1
|
Sedic M, Kuperwasser C. BRCA1-hapoinsufficiency: Unraveling the molecular and cellular basis for tissue-specific cancer. Cell Cycle 2016; 15:621-7. [PMID: 26822887 DOI: 10.1080/15384101.2016.1141841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the past 20 years tremendous progress has been made in understanding the function of BRCA1 gene products. Yet one question still remains: why is mutation of BRCA1 typically associated with preferential development of breast and ovarian cancers and not tumors in other tissues? Here we discuss recent evidence documenting the effect of BRCA1-haploinsufficiency in different cells and tissues and synthesize a model for how mutations in a single BRCA1 allele in human cells might preferentially confer increased cancer risk in breast epithelial cells.
Collapse
Affiliation(s)
- Maja Sedic
- a Department of Developmental , Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston , MA , USA.,b Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine , Boston , MA , USA.,c Molecular Oncology Research Institute, Tufts Medical Center , Boston , MA , USA
| | - Charlotte Kuperwasser
- a Department of Developmental , Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston , MA , USA.,b Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine , Boston , MA , USA.,c Molecular Oncology Research Institute, Tufts Medical Center , Boston , MA , USA
| |
Collapse
|
2
|
Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-Colozzi A, Iglehart JD, Tung N, Ryan PD, Garber JE, Silver DP, Szallasi Z, Richardson AL. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2012; 2:366-375. [PMID: 22576213 PMCID: PMC3806629 DOI: 10.1158/2159-8290.cd-11-0206] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED DNA repair competency is one determinant of sensitivity to certain chemotherapy drugs, such as cisplatin. Cancer cells with intact DNA repair can avoid the accumulation of genome damage during growth and also can repair platinum-induced DNA damage. We sought genomic signatures indicative of defective DNA repair in cell lines and tumors and correlated these signatures to platinum sensitivity. The number of subchromosomal regions with allelic imbalance extending to the telomere (N(tAI)) predicted cisplatin sensitivity in vitro and pathologic response to preoperative cisplatin treatment in patients with triple-negative breast cancer (TNBC). In serous ovarian cancer treated with platinum-based chemotherapy, higher levels of N(tAI) forecast a better initial response. We found an inverse relationship between BRCA1 expression and N(tAI) in sporadic TNBC and serous ovarian cancers without BRCA1 or BRCA2 mutation. Thus, accumulation of telomeric allelic imbalance is a marker of platinum sensitivity and suggests impaired DNA repair. SIGNIFICANCE Mutations in BRCA genes cause defects in DNA repair that predict sensitivity to DNA damaging agents, including platinum; however, some patients without BRCA mutations also benefit from these agents. NtAI, a genomic measure of unfaithfully repaired DNA, may identify cancer patients likely to benefit from treatments targeting defective DNA repair.
Collapse
Affiliation(s)
- Nicolai J Birkbak
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Zhigang C Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Ji-Young Kim
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
- CHA University School of Medicine, Seoul, Republic of Korea
| | - Aron C Eklund
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Qiyuan Li
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Ruiyang Tian
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | | | - Yang Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | | | - J Dirk Iglehart
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Nadine Tung
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paula D Ryan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Judy E Garber
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Daniel P Silver
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, MA, 02115 USA
| | - Andrea L Richardson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
3
|
Blackburn AC, McLary SC, Naeem R, Luszcz J, Stockton DW, Donehower LA, Mohammed M, Mailhes JB, Soferr T, Naber SP, Otis CN, Jerry DJ. Loss of Heterozygosity Occurs via Mitotic Recombination in Trp53+/− Mice and Associates with Mammary Tumor Susceptibility of the BALB/c Strain. Cancer Res 2004; 64:5140-7. [PMID: 15289317 DOI: 10.1158/0008-5472.can-03-3435] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of heterozygosity (LOH) occurs commonly in cancers causing disruption of tumor suppressor genes and promoting tumor progression. BALB/c-Trp53(+/-) mice are a model of Li-Fraumeni syndrome, exhibiting a high frequency of mammary tumors and other tumor types seen in patients. However, the frequency of mammary tumors and LOH differs among strains of Trp53(+/-) mice, with mammary tumors occurring only on a BALB/c genetic background and showing a high frequency of LOH, whereas Trp53(+/-) mice on a 129/Sv or (C57BL/6 x 129/Sv) mixed background have a very low frequency of mammary tumors and show LOH for Trp53 in only approximately 50% of tumors. We have performed studies on tumors from Trp53(+/-) mice of several genetic backgrounds to examine the mechanism of LOH in BALB/c-Trp53(+/-) mammary tumors. By Southern blotting, 96% (24 of 25) of BALB/c-Trp53(+/-) mammary tumors displayed LOH for Trp53. Karyotype analysis indicated that cells lacking one copy of chromosome 11 were present in all five mammary tumors analyzed but were not always the dominant population. Comparative genomic hybridization analysis of these five tumors indicated either loss or retention of the entire chromosome 11. Thus chromosome loss or deletions within chromosome 11 do not account for the LOH observed by Southern blotting. Simple sequence length polymorphism analysis of (C57BL/6 x BALB/c) F1-Trp53(+/-) mammary tumors showed that LOH occurred over multiple loci and that a combination of maternal and paternal alleles were retained, indicating that mitotic recombination is the most likely mechanism of LOH. Nonmammary tumors of BALB/c mice also showed a high frequency of LOH (22 of 26, 85%) indicating it was not a mammary tumor specific phenomenon but rather a feature of the BALB/c strain. In (C57BL/6 x BALB/c) F1-Trp53(+/-) mice LOH was observed in 93% (13 of 14) of tumors, indicating that the high frequency of LOH was a dominant genetic trait. Thus the high frequency of LOH for Trp53 in BALB/c-Trp53(+/-) mammary tumors occurs via mitotic recombination and is a dominant genetic trait that associates with the occurrence of mammary tumors in (C57BL/6 x BALB/c) F1-Trp53(+/-) mice. These results further implicate double-strand DNA break repair machinery as important contributors to mammary tumorigenesis.
Collapse
Affiliation(s)
- Anneke C Blackburn
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, MA 01003-6410, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Recent evidence indicates that BRCA1, a gene product associated with breast and ovarian cancer susceptibility, is an important component of the cellular response to DNA damage. Despite being expressed ubiquitously in adult tissues, germline mutations in BRCA1 predispose individuals to breast and ovarian tumors with only minor effects on the predisposition to cancer in other sites. The reason for this tissue specificity of BRCA1 carcinomas must be found if we are to understand fully why these tumors occur and to enable us to design efficient preventive and therapeutic regimens. Here I propose that tissue-specific rates of loss of heterozygosity in the BRCA1 locus could contribute to tissue specificity in tumor development.
Collapse
Affiliation(s)
- Alvaro N A Monteiro
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
5
|
Beghini A, Magnani I, Roversi G, Piepoli T, Di Terlizzi S, Moroni RF, Pollo B, Fuhrman Conti AM, Cowell JK, Finocchiaro G, Larizza L. The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene 2003; 22:2581-91. [PMID: 12735302 DOI: 10.1038/sj.onc.1206336] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alterations of 19q13 are frequently observed in glial neoplasms, suggesting that this region harbors at least one gene involved in gliomagenesis. Following our previous studies on structural 19q chromosome rearrangements in gliomas, we have undertaken a detailed FISH analysis of the breakpoints and identified a 19q13.2 intrachromosomal amplification of the MAP/microtubule affinity-regulating kinase 4 (MARK4) gene in three primary glioblastoma cell lines. Recent data suggest that this gene is involved in the Wnt-signaling pathway. We observed that the expression of the alternatively spliced MARK4L isoform is upregulated in both fresh and cultured gliomas and overexpressed in all of the above three glioblastoma cell lines. Interestingly, we also found that MARK4L expression is restricted to undifferentiated neural progenitor cells or proliferating glial precursor cells, whereas its expression is downregulated during glial differentiation. Perturbation of expression using antisense oligonucleotides against MARK4 in glioblastoma cell lines, consistently induced a decreased proliferation of tumor cells. Taken together, these data show that MARK4, which is normally expressed in neural progenitors, is re-expressed in gliomas and may become a key target of intrachromosomal amplification upon 19q rearrangements.
Collapse
Affiliation(s)
- Alessandro Beghini
- Department of Biology and Genetics, University of Milan, via Viotti 3/5, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Silva FPG, Morolli B, Storlazzi CT, Anelli L, Wessels H, Bezrookove V, Kluin-Nelemans HC, Giphart-Gassler M. Identification of RUNX1/AML1 as a classical tumor suppressor gene. Oncogene 2003; 22:538-47. [PMID: 12555067 DOI: 10.1038/sj.onc.1206141] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Based on our previous results indicating the presence of a tumor suppressor gene (TSG), chromosome 21 was analysed for loss of heterozygosity (LOH) in 18 patients with acute myeloid leukemia (17, AML-M0; one, AML-M1). Allelotyping at polymorphic loci was performed on purified material, allowing unequivocal detection of allelic loss and homozygous deletions. Six AML-M0 patients shared a common region of LOH harboring a single gene: RUNX1 (AML1), the most frequent site of translocations in acute leukemia and a well-known fusion oncogene. Fluorescence in situ hybridization allowed the identification of deletions with breakpoints within RUNX1 in two patients as the cause of LOH. In the four others the LOH pattern and the presence of two karyotypically normal chromosomes 21 were in line with mitotic recombination. Further molecular and cytogenetic analyses showed that this caused homozygosity of primary RUNX1 mutations: two point mutations, a partial deletion and, most significantly, a complete deletion of RUNX1. These findings identify RUNX1 as a classical TSG: both alleles are mutated or absent in cancer cells from four of the 17 AML-M0 patients examined. In contrast to AML-M0, the AML-M1 patient was trisomic for chromosome 21 and has two mutated and one normal RUNX1 allele, suggesting that the order of mutagenic events leading to leukemia may influence the predominant tumor type.
Collapse
Affiliation(s)
- Fernando P G Silva
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, P.O. Box 9503, 2300RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tong WM, Ohgaki H, Huang H, Granier C, Kleihues P, Wang ZQ. Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(-/-) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:343-52. [PMID: 12507917 PMCID: PMC1851106 DOI: 10.1016/s0002-9440(10)63825-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medulloblastoma is an invasive embryonal tumor of the cerebellum with predominant neuronal differentiation. Although several genes have been implicated in medulloblasoma formation, such as Patched (Ptc1) and the adenomatous polyposis coli gene (Apc), the majority of these tumors cannot be explained by mutations in these genes. The cellular origin as well as the genetic and molecular changes involved in the genesis and progression of human medulloblastomas remain largely unknown. Here we show that disruption of poly(ADP-ribose) polymerase (PARP-1) causes a high incidence (49%) of aggressive brain tumors in p53 null mice, with typical features of human cerebellar medulloblastomas. At as early as 8 weeks of age, lesions started on the outer surface of the cerebellum from remnant granule cell precursors of the developmental external germinal layer. Progression of these tumors is associated with the re-activation of the neuronal specific transcription factor Math1, dysregulation of Shh/Ptc1 signaling pathway, and chromosomal aberrations, including triradial and quadriradial chromosomes. The present study indicates that the loss of function of DNA double-strand break-sensing and repair molecules is an etiological factor in the evolution of the cerebellar medulloblastomas. These PARP-1/p53 double null mice represent a novel model for the pathogenesis of human medulloblastomas.
Collapse
Affiliation(s)
- Wei-Min Tong
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Somatic mosaicism -- the presence of genetically distinct populations of somatic cells in a given organism -- is frequently masked, but it can also result in major phenotypic changes and reveal the expression of otherwise lethal genetic mutations. Mosaicism can be caused by DNA mutations, epigenetic alterations of DNA, chromosomal abnormalities and the spontaneous reversion of inherited mutations. In this review, we discuss the human disorders that result from somatic mosaicism, as well as the molecular genetic mechanisms by which they arise. Specifically, we emphasize the role of selection in the phenotypic manifestations of mosaicism.
Collapse
Affiliation(s)
- Hagop Youssoufian
- Department of Clinical Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, USA.
| | | |
Collapse
|