1
|
Hu M, Xu M, Chen Y, Ye Z, Zhu S, Cai J, Zhang M, Zhang C, Huang R, Ye Q, Ao H. Therapeutic potential of toosendanin: Novel applications of an old ascaris repellent as a drug candidate. Biomed Pharmacother 2023; 167:115541. [PMID: 37738795 DOI: 10.1016/j.biopha.2023.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Toosendanin (TSN), extracted from Melia. toosendan Sieb.et Zucc. and Melia. azedarach L., has been developed into an ascaris repellent in China. However, with the improvement of public health protection, the incidence of ascariasis has been reduced considerably, resulting in limited medical application of TSN. Therefore, it is questionable whether this old ascaris repellent can develop into a drug candidate. Modern studies have shown that TSN has strong pharmacological activities, including anti-tumor, anti-botulinum, anti-viral and anti-parasitic potentials. It also can regulate fat formation and improve inflammation. These researches indicate that TSN has great potential to be developed into a corresponding medical product. In order to better development and application of TSN, the availability, pharmacodynamics, pharmacokinetics and toxicology of TSN are summarized systematically. In addition, this review discusses shortcomings in the current researches and provides useful suggestions about how TSN developed into a drug candidate. Therefore, this paper illustrates the possibility of developing TSN as a medical product, aimed to provide directions for the clinical application and further research of TSN.
Collapse
Affiliation(s)
- Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhangkai Ye
- Xinjiang Normal University, Urumqi 830017, Xinjiang, China
| | - Shunpeng Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Mengxue Zhang
- First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chi Zhang
- School of health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Ruizhen Huang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
2
|
Yang K, Yin J, Yue X, Bieber K, Riemekasten G, Ludwig RJ, Petersen F, Yu X. Luteolin peracetate and gossypolone inhibit immune complex-mediated neutrophil activation in vitro and dermal-epidermal separation in an ex vivo model of epidermolysis bullosa acquisita. Front Immunol 2023; 14:1196116. [PMID: 37720234 PMCID: PMC10503437 DOI: 10.3389/fimmu.2023.1196116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Natural products have been shown to an important source of therapeutics for human disease. In this study, we aimed to identify natural compounds as potential therapeutics for epidermolysis bullosa acquisita (EBA), an autoimmune disease caused by autoantibodies to type VII collagen (COL7). Methods Utilizing an in vitro experimental system, we screened a natural product library composed of 800 pure compounds for their inhibitory effect on COL7-anti-COL7 IgG immune complex (IC)-mediated neutrophil activation and on neutrophil-mediated tissue damage. Results Three natural compounds, namely luteolin peracetate, gossypol, and gossypolone were capable in inhibiting the IC-induced neutrophil adhesion and oxygen burst in vitro. Furthermore, luteolin peracetate and gossypolone were able to inhibit the anti-COL7 IgG induced dermal-epidermal separation in an ex vivo model for EBA. Discussion In summary, this study demonstrates that luteolin peracetate and gossypolone are potential therapeutics for experimental EBA, which deserves further investigation.
Collapse
Affiliation(s)
- Kai Yang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junping Yin
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xiaoyang Yue
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Clinic of Schleswig Holstein, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
3
|
Liu Y, Wang L, Zhao L, Zhang Y. Structure, properties of gossypol and its derivatives-from physiological activities to drug discovery and drug design. Nat Prod Rep 2022; 39:1282-1304. [PMID: 35587693 DOI: 10.1039/d1np00080b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering up to 2022Gossypol is a polyphenolic compound isolated from cottonseed. There are two optical enantiomers of gossypol, (-)-gossypol and (+)-gossypol. Gossypol exists as three different tautomers, aldehyde, ketone and lactol. Gossypol is toxic and provides a protective mechanism for cotton plants against pests. Gossypol was used as a male contraceptive in China in the 1970s. It was eventually abandoned due to noticeable side effects, disruption of potassium uptake and incomplete reversibility. Gossypol has gained considerable research interest due to its attractive biological activities, especially antitumor and antivirus. Gossypol derivatives are prepared by a structural modification to reduce toxicity and improve their therapeutic effect. This review depicts the bioactivity and regulation mechanisms of gossypol and its derivatives as drug lead compounds, with emphasis on its antitumor mechanism. The design and synthesis of pharmacologically active derivatives based on the structure of gossypol, such as gossypol Schiff bases, apogossypol, gossypolone, are thoroughly discussed. This review aims to serve as a reference for gossypol-based drug discovery and drug design.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
4
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
5
|
Zhu X, Wu Y, Pan J, Li C, Huang J, Cui E, Chen Z, Zhou W, Chai X, Zhao S. Neuroinflammation Induction and Alteration of Hippocampal Neurogenesis in Mice Following Developmental Exposure to Gossypol. Int J Neuropsychopharmacol 2020; 24:419-433. [PMID: 33283869 PMCID: PMC8130202 DOI: 10.1093/ijnp/pyaa093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurogenesis in the neonatal period involves the proliferation and differentiation of neuronal stem/progenitor cells and the establishment of synaptic connections. This process plays a critical role in determining the normal development and maturation of the brain throughout life. Exposure to certain physical or chemical factors during the perinatal period can lead to many neuropathological defects that cause high cognitive dysfunction and are accompanied by abnormal hippocampal neurogenesis and plasticity. As an endocrine disruptor, gossypol is generally known to exert detrimental effects in animals exposed under experimental conditions. However, it is unclear whether gossypol affects neurogenesis in the hippocampal dentate gyrus during early developmental stages. METHODS Pregnant Institute of Cancer Research mice were treated with gossypol at a daily dose of 0, 20, and 50 mg/kg body weight from embryonic day 6.5 to postnatal day (P) 21. The changes of hippocampal neurogenesis as well as potential mechanisms were investigated by 5-bromo-2-deoxyuridine labeling, behavioral tests, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western-blot analyses. RESULTS At P8, maternal gossypol exposure impaired neural stem cell proliferation in the dentate gyrus and decreased the number of newborn cells as a result of reduced proliferation of BLBP+ radial glial cells and Tbr2+ intermediate progenitor cells. At P21, the numbers of NeuN+ neurons and parvalbumin+ γ-aminobutyric acid-ergic interneurons were increased following 50 mg/kg gossypol exposure. In addition, gossypol induced hippocampal neuroinflammation, which may contribute to behavioral abnormalities and cognitive deficits and decrease synaptic plasticity. CONCLUSIONS Our findings suggest that developmental gossypol exposure affects hippocampal neurogenesis by targeting the proliferation and differentiation of neuronal stem/progenitor cells, cognitive functions, and neuroinflammation. The present data provide novel insights into the neurotoxic effects of gossypol on offspring.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China,Correspondence: Xiaoyan Zhu, PhD, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China ()
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Ziluo Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Wentai Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xuejun Chai
- College of Basic Medicine, Xi’An Medical University, Xi’An, PR China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| |
Collapse
|
6
|
Maity SK, Stahl P, Hensel A, Knauer S, Hirschhäuser C, Schmuck C. Cancer-Cell-Specific Drug Delivery by a Tumor-Homing CPP-Gossypol Conjugate Employing a Tracelessly Cleavable Linker. Chemistry 2020; 26:3010-3015. [PMID: 31840306 PMCID: PMC7079238 DOI: 10.1002/chem.201905159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/17/2022]
Abstract
Tumor-targeted drug delivery is highly important for improving chemotherapy, as it reduces the dose of cytotoxic agents and minimizes the death of healthy tissues. Towards this goal, a conjugate was synthesized of gossypol and a MCF-7 cancer cell specific CPP (cell penetrating peptide), thus providing a selective drug delivery system. Utilizing the aldehyde moiety of gossypol, the tumor homing CPP RLYMRYYSPTTRRYG was attached through a semi-labile imine linker, which was cleaved in a traceless fashion under aqueous conditions and had a half-life of approximately 10 hours. The conjugate killed MCF-7 cells to a significantly greater extent than HeLa cells or healthy fibroblasts.
Collapse
Affiliation(s)
- Suman Kumar Maity
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitatsstrasse 745117EssenGermany
| | - Paul Stahl
- Institute for BiologyUniversity of Duisburg-Essen45117EssenGermany
| | - Astrid Hensel
- Institute for BiologyUniversity of Duisburg-Essen45117EssenGermany
| | - Shirley Knauer
- Institute for BiologyUniversity of Duisburg-Essen45117EssenGermany
| | - Christoph Hirschhäuser
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitatsstrasse 745117EssenGermany
| | - Carsten Schmuck
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitatsstrasse 745117EssenGermany
| |
Collapse
|
7
|
Chen CW, Hu S, Tsui KH, Hwang GS, Chen ST, Tang TK, Cheng HT, Yu JW, Wang HC, Juang HH, Wang PS, Wang SW. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation 2019; 41:2265-2274. [PMID: 30136021 DOI: 10.1007/s10753-018-0868-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gossypol, a natural polyphenolic compound extracted from cottonseed oil, has been reported to possess pharmacological properties via modulation cell cycle and immune signaling pathway. However, whether gossypol has anti-inflammatory effects against phytohemagglutinin (PHA)-induced cytokine secretion in T lymphocytes through similar mechanism remains unclear. Using the T lymphocytes Jurkat cell line, we found that PHA exposure caused dramatic increase in interleukin-2 (IL-2) mRNA expression as well as IL-2 secretion. All of these PHA-stimulated reactions were attenuated in a dose-dependent manner by being pretreated with gossypol. However, gossypol did not show any in vitro cytotoxic effect at doses of 5-20 μM. As a possible mechanism underlying gossypol action, such as pronounced suppression IL-2 release, robust decreased PHA-induced phosphorylation of p38 and c-Jun N-terminal kinase expressions was found with gossypol pretreatment, but not significant phosphorylation of extracellular signal-regulated kinase expression. Furthermore, gossypol could suppress the Jurkat cells' growth, which was associated with increased percentage of G1/S phase and decreased fraction of G2 phase in flow cytometry test. We conclude that gossypol exerts anti-inflammatory effects probably through partial attenuation of mitogen-activated protein kinase (phosphorylated JNK and p38) signaling and cell cycle arrest in Jurkat cells.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Division of Geriatric Urology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Guey-Shyang Hwang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tswen-Kei Tang
- Department of Nursing, National Quemoy University, Kinmen County, Taiwan
| | - Hao-Tsai Cheng
- Division of Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ju-Wen Yu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsiao-Chiu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Horng-Heng Juang
- Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Paulus S Wang
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan, Republic of China. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
| | - Shyi-Wu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China. .,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Effect of maternal cottonseed feed on the immune and antioxidant status of Santa Ines lambs. Comp Immunol Microbiol Infect Dis 2018; 62:58-63. [PMID: 30711047 DOI: 10.1016/j.cimid.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022]
Abstract
Cottonseed has been used as a nutritional alternative in animal production. However, consequences of this nutrient in the progeny is not well characterized. Thus, this work evaluated the effect on the immune and antioxidant status of the progeny of feeding Santa Ines ewe with or without cottonseed. Twenty-four Santa Ines ewes were distributed in two feeding regimes: cottonseed (CS) concentrate (n = 12) and soybean (SB) concentrate (n = 12). After birth, lambs remained with their mothers and blood samples were collected at 1st, 3rd, 7th, 15th, 30th and 60th day of life of 24 lambs born from mothers fed with (CS, n = 12) or without (SB, n = 12) cottonseed. Serum total protein, albumin, alpha beta globulin, gamma globulin, immunoglobulin G and M, activity of glutathione peroxidase (GPx), catalase (CAT), oxygen radical absorbance capacity (ORAC) and variables related to iron metabolism were affected only by sampling times (P < 0.05). The concentration of serum total protein, alpha beta globulin, gamma globulin and immunoglobulin G and M, GPx activity and ORAC values decreased as lamb age increased. Serum albumin concentration and CAT activity, in turn, increased as lamb age increased. In this work, maternal feeding with cottonseed did not affect the serum protein profile and antioxidant status of progeny during the lactation period, indicating no transfer of gossypol effects by milk secretions. Thus, the alternative in ruminants feeding with cottonseed can be used without maternal-descendant effects to immunity and oxidative stress in lambs.
Collapse
|
9
|
Ulus G, Koparal AT, Baysal K, Yetik Anacak G, Karabay Yavaşoğlu NÜ. The anti-angiogenic potential of (±) gossypol in comparison to suramin. Cytotechnology 2018; 70:1537-1550. [PMID: 30123923 DOI: 10.1007/s10616-018-0247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Cotton, a staple fiber that grows around the seeds of the cotton plants (Gossypium), is produced throughout the world, and its by products, such as cotton fibers, cotton-seed oil, and cottonseed proteins, have a variety of applications. Cotton-seed contains gossypol, a natural phenol compound. (±)-Gossypol is a yellowish polyphenol that is derived from different parts of the cotton plant and contains potent anticancer properties. Tumor growth and metastasis are mainly related to angiogenesis; therefore, anti-angiogenic therapy targets the new blood vessels that provide oxygen and nutrients to actively proliferating tumor cells. The aim of the present study was to evaluate the anti-angiogenic potential of (±)-gossypol in vitro. (±)-Gossypol has anti-proliferative effects on cancer cell lines; however, its anti-angiogenic effects on normal cells have not been studied. Anti-proliferative activities of gossypol assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, anti-angiogenic activities using tube formation assay, and cell migration inhibition capability using a wound-healing assay on human umbilical vein endothelial cells (HUVECs) were revealed. (±)-Gossypol displayed the following potent anti-angiogenic activities in vitro: it inhibited the cell viability of HUVECs, it inhibited the migration of HUVECs, and disrupted endothelial tube formation in a dose-dependent manner. In addition, the anti-angiogenic effects of (±)-gossypol were investigated in ovo in a model using a chick chorioallantoic membrane (CAM). Decreases in capillary density were assessed and scored. (±)-Gossypol showed dose-dependent anti-angiogenic effects on CAM. These findings suggest that (±)-gossypol can be used as a new anti-angiogenic agent.
Collapse
Affiliation(s)
- Gönül Ulus
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
| | - A Tansu Koparal
- Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - Kemal Baysal
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Günay Yetik Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | | |
Collapse
|
10
|
Deng H, Kuang P, Cui H, Chen L, Fang J, Zuo Z, Deng J, Wang X, Zhao L. Sodium fluoride induces apoptosis in cultured splenic lymphocytes from mice. Oncotarget 2018; 7:67880-67900. [PMID: 27655720 PMCID: PMC5356527 DOI: 10.18632/oncotarget.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
Though fluorine has been shown to induce apoptosis in immune organs in vivo, there has no report on fluoride-induced apoptosis in the cultured lymphocytes. Therefore, this study was conducted with objective of investigating apoptosis induced by sodium fluoride (NaF) and the mechanism behind that in the cultured splenic lymphocytes by flow cytometry, western blot and Hoechst 33258 staining. The splenic lymphocytes were isolated from 3 weeks old male ICR mice and exposed to NaF (0, 100, 200, and 400 μmol/L) in vitro for 24 and 48 h. When compared to control group, flow cytometry assay and Hoechst 33258 staining showed that NaF induced lymphocytes apoptosis, which was promoted by decrease of mitochondria transmembrane potential, up-regulation of Bax, Bak, Fas, FasL, caspase 9, caspase 8, caspase 7, caspase 6 and caspase 3 protein expression (P < 0.05 or P <0.01), and down-regulation of Bcl-2 and Bcl-xL protein expression (P <0.05 or P <0.01). The above-mentioned data suggested that NaF-induced apoptosis in splenic lymphocytes could be mediated by mitochondrial and death receptor pathways.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Ping Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Lian Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| |
Collapse
|
11
|
Effects of Ultrafine Grinding and Pulsed Magnetic Field Treatment on Removal of Free Gossypol from Cottonseed Meal. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1735-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
O'Dwyer DN, Ashley SL, Moore BB. Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 311:L590-601. [PMID: 27474089 DOI: 10.1152/ajplung.00221.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/23/2016] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by accumulation of extracellular matrix (ECM) and impaired gas exchange. The pathobiological mechanisms that account for disease progression are poorly understood but likely involve alterations in innate inflammatory cells, epithelial cells, and fibroblasts. Thus we seek to review the most recent literature highlighting the complex roles of neutrophils and macrophages as both promoters of fibrosis and defenders against infection. With respect to epithelial cells and fibroblasts, we review the data suggesting that defective autophagy promotes the fibrogenic potential of both cell types and discuss new evidence related to matrix metalloproteinases, growth factors, and cellular metabolism in the form of lactic acid generation that may have consequences for promoting fibrogenesis. We discuss potential cross talk between innate and structural cell types and also highlight literature that may help explain the limitations of current IPF therapies.
Collapse
Affiliation(s)
- David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shanna L Ashley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
13
|
Lin QR, Li CG, Zha QB, Xu LH, Pan H, Zhao GX, Ouyang DY, He XH. Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway. Toxicol Appl Pharmacol 2016; 292:56-64. [PMID: 26765310 DOI: 10.1016/j.taap.2015.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/10/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
Gossypol, a polyphenolic compound isolated from cottonseeds, has been reported to possess many pharmacological activities, but whether it can influence inflammasome activation remains unclear. In this study, we found that in mouse macrophages, gossypol induced cell death characterized by rapid membrane rupture and robust release of HMGB1 and pro-caspase-11 comparable to ATP treatment, suggesting an induction of pyroptotic cell death. Unlike ATP, gossypol induced much low levels of mature interleukin-1β (IL-1β) secretion from mouse peritoneal macrophages primed with LPS, although it caused pro-IL-1β release similar to that of ATP. Consistent with this, activated caspase-1 responsible for pro-IL-1β maturation was undetectable in gossypol-treated peritoneal macrophages. Besides, RAW 264.7 cells lacking ASC expression and caspase-1 activation also underwent pyroptotic cell death upon gossypol treatment. In further support of pyroptosis induction, both pan-caspase inhibitor and caspase-1 subfamily inhibitor, but not caspase-3 inhibitor, could sharply suppress gossypol-induced cell death. Other canonical pyroptotic inhibitors, including potassium chloride and N-acetyl-l-cysteine, could suppress ATP-induced pyroptosis but failed to inhibit or even enhanced gossypol-induced cell death, whereas nonspecific pore-formation inhibitor glycine could attenuate this process, suggesting involvement of a non-canonical pathway. Of note, gossypol treatment eliminated thioglycollate-induced macrophages in the peritoneal cavity with recruitment of other leukocytes. Moreover, gossypol administration markedly decreased the survival of mice in a bacterial sepsis model. Collectively, these results suggested that gossypol induced pyroptosis in mouse macrophages via a non-canonical inflammasome pathway, which raises a concern for its in vivo cytotoxicity to macrophages.
Collapse
Affiliation(s)
- Qiu-Ru Lin
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Dai C, Zhang L, Ma H, Yin X, He R, Qian J. Ultrasound-Assisted Detoxification of Free Gossypol from Cottonseed Meal. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Liuping Zhang
- Sinograin Zhenjiang Grain and Oil Co., Ltd.; Zhenjiang China
| | - Haile Ma
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xiulian Yin
- College of Life Sciences and Chemical Engineering; Huaiyin Institute of Technology; Huaian China
| | - Ronghai He
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Jingya Qian
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
15
|
Gadelha ICN, Fernandes de Macedo M, Oloris SCS, Melo MM, Soto-Blanco B. Gossypol promotes degeneration of ovarian follicles in rats. ScientificWorldJournal 2014; 2014:986184. [PMID: 25540815 PMCID: PMC4142328 DOI: 10.1155/2014/986184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to determine if gossypol interferes with ovarian follicles in rats. Twenty-four female Wistar rats were assigned to two equal groups: one control group and the other dosed with gossypol (25 mg/kg/day, subcutaneously) for 15 days. Ovarian follicles were histologically classified according to the stage of development and as normal or atretic. Gossypol treatment reduced the length of estrous with an increase in the duration of the diestrus phase. This compound was responsible for reduced serum levels of T4 and progesterone. Treatment with gossypol was responsible for a significant reduction in the number of normal ovarian follicles and a significant increase in the number of atretic follicles, both in all stages of development. Thus, treatment of rats with gossypol was responsible for reduction in the number of viable follicles and changes in hormone levels that resulted in interference of the estrous cycle.
Collapse
Affiliation(s)
- Ivana Cristina Nunes Gadelha
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semiárido, BR 110 Km 47, 59628-360 Mossoró, RN, Brazil
| | - Michelly Fernandes de Macedo
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semiárido, BR 110 Km 47, 59628-360 Mossoró, RN, Brazil
| | | | - Marilia Martins Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Gadelha ICN, Fonseca NBS, Oloris SCS, Melo MM, Soto-Blanco B. Gossypol toxicity from cottonseed products. ScientificWorldJournal 2014; 2014:231635. [PMID: 24895646 PMCID: PMC4033412 DOI: 10.1155/2014/231635] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/04/2014] [Accepted: 04/16/2014] [Indexed: 02/03/2023] Open
Abstract
Gossypol is a phenolic compound produced by pigment glands in cotton stems, leaves, seeds, and flower buds (Gossypium spp.). Cottonseed meal is a by-product of cotton that is used for animal feeding because it is rich in oil and proteins. However, gossypol toxicity limits cottonseed use in animal feed. High concentrations of free gossypol may be responsible for acute clinical signs of gossypol poisoning which include respiratory distress, impaired body weight gain, anorexia, weakness, apathy, and death after several days. However, the most common toxic effects is the impairment of male and female reproduction. Another important toxic effect of gossypol is its interference with immune function, reducing an animal's resistance to infections and impairing the efficiency of vaccines. Preventive procedures to limit gossypol toxicity involve treatment of the cottonseed product to reduce the concentration of free gossypol with the most common treatment being exposure to heat. However, free gossypol can be released from the bound form during digestion. Agronomic selection has produced cotton varieties devoid of glands producing gossypol, but these varieties are not normally grown because they are less productive and are more vulnerable to attacks by insects.
Collapse
Affiliation(s)
- Ivana Cristina N. Gadelha
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, BR 110 Km 47, 59628-360 Mossoró, RN, Brazil
| | - Nayanna Brunna S. Fonseca
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, BR 110 Km 47, 59628-360 Mossoró, RN, Brazil
| | | | - Marília M. Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Song B, Huang G, Tong C, Li G, Wang Z, Xiong Y, Zhang S, Lu J, Guan S. Gossypol suppresses mouse T lymphocytes via inhibition of NFκB, NFAT and AP-1 pathways. Immunopharmacol Immunotoxicol 2013; 35:615-21. [DOI: 10.3109/08923973.2013.830126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Fonseca NBDS, Gadelha ICN, Oloris SCS, Soto-Blanco B. Effectiveness of albumin-conjugated gossypol as an immunogen to prevent gossypol-associated acute hepatotoxicity in rats. Food Chem Toxicol 2013; 56:149-53. [DOI: 10.1016/j.fct.2013.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/13/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
19
|
Huo M, Gao R, Jiang L, Cui X, Duan L, Deng X, Guan S, Wei J, Soromou LW, Feng H, Chi G. Suppression of LPS-induced inflammatory responses by gossypol in RAW 264.7 cells and mouse models. Int Immunopharmacol 2013; 15:442-9. [DOI: 10.1016/j.intimp.2013.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 12/28/2022]
|
20
|
Xu W, Han B, Liang Y, Kong X, Rong M, Liu W. The effects of carboxymethyl chitosan on the regulation of the proliferation, differentiation and cytokine expression of peripheral blood mononuclear cells. Polym J 2012. [DOI: 10.1038/pj.2012.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Ouyang DY, Ji YH, Saltis M, Xu LH, Zhang YT, Zha QB, Cai JY, He XH. Valproic acid synergistically enhances the cytotoxicity of gossypol in DU145 prostate cancer cells: an iTRTAQ-based quantitative proteomic analysis. J Proteomics 2011; 74:2180-93. [PMID: 21726675 DOI: 10.1016/j.jprot.2011.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/31/2011] [Accepted: 06/15/2011] [Indexed: 12/01/2022]
Abstract
Gossypol (GOS), a BH3 mimetic, has been investigated as a sensitizing co-therapy to radiation and chemotherapy in treatment of metastatic prostate cancer. In this study, we found that valproic acid (VPA), a histone deacetylase inhibitor (HDACI), counteracted the suppressive effect of GOS on histone H3 acetylation and enhanced the cytotoxicity of GOS to DU145 prostate cancer cells. Significant synergistic effects were observed in combined GOS and VPA treatment, culminating in more DNA damage and cell death. The iTRAQ-based quantitative proteomic analysis revealed differential proteomic profiles in cells treated with VPA, GOS or their combination. In GOS-treated cells, oxidative phosphorylation-related proteins were depressed and endoplasmic reticulum stress markers were upregulated. In the presence of VPA, the GOS-induced mitochondrial stress was further enhanced since glycolysis- and hypoxia-associated proteins were upregulated, suggesting a disruption of energy metabolism in these cells. Furthermore, the DNA damage repair ability of cells co-treated with GOS and VPA was also decreased, as evidenced by the downregulation of DNA damage repair proteins and the enhancement of DNA fragmentation and cell death. These findings suggest that GOS in combination with an HDACI has the potential to increase its clinical efficacy in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Dong-yun Ouyang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen Q, Ouyang DY, Geng M, Xu LH, Zhang YT, Wang FP, He XH. Valproic acid exhibits biphasic effects on apoptotic cell death of activated lymphocytes through differential modulation of multiple signaling pathways. J Immunotoxicol 2011; 8:210-8. [PMID: 21457087 DOI: 10.3109/1547691x.2011.568979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, possesses potent anti-tumor activity against a variety of malignant cells. However, its action on lymphocytes and the underlying mechanism are not completely understood. In this study, we aimed to analyze the effects of VPA on the proliferation, activation, and apoptosis of murine lymphocytes activated with concanavalin A (ConA). Our results showed that VPA inhibited the proliferation of ConA-activated lymphocytes in a dose-dependent manner. Low-dose VPA (≤ 1.1 mM) enhanced CD69 expression on the activated lymphocytes, whereas at high doses (≥ 3.3 mM) it decreased CD69 expression. Furthermore, VPA reduced activation-induced apoptotic cell death at low doses, but at high doses it promoted apoptotic cell death of activated lymphocytes dramatically. It was found that the Bax/Bcl-2 ratio and phosphorylation of histone H2A.X was decreased at low doses of VPA but was increased at high doses. The phosphorylation of STAT3 was also differentially regulated by different doses of VPA. VPA, at 5 mM induced the phosphorylation of p38 but not JNK and extracellular signal-regulated kinase (ERK)1/2. In addition, VPA induced a dose-dependent increase in the acetylation of histone H3. These results demonstrate that VPA exhibits dose-dependent biphasic effect on apoptosis of activated lymphocytes probably through differential modulation of several apoptosis-related signaling pathways.
Collapse
Affiliation(s)
- Qing Chen
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, P.R. China
| | | | | | | | | | | | | |
Collapse
|
23
|
Paul A, Cantor A, Shum-Tim D, Prakash S. Superior Cell Delivery Features of Genipin Crosslinked Polymeric Microcapsules: Preparation, In Vitro Characterization and Pro-Angiogenic Applications Using Human Adipose Stem Cells. Mol Biotechnol 2010; 48:116-27. [DOI: 10.1007/s12033-010-9352-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Sieber M, Baumgrass R. Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506? Cell Commun Signal 2009; 7:25. [PMID: 19860902 PMCID: PMC2774854 DOI: 10.1186/1478-811x-7-25] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/27/2009] [Indexed: 01/16/2023] Open
Abstract
The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects.
Collapse
Affiliation(s)
- Matthias Sieber
- Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | |
Collapse
|