL-1β and IL-34 were investigated by RT-qPCR and ELISA. RESULTS Whole-genome microarray analysis showed that iMACs, prehypertrophic and hypertrophic chondrocytes each displayed a specific phenotype. IL-1β induced a stronger catabolic effect in prehypertrophic chondrocytes than in iMACs. Hypertrophic differentiation of prehypertrophic chondrocytes increased Bmp-2 (95%CI [0.78; 1.98]), Bmp-4 (95%CI [0.89; 1.59]), Cxcl12 (95%CI [2.19; 5.41]), CCL2 (95%CI [3.59; 11.86]), Mmp 3 (95%CI [10.29; 32.14]) and Vegf mRNA expression (95%CI [0.20; 1.74]). Microarray analysis identified IL-34, PTPRZ1 and CSFR1 as being strongly overexpressed in hypertrophic chondrocytes. IL-34 was released by human osteoarthritis cartilage; its receptors were expressed in human osteoarthritis tissues. IL-34 stimulated CCL2 and MMP13 in osteoblasts and hypertrophic chondrocytes but not in iMACs or prehypertrophic chondrocytes. CONCLUSION Our results identify prehypertrophic chondrocytes as being potentially pivotal in the control of cartilage and subchondral bone integrity. Their differentiation into hypertrophic chondrocytes initiates a remodeling program in which IL-34 may be involved.
Collapse
Affiliation(s)
- S van Eegher
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - M-L Perez-Lozano
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - I Toillon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - D Valour
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | - A Pigenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - D Citadelle
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - C Bourrier
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | | | - L Grégoire
- Soladis, 94 Rue Saint-Lazare, F-75009, Paris, France
| | - D Cléret
- Université de Lyon - Université Jean Monnet, INSERM U1059, Faculté de Médecine, F-42270, Saint-Priest en Jarez, France
| | - S Malbos
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - G Nourissat
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France; Clinique Maussins-Nollet, Ramsay Générale de Santé, F-75019, Paris, France
| | - A Sautet
- Department of Orthopaedic Surgery and Traumatology, APHP Saint-Antoine Hospital, F-75012, Paris, France
| | - M-H Lafage-Proust
- Université de Lyon - Université Jean Monnet, INSERM U1059, Faculté de Médecine, F-42270, Saint-Priest en Jarez, France
| | - P Pastoureau
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | | | - F De Ceuninck
- Servier Research Institute, F-78290, Croissy-sur-Seine, France
| | - F Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France; Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris.
| | - X Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| |
Collapse
|
31
|
Béraud A, Sauvage M, Bazán CM, Tie M, Bencherif A, Bouilly D. Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst 2020; 146:403-428. [PMID: 33215184 DOI: 10.1039/d0an01661f] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Graphene field-effect transistors (GFETs) are emerging as bioanalytical sensors, in which their responsive electrical conductance is used to perform quantitative analyses of biologically-relevant molecules such as DNA, proteins, ions and small molecules. This review provides a detailed evaluation of reported approaches in the design, operation and performance assessment of GFET biosensors. We first dissect key design elements of these devices, along with most common approaches for their fabrication. We compare possible modes of operation of GFETs as sensors, including transfer curves, output curves and time series as well as their integration in real-time or a posteriori protocols. Finally, we review performance metrics reported for the detection and quantification of bioanalytes, and discuss limitations and best practices to optimize the use of GFETs as bioanalytical sensors.
Collapse
Affiliation(s)
- Anouk Béraud
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
JIANG H, LV XF, ZHAO KX. Progress of Aptamer Screening Techniques Based on Microfluidic Chips. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60015-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Abstract
In this work we show how DNA microarrays can be produced batch wise on standard microscope slides in a fast, easy, reliable and cost-efficient way. Contrary to classical microarray generation, the microarrays are generated via digital solid phase PCR. We have developed a cavity-chip system made of a PDMS/aluminum composite which allows such a solid phase PCR in a scalable and easy to handle manner. For the proof of concept, a DNA pool composed of two different DNA species was used to show that digital PCR is possible in our chips. In addition, we demonstrate that DNA microarray generation can be realized with different laboratory equipment (slide cycler, manually in water baths and with an automated cartridge system). We generated multiple microarrays and analyzed over 13,000 different monoclonal DNA spots to show that there is no significant difference between the used equipment. To show the scalability of our system we also varied the size and number of the cavities located in the array region up to more than 30,000 cavities with a volume of less than 60 pL per cavity. With this method, we present a revolutionary tool for novel DNA microarrays. Together with new established label-free measurement systems, our technology has the potential to give DNA microarray applications a new boost.
Collapse
|
34
|
|
35
|
Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, reagentless aptamer biosensors, named aptasensors, have shown significant advancements. Particularly, electrochemical aptasensors could change the field of biosensors in this era, where digitalization seems to be a common goal of many fields. Biomedical devices are integrating electronic technologies for detecting pathogens, biomolecules, small molecules, and ions, and the physical-chemical properties of nucleic acid aptamers makes them very interesting for these devices. Aptamers can be easily synthesized and functionalized with functional groups for immobilization and with redox chemical groups that allow for the conversion of molecular interactions into electrical signals. Furthermore, non-labeled aptamers have also been utilized. This review presents the current challenges involved in aptasensor architectures based on gold electrodes as transducers.
Collapse
|
36
|
Zhang W, Li J, Salena B, Li Y. A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry 2019; 26:592-596. [PMID: 31475757 DOI: 10.1002/chem.201903536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 01/24/2023]
Abstract
DNA detection is usually conducted under nondenaturing conditions to favor the formation of Watson-Crick base-paring interactions. However, although such a setting is excellent for distinguishing a single-nucleotide polymorphism (SNP) within short DNA sequences (15-25 nucleotides), it does not offer a good solution to SNP detection within much longer sequences. Here we report on a new detection method capable of detecting SNP in a DNA sequence containing 35-90 nucleotides. This is achieved through incorporating into the recognition DNA sequence a previously discovered DNA molecule that forms a stable G-quadruplex in the presence of 7 molar urea, a known condition for denaturing DNA structures. The systems are configured to produce both colorimetric and fluorescent signals upon target binding.
Collapse
Affiliation(s)
- Wenqing Zhang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Bruno Salena
- Department of Medicine, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
37
|
Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents. Nature 2019; 574:228-232. [DOI: 10.1038/s41586-019-1635-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
|
38
|
Abstract
Every microarray experiment is based on a common format. First, a large number of nucleotide "spots" are arrayed onto a substrate, typically a glass slide, a silicon chip, or microbeads. Second, a complex population of nucleic acids (isolated from cells, selected from in vitro-synthesized libraries, or obtained from another source) is labeled, typically with fluorescent dyes. Third, the labeled nucleic acids are allowed to hybridize to their complementary spot(s) on the microarray. Fourth, the hybridized microarray is washed, allowing the amount of hybridized label to then be quantified. Analysis of the raw data generates a readout of the levels of each species of RNA in the original complex population. This introduction includes several examples of microarray applications and provides a discussion of the basic steps of most microarray experiments.
Collapse
|
39
|
Costa JA, Dentinger PM, McGall GH, Crnogorac F, Zhou W. Fabrication of Inverted High-Density DNA Microarrays in a Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30534-30541. [PMID: 31389236 DOI: 10.1021/acsami.9b07755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current techniques for making high-resolution, photolithographic DNA microarrays suffer from the limitation that the 3' end of each sequence is anchored to a hard substrate and hence is unavailable for many potential enzymatic reactions. Here, we demonstrate a technique that inverts the entire microarray into a hydrogel. This method preserves the spatial fidelity of the original pattern while simultaneously removing incorrectly synthesized oligomers that are inherent to all other microarray fabrication strategies. First, a standard 5'-up microarray on a donor wafer is synthesized, in which each oligo is anchored with a cleavable linker at the 3' end and an Acrydite phosphoramidite at the 5' end. Following the synthesis of the array, an acrylamide monomer solution is applied to the donor wafer, and an acrylamide-silanized acceptor wafer is placed on top. As the polyacrylamide hydrogel forms between the two wafers, it covalently incorporates the acrydite-terminated sequences into the matrix. Finally, the oligos are released from the donor wafer upon immersing in an ammonia solution that cleaves the 3'-linkers, thus freeing the oligos at the 3' end. The array is now presented 3'-up on the surface of the gel-coated acceptor wafer. Various types of on-gel enzymatic reactions demonstrate a versatile and robust platform that can easily be constructed with far more molecular complexity than traditional photolithographic arrays by endowing the system with multiple enzymatic substrates. We produce a new generation of microarrays where highly ordered, purified oligos are inverted 3'-up, in a biocompatible soft hydrogel, and functional with respect to a wide variety of programable enzymatic reactions.
Collapse
Affiliation(s)
- Justin A Costa
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Paul M Dentinger
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Glenn H McGall
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Filip Crnogorac
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Wei Zhou
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| |
Collapse
|
40
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
41
|
Ping Z, Ma D, Huang X, Chen S, Liu L, Guo F, Zhu SJ, Shen Y. Carbon-based archiving: current progress and future prospects of DNA-based data storage. Gigascience 2019; 8:giz075. [PMID: 31220251 PMCID: PMC6586197 DOI: 10.1093/gigascience/giz075] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/09/2018] [Accepted: 06/03/2019] [Indexed: 01/23/2023] Open
Abstract
The information explosion has led to a rapid increase in the amount of data requiring physical storage. However, in the near future, existing storage methods (i.e., magnetic and optical media) will be insufficient to store these exponentially growing data. Therefore, data scientists are continually looking for better, more stable, and space-efficient alternatives to store these huge datasets. Because of its unique biological properties, highly condensed DNA has great potential to become a storage material for the future. Indeed, DNA-based data storage has recently emerged as a promising approach for long-term digital information storage. This review summarizes state-of-the-art methods, including digital-to-DNA coding schemes and the media types used in DNA-based data storage, and provides an overview of recent progress achieved in this field and its exciting future.
Collapse
Affiliation(s)
- Zhi Ping
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Dongzhao Ma
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoluo Huang
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Shihong Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Longying Liu
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Fei Guo
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sha Joe Zhu
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, UK
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
42
|
High information capacity DNA-based data storage with augmented encoding characters using degenerate bases. Sci Rep 2019; 9:6582. [PMID: 31036920 PMCID: PMC6488701 DOI: 10.1038/s41598-019-43105-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
DNA-based data storage has emerged as a promising method to satisfy the exponentially increasing demand for information storage. However, practical implementation of DNA-based data storage remains a challenge because of the high cost of data writing through DNA synthesis. Here, we propose the use of degenerate bases as encoding characters in addition to A, C, G, and T, which augments the amount of data that can be stored per length of DNA sequence designed (information capacity) and lowering the amount of DNA synthesis per storing unit data. Using the proposed method, we experimentally achieved an information capacity of 3.37 bits/character. The demonstrated information capacity is more than twice when compared to the highest information capacity previously achieved. The proposed method can be integrated with synthetic technologies in the future to reduce the cost of DNA-based data storage by 50%.
Collapse
|
43
|
Nash T, Huff M, Glen WB, Hardiman G. Pipeline for Integrated Microarray Expression Normalization Tool Kit (PIMENTo) for Tumor Microarray Profiling Experiments. Methods Mol Biol 2019; 1908:153-168. [PMID: 30649727 DOI: 10.1007/978-1-4939-9004-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
We have developed a Pipeline for Integrated Microarray Expression & Normalization Tool kit (PIMENTo) with the aim of streamlining the processes necessary for gene expression analysis in tumor tissue using DNA microarrays. Built with the R programming language and leveraging several open-source packages available through CRAN and Bioconductor, PIMENTo enables researchers to perform complex tasks with a minimal number of operations. Here, we describe the pipeline, review necessary data inputs, examine data outputs and quality control assessments and explore the commands to perform such analysis.
Collapse
Affiliation(s)
- Thomas Nash
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA.,Department of Computer Science, College of Charleston, Charleston, SC, USA
| | - Matthew Huff
- MS in Biomedical Sciences Program, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - W Bailey Glen
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Gary Hardiman
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA. .,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA. .,Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA. .,School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
44
|
Rastogi M, Singh SK. Advances in Molecular Diagnostic Approaches for Biothreat Agents. DEFENSE AGAINST BIOLOGICAL ATTACKS 2019. [PMCID: PMC7123646 DOI: 10.1007/978-3-030-03071-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The advancement in Molecular techniques has been implicated in the development of sophisticated, high-end diagnostic platform and point-of-care (POC) devices for the detection of biothreat agents. Different molecular and immunological approaches such as Immunochromatographic and lateral flow assays, Enzyme-linked Immunosorbent assays (ELISA), Biosensors, Isothermal amplification assays, Nucleic acid amplification tests (NAATs), Next Generation Sequencers (NGS), Microarrays and Microfluidics have been used for a long time as detection strategies of the biothreat agents. In addition, several point of care (POC) devices have been approved by FDA and commercialized in markets. The high-end molecular platforms like NGS and Microarray are time-consuming, costly, and produce huge amount of data. Therefore, the future prospects of molecular based technique should focus on developing quick, user-friendly, cost-effective and portable devices against biological attacks and surveillance programs.
Collapse
|
45
|
Jin D, Kong X, Cui B, Jin S, Xie Y, Wang X, Deng Y. Bacterial communities and potential waterborne pathogens within the typical urban surface waters. Sci Rep 2018; 8:13368. [PMID: 30190569 PMCID: PMC6127328 DOI: 10.1038/s41598-018-31706-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Waterborne pathogens have attracted a great deal of attention in the public health sector over the last several decades. However, little is known about the pathogenic microorganisms in urban water systems. In this study, the bacterial community structure of 16 typical surface waters in the city of Beijing were analyzed using Illumina MiSeq high-throughput sequencing based on 16S rRNA gene. The results showed that Bacteroidetes, Proteobacteria and Actinobacteria were the dominant groups in 16 surface water samples, and Betaproteobacteria, Alphaproteobacteria, Flavobacteriia, Sphingobacteriia and Actinobacteria were the most dominant classes. The dominant genus across all samples was Flavobacterium. In addition, fifteen genus level groups of potentialy pathogenic bacteria were detected within the 16 water samples, with Pseudomonas and Aeromonas the most frequently identified. Spearman correlation analysis demonstrated that richness estimators (OTUs and Chao1) were correlated with water temperature, nitrate and total nitrogen (p < 0.05), while ammonia-nitrogen and total nitrogen were significantly correlated with the percent of total potential pathogens (p ≤ 0.05). These results could provide insight into the ecological function and health risks of surface water bacterial communities during the process of urbanization.
Collapse
Affiliation(s)
- Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjian Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Jin
- School of History Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Yunfeng Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
Abstract
Microarray technologies have been a major research tool in the last decades. In addition they have been introduced into several fields of diagnostics including diagnostics of infectious diseases. Microarrays are highly parallelized assay systems that initially were developed for multiparametric nucleic acid detection. From there on they rapidly developed towards a tool for the detection of all kind of biological compounds (DNA, RNA, proteins, cells, nucleic acids, carbohydrates, etc.) or their modifications (methylation, phosphorylation, etc.). The combination of closed-tube systems and lab on chip devices with microarrays further enabled a higher automation degree with a reduced contamination risk. Microarray-based diagnostic applications currently complement and may in the future replace classical methods in clinical microbiology like blood cultures, resistance determination, microscopic and metabolic analyses as well as biochemical or immunohistochemical assays. In addition, novel diagnostic markers appear, like noncoding RNAs and miRNAs providing additional room for novel nucleic acid based biomarkers. Here I focus an microarray technologies in diagnostics and as research tools, based on nucleic acid-based arrays.
Collapse
|
47
|
A robust targeted sequencing approach for low input and variable quality DNA from clinical samples. NPJ Genom Med 2018; 3:2. [PMID: 29354287 PMCID: PMC5768874 DOI: 10.1038/s41525-017-0041-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Next-generation deep sequencing of gene panels is being adopted as a diagnostic test to identify actionable mutations in cancer patient samples. However, clinical samples, such as formalin-fixed, paraffin-embedded specimens, frequently provide low quantities of degraded, poor quality DNA. To overcome these issues, many sequencing assays rely on extensive PCR amplification leading to an accumulation of bias and artifacts. Thus, there is a need for a targeted sequencing assay that performs well with DNA of low quality and quantity without relying on extensive PCR amplification. We evaluate the performance of a targeted sequencing assay based on Oligonucleotide Selective Sequencing, which permits the enrichment of genes and regions of interest and the identification of sequence variants from low amounts of damaged DNA. This assay utilizes a repair process adapted to clinical FFPE samples, followed by adaptor ligation to single stranded DNA and a primer-based capture technique. Our approach generates sequence libraries of high fidelity with reduced reliance on extensive PCR amplification—this facilitates the accurate assessment of copy number alterations in addition to delivering accurate single nucleotide variant and insertion/deletion detection. We apply this method to capture and sequence the exons of a panel of 130 cancer-related genes, from which we obtain high read coverage uniformity across the targeted regions at starting input DNA amounts as low as 10 ng per sample. We demonstrate the performance using a series of reference DNA samples, and by identifying sequence variants in DNA from matched clinical samples originating from different tissue types. A new DNA sequencing technology enables comprehensive genetic analyses of poor-quality tumor samples. Hanlee Ji from Stanford University in California, USA, together with colleagues from a company he cofounded called TOMA Biosciences, tested the performance of a targeted sequencing assay known as oligonucleotide-selective sequencing (OS-Seq). They used the “in-solution” version of OS-Seq, which involves a pre-processing step to remove any damaged DNA and then sequences target regions of the genome to look for duplications, insertions or deletions of DNA segments. Using archival specimens (which often contain low quantities of degraded DNA) from patients with lung and colorectal cancer, the researchers showed they could detect sequence variants in a panel of 130 cancer-related genes. The findings suggest the OS-Seq assay could help inform treatment decisions for cancer patients, even with clinical specimens of low quality.
Collapse
|
48
|
Affiliation(s)
- Lindsey C. Szymczak
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hsin-Yu Kuo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
Chen D, Liu L, Luo X, Mu A, Yan L, Chen X, Wang L, Wang N, He H, Zhou H, Zhang T. Effect of SMYD3 on the microRNA expression profile of MCF-7 breast cancer cells. Oncol Lett 2017; 14:1831-1840. [PMID: 28789418 DOI: 10.3892/ol.2017.6320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
SET and MYND domain containing 3 (SMYD3) is a histone methyltransferase (HMT) and transcription factor, which serves important roles in carcinogenesis. Numerous downstream target genes of SMYD3 have been identified in previous studies. However, the downstream microRNA (miRNA) s regulated by SMYD3 are yet to be elucidated. In the present study, the results of miRNA microarray demonstrated that 30 miRNA expression profiles were upregulated, whilst 24 miRNAs were downregulated by >2.0-fold in the SMYD3-overexpressed MCF-7 breast cancer cells. The HMT activity was demonstrated to be essential for SMYD3-mediated transactivation of miR-200c-3p and the overexpression of miR-200c-3p inhibited the transactivation effects of SMYD3 on myocardin-related transcription factor-A-dependent migration-associated genes. To our best knowledge, the current study is the first to report on the transcriptional regulation of SMYD3 on miRNAs, and miR-200c may be a downstream negative regulator of the SMYD3-mediated pathway in the migration of breast cancer cells. These results may provide a novel theoretical basis to understand the mechanisms underlying the initiation, progression, diagnosis, prevention and therapy of breast cancer.
Collapse
Affiliation(s)
- Dongju Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lei Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ai Mu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lihua Yan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xiaoying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lei Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
50
|
Abstract
Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes.
Collapse
|