1
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Ant-Neointimal Formation Effects of SLC6A6 in Preventing Vascular Smooth Muscle Cell Proliferation and Migration via Wnt/β-Catenin Signaling. Int J Mol Sci 2023; 24:ijms24033018. [PMID: 36769341 PMCID: PMC9917619 DOI: 10.3390/ijms24033018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role in the pathogenesis of vascular remolding, such as atherosclerosis and restenosis. Solute carrier family 6 member 6 (SLC6A6) is a transmembrane transporter that maintains a variety of physiological functions and is highly expressed in VSMCs. However, its role on VSMCs during neointimal formation remains unknown. In this study, mRNA and protein levels of SLC6A6 were examined using models of VSMC phenotype switching in vivo and in vitro and human artery samples with or without atherosclerosis. SLC6A6 gain- and loss-of-function approaches were performed by adenovirus infection or small interfering RNA (siRNA) transfection, respectively. Reactive oxygen species (ROS), proliferation, migration, and phenotype-related proteins of VSMCs were measured. Vascular stenosis rate and related genes were assessed in a rat vascular balloon injury model overexpressing SLC6A6. SLC6A6 was downregulated in dedifferentiated VSMCs, atherosclerotic vascular tissues, and injured vascular tissues. SLC6A6 suppressed VSMC proliferation and migration, while increasing contractile VSMC proteins. Mechanistically, SLC6A6 overexpression reduced ROS production and inhibited the Wnt/β-catenin pathway. Furthermore, SLC6A6 overexpression suppressed neointimal formation in vivo. Collectively, overexpression of SLC6A6 suppresses neointimal formation by inhibiting VSMC proliferation and migration via Wnt/β-catenin signaling and maintaining the VSMC contractile phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Leng Ni
- Correspondence: (L.N.); (C.L.); Tel.: +86-010-69152501 (L.N.); +86-010-69152500 (C.L.)
| | - Changwei Liu
- Correspondence: (L.N.); (C.L.); Tel.: +86-010-69152501 (L.N.); +86-010-69152500 (C.L.)
| |
Collapse
|
2
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
3
|
Theodoridis K, Gika H, Kotali A. Acylcarnitines in Ophthalmology: Promising Emerging Biomarkers. Int J Mol Sci 2022; 23:ijms232416183. [PMID: 36555822 PMCID: PMC9784861 DOI: 10.3390/ijms232416183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Several common ocular diseases are leading causes of irreversible visual impairment. Over the last decade, various mainly untargeted metabolic studies have been performed to show that metabolic dysfunction plays an important role in the pathogenesis of ocular diseases. A number of metabolites in plasma/serum, aqueous or vitreous humor, or in tears have been found to differ between patients and controls; among them are L-carnitine and acylcarnitines, which are essential for mitochondrial fatty acid oxidation. The metabolic profile of carnitines regarding a variety of diseases has attracted researchers' interest. In this review, we present and discuss recent advances that have been made in the identification of carnitines as potential metabolic biomarkers in common ocular diseases, such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, central retinal vein occlusion, primary open-angle glaucoma, rhegmatogenous retinal detachment, and dry eye syndrome.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Laboratory of Organic Chemistry, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 57001 Thessaloniki, Greece
| | - Antigoni Kotali
- Laboratory of Organic Chemistry, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Mohammadipanah F, Salimi F. Potential biological targets for bioassay development in drug discovery of Sturge-Weber syndrome. Chem Biol Drug Des 2017; 91:359-369. [PMID: 28941044 DOI: 10.1111/cbdd.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/10/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
Sturge-Weber Syndrome (SWS) is a neurocutaneous disease with clinical manifestations including ocular (glaucoma), cutaneous (port-wine birthmark), neurologic (seizures), and vascular problems. Molecular mechanisms of SWS pathogenesis are initiated by the somatic mutation in GNAQ. Therefore, no definite treatments exist for SWS and treatment options only mitigate the intensity of its clinical manifestations. Biological assay design for drug discovery against this syndrome demands comprehensive knowledge on mechanisms which are involved in its pathogenesis. By analysis of the interrelated molecular targets of SWS, some in vitro bioassay systems can be allotted for drug screening against its progression. Development of such platforms of bioassay can bring along the implementation of high-throughput screening of natural or synthetic compounds in drug discovery programs. Regarding the fact that study of molecular targets and their integration in biological assay design can facilitate the process of effective drug discovery; some potential biological targets and their respective biological assay for SWS drug discovery are propounded in this review. For this purpose, some biological targets for SWS drug discovery such as acetylcholinesterase, alkaline phosphatase, GABAergic receptors, Hypoxia-Inducible Factor (HIF)-1α and 2α are suggested.
Collapse
Affiliation(s)
- Fatemeh Mohammadipanah
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Salimi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Fujisawa K, Takami T, Fukui Y, Quintanilha LF, Matsumoto T, Yamamoto N, Sakaida I. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells. Cell Tissue Res 2017; 368:301-310. [PMID: 28197778 DOI: 10.1007/s00441-017-2569-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Yumi Fukui
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Luiz Fernando Quintanilha
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
6
|
Ge P, Cui Y, Liu F, Luan J, Zhou X, Han J. L-carnitine affects osteoblast differentiation in NIH3T3 fibroblasts by the IGF-1/PI3K/Akt signalling pathway. Biosci Trends 2015; 9:42-8. [PMID: 25787908 DOI: 10.5582/bst.2015.01000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibroblasts in soft tissues are one of the progenitors of ectopic calcification. Our previous experiment found that the serum concentrations of small metabolite L-carnitine (LC) decreased in an ectopic calcification animal model, indicating LC is a potential calcification or mineralization inhibitor. In this study, we investigated the effect of LC on NIH3T3 fibroblast osteoblast differentiation, and explored its possible molecular mechanisms. Two concentrations of LC (10 μM and 100 μM) were added in Pi-induced NIH3T3 fibroblasts, cell proliferation was compared by MTT assays, osteoblast differentiation was evaluated by ALP activity, mineralized nodules formation, calcium deposition, and expressions of the osteogenic marker genes. Our results indicated that 10 μM LC increased the proliferation of NIH3T3 cells, but 100 μM LC slightly inhibited cell proliferation. 100 μM LC inhibits NIH3T3 differentiation as evidenced by decreases in ALP activity, mineralized nodule formation, calcium deposition, and down-regulation of the osteogenic marker genes ALP, Runx2 and OCN, meanwhile 10 μM of LC exerts an opposite effect that promotes NIH3T3 osteogenesis. Mechanistically, 100 μM LC significantly inhibits IGF-1/PI3K/Akt signalling, while 10 μM LC slightly activates this pathway. Our study suggests that a decease in LC level might contribute to the development of ectopic calcification in fibroblasts by affecting IGF-1/PI3K/Akt, and addition of LC may benefit patients with ectopic calcification.
Collapse
Affiliation(s)
- Pinglan Ge
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, 2 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | | | | | | | | | | |
Collapse
|
7
|
Li M, Li H, Jiang P, Liu X, Xu D, Wang F. Investigating the pathological processes of rhegmatogenous retinal detachment and proliferative vitreoretinopathy with metabolomics analysis. MOLECULAR BIOSYSTEMS 2014; 10:1055-62. [DOI: 10.1039/c3mb70386j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
9
|
Zhang LY, Zhou YY, Chen F, Wang B, Li J, Deng YW, Liu WD, Wang ZG, Li YW, Li DZ, Lv GH, Yin BL. Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway. Braz J Med Biol Res 2011; 44:618-23. [DOI: 10.1590/s0100-879x2011007500078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 06/01/2011] [Indexed: 01/17/2023] Open
|