1
|
Rodríguez-Pérez AI, Garrido-Gil P, García-Garrote M, Muñoz A, Parga JA, Labandeira-García JL, Rodríguez-Pallares J. Non-HLA angiotensin-type-1 receptor autoantibodies mediate the long-term loss of grafted neurons in Parkinson's disease models. Stem Cell Res Ther 2024; 15:138. [PMID: 38735991 PMCID: PMC11089721 DOI: 10.1186/s13287-024-03751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.
Collapse
Affiliation(s)
- Ana I Rodríguez-Pérez
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria García-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Muñoz
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose Luis Labandeira-García
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Jannette Rodríguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Zhang X, Li B, Yan Y, Sun F, Zhang S, Wang M, Liu H. AT1R autoantibody promotes phenotypic transition of smooth muscle cells by activating AT1R-OAS2. Biochem Pharmacol 2024; 219:115977. [PMID: 38092283 DOI: 10.1016/j.bcp.2023.115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Phenotypic transition of vascular smooth muscle cells (VSMCs) is an early event in the onset and progression of several cardiovascular diseases. As an important mediator of the renin-angiotensin system (RAS), activation of the angiotensin II type 1 receptor (AT1R) induces phenotypic transition of VSMCs. AT1R autoantibodies (AT1-AAs), which are agonistic autoantibodies of AT1R, have been detected in the sera of patients with a variety of cardiovascular diseases associated with phenotypic transition. However, the effect of AT1-AA on phenotypic transition is currently unknown. In this study, AT1-AA-positive rat model was established by active immunization to detect markers of VSMCs phenotypic transition. The results showed that AT1-AA-positive rats showed phenotypic transition of VSMCs, which was evidenced by the decrease of contractile markers, while the increase of synthetic markers in the thoracic aorta. However, in AT1-AA-positive AT1R knockout rats, the phenotypic transition-related proteins were not altered. In vitro, after stimulating human aortic smooth muscle cells with AT1-AA for 48 h, 2'-5' oligoadenylate synthase 2 (OAS2) was identified as the key differentially expressed gene by RNA sequencing and bioinformatics analysis. Furthermore, high expression of OAS2 was found in aorta of AT1-AA-positive rats; knockdown of OAS2 by siRNA can reverse the phenotypic transition of VSMCs induced by AT1-AA. In summary, this study suggests that AT1-AA can promote phenotypic transition of VSMCs through AT1R-OAS2 pathway, and OAS2 might serve as a potential therapeutic target to prevent pathological phenotypic transition of smooth muscle cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Bingjie Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Yingshuo Yan
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Fei Sun
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meili Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China.
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Son BS, Lee HJ, Cho WH, So MW, Park JM, Yeo HJ. Association of positive pre-transplant angiotensin II type 1 receptor antibodies with clinical outcomes in lung transplant recipients. Transpl Immunol 2023; 80:101901. [PMID: 37442212 DOI: 10.1016/j.trim.2023.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION Autoantibodies against the angiotensin II type 1 receptor (AT1R-Ab) have been previously associated with de novo donor-specific antibody (DSA) formation in lung transplantation. However, data regarding the clinical significance of AT1R-Ab in long-term graft function after lung transplantation are lacking. METHODS Seventy-one patients who underwent lung transplantation between July 2016 and January 2020 were enrolled in this study. We examined the relationship between pre-transplant AT1R-Ab levels and graft function, clinical outcomes, and human leukocyte antigen (HLA) DSA levels during the first 3 years post-transplantation. RESULTS Seventeen (23.9%) patients were AT1R-Ab-positive, and 54 (76.1%) were AT1R-Ab-negative. The median antibody value of the AT1R-Ab-positive group was 18 [18-22.5] U/mL, while that of the AT1R-Ab-negative group was 5.1 [3.5-8.0] U/mL (p < 0.001). There was no significant difference in the median acute cellular rejection (ACR) scores between the two groups (median [interquartile range] 1 [0.8-3] vs. 0.7 [0-1]; p = 0.145). However, there was a significant difference in the distribution of the ACR scores between the two groups (p = 0.015). Most (41.2%) patients in the pre-transplant AT1R-positive group scored above 1. The incidence of de novo DSA was also higher in AT1R-Ab-positive than in AT1R-Ab-negative patients (52.9% vs. 20.4%, p = 0.009). The incidence of chronic lung allograft dysfunction (CLAD) within 3 years was significantly higher in AT1R-Ab-positive than in AT1R-Ab-negative patients (58.3% vs. 11.8%; p < 0.001). In the multivariate Cox regression analysis, AT1R-Ab positivity (hazard ratio, 9.46; 95% confidence interval, 2.89-30.94; p < 0.001) was significantly associated with early CLAD. Furthermore, Kaplan-Meier analysis showed that AT1R-Ab-positive patients had a shorter survival time (χ2 = 39.62, p < 0.001). CONCLUSION High AT1R-Ab levels in the pre-transplant serum of lung recipients were associated with the development of de novo HLA-DSA, ACR, early CLAD, and short survival.
Collapse
Affiliation(s)
- Bong Soo Son
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan, Republic of Korea; Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyun Ji Lee
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Laboratory Medicine, Pusan National University, School of Medicine, Busan, Republic of Korea
| | - Woo Hyun Cho
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea; Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Min Wook So
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jong Myung Park
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan, Republic of Korea; Department of Thoracic and Cardiovascular Surgery, Busan Medical Center, Busan, Republic of Korea
| | - Hye Ju Yeo
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea; Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| |
Collapse
|
4
|
Silva MCS, Pereira SS, Gouveia MP, Luiz MB, Sousa RMO, Kayano AM, Francisco AF, Prado NDR, Dill LSM, Fontes MRM, Zanchi FB, Stabeli RG, Soares AM, Zuliani JP, Fernandes CFC. Anti-Metalloprotease P-I Single-Domain Antibodies: Tools for Next-Generation Snakebite Antivenoms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2748962. [PMID: 35909472 PMCID: PMC9325618 DOI: 10.1155/2022/2748962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
In order to address the global antivenom crisis, novel antivenoms need to present high therapeutic efficacy, broad neutralization ability against systemic and local damage, sufficient safety, and cost-effectiveness. Due to biological characteristics of camelid single-domain antibodies (VHH) such as high affinity, their ability to penetrate dense tissues, and facility for genetic manipulation, their application in antivenoms has expanded considerably. VHHs that are active against the metalloprotease BjussuMP-II from the snake Bothrops jararacussu were selected. After isolation of BjussuMP-II, a camelid was immunized with the purified toxin in order to construct the recombinant phage library. Following a round of biopanning, 52% of the selected clones were able to recognize BjussuMP-II in an ELISA assay. After sequencing, seven sequence profiles were identified. One selected clone (VHH61) showed cross-reactivity to B. brazili venom, but did not recognize the Crotalus and Lachesis genera, indicating specificity for the Bothrops genus. Through in vitro tests, the capacity to neutralize the toxicity triggered by BjussuMP-II was observed. Circular dichroism spectroscopy indicated a robust secondary structure for VHH61, and the calculated melting temperature (T M) for the clone was 56.4°C. In silico analysis, through molecular docking of anti-BjussuMP-II VHHs with metalloprotease, revealed their potential interaction with amino acids present in regions critical for the toxin's conformation and stability. The findings suggest that anti-BjussuMP-II VHHs may be beneficial in the development of next-generation antivenoms.
Collapse
Affiliation(s)
- Marcela C. S. Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Centro de Pesquisa em Medicina Tropical, Porto Velho, 76812-329 Rondônia, Brazil
| | - Soraya S. Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marilia P. Gouveia
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marcos B. Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Rosa M. O. Sousa
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Anderson M. Kayano
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Aleff F. Francisco
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, UNESP, Botucatu, 18618-689 São Paulo, Brazil
| | - Nidiane D. R. Prado
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Leandro S. M. Dill
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marcos R. M. Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, UNESP, Botucatu, 18618-689 São Paulo, Brazil
| | - Fernando B. Zanchi
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Rodrigo G. Stabeli
- Plataforma Bi-Institucional Fiocruz-USP, Ribeirão Preto, 14040-030 São Paulo, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Brazil
| | - Juliana P. Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho, 76801-974 Rondônia, Brazil
| | | |
Collapse
|
5
|
Labandeira CM, Pedrosa MA, Quijano A, Valenzuela R, Garrido-Gil P, Sanchez-Andrade M, Suarez-Quintanilla JA, Rodriguez-Perez AI, Labandeira-Garcia JL. Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson´s disease. NPJ Parkinsons Dis 2022; 8:76. [PMID: 35701430 PMCID: PMC9198025 DOI: 10.1038/s41531-022-00340-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
The role of autoimmunity in neurodegeneration has been increasingly suggested. The renin-angiotensin system (RAS) autoantibodies play a major role in several peripheral inflammatory processes. Dysregulation of brain RAS has been involved in neuroinflammation and neurodegeneration. We aimed to know whether angiotensin type-1 receptor (AT1) autoantibodies (AT1 agonists) and angiotensin-converting enzyme 2 (ACE2) autoantibodies (ACE2 antagonists) may be involved in Parkinson's disease (PD) progression and constitute a new therapeutical target. Both AT1 and ACE2 serum autoantibodies were higher in a group of 117 PD patients than in a group of 106 controls. Serum AT1 autoantibodies correlated with several cytokines, particularly Tumor Necrosis Factor Ligand Superfamily Member 14 (TNFSF14, LIGHT), and 27-hydroxycholesterol levels. Serum ACE2 autoantibodies correlated with AT1 autoantibodies. Both autoantibodies were found in cerebrospinal fluid (CSF) of four PD patients with CSF samples. Consistent with the observations in patients, experimental dopaminergic degeneration, induced by 6-hydroxydopamine, increased levels of autoantibodies in serum and CSF in rats, as well as LIGHT levels and transglutaminase activity in rat substantia nigra. In cultures, administration of AT1 autoantibodies enhanced dopaminergic neuron degeneration and increased levels of neuroinflammation markers, which was inhibited by the AT1 antagonist candesartan. The results suggest dysregulation of RAS autoantibodies as a new mechanism that can contribute to PD progression. Therapeutical strategies blocking the production, or the effects of these autoantibodies may be useful for PD treatment, and the results further support repurposing AT1 blockers (ARBs) as treatment against PD progression.
Collapse
Affiliation(s)
- Carmen M Labandeira
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Neurology Service, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain. Neurology Service. University Hospital of Ourense, Ourense, Spain
| | - Maria A Pedrosa
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Aloia Quijano
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rita Valenzuela
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mariña Sanchez-Andrade
- Obstetric Service, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain. .,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain. .,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
Wang J, Li D, Zhang Z, Zhang Y, Lei Z, Jin W, Cao J, Jiao X. Autoantibody against angiotensin II type I receptor induces pancreatic β-cell apoptosis via enhancing autophagy. Acta Biochim Biophys Sin (Shanghai) 2021; 53:784-795. [PMID: 33928341 DOI: 10.1093/abbs/gmab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Autoantibody against the angiotensin II type I receptor (AT1-AA) has been found in the serum of patients with diabetes mellitus (DM). However, it remains unclear whether AT1-AA induces β-cell apoptosis and participates in the development of DM. In this study, an AT1-AA-positive rat model was set up by active immunization, and AT1-AA IgG was purified. INS-1 cells were treated with AT1-AA, and cell viability, apoptosis, and autophagy-related proteins were detected by Cell Counting Kit-8 assay, flow cytometry, and western blot analysis, respectively. Results showed that existence of AT1-AA impaired the islet function and increased the apoptosis of pancreatic islet cells in rats, and the autophagy level in rat pancreatic islet tissues tended to increase gradually with the prolongation of immunization time. AT1-AA markedly reduced INS-1 cell viability, promoted cell apoptosis, and decreased insulin secretion in vitro. In addition, the autophagy level was gradually increased along with the prolongation of AT1-AA treatment time. Meanwhile, it was determined that treatment with autophagy inhibitor 3-methyladenine and angiotensin II type 1 receptor (AT1R) blocker telmisartan could improve insulin secretion and apoptosis in vitro and in vivo. In conclusion, it is deduced that upregulation of autophagy contributed to the AT1-AA-induced β-cell apoptosis and islet dysfunction, and AT1R mediated the signal transduction.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Dan Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhinan Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhandong Lei
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Wenwen Jin
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
7
|
Wang M, Yin X, Zhang S, Mao C, Cao N, Yang X, Bian J, Hao W, Fan Q, Liu H. Autoantibodies against AT1 Receptor Contribute to Vascular Aging and Endothelial Cell Senescence. Aging Dis 2019; 10:1012-1025. [PMID: 31595199 PMCID: PMC6764731 DOI: 10.14336/ad.2018.0919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
Vascular aging predisposes the elderly to the progression of many aging-related vascular disorders and leads to deterioration of cardiovascular diseases (CVD). However, the underlying mechanisms have not been clearly elucidated. Agonistic autoantibodies against angiotensin II type 1 (AT1) receptor (AT1-AAs) have been demonstrated to be pro-inflammatory and contribute to the progression of atherosclerosis. However, the association between AT1-AAs and vascular aging has not been defined. Peripheral arterial disease (PAD) is an acknowledged vascular aging-related disease. In this study, AT1-AAs were detected in the sera of patients with PAD and the positive rate was 44.44% (n=63) vs. 17.46% in non-PAD volunteers (n=63). In addition, case-control analysis showed that AT1-AAs level was positively correlated with PAD. To reveal the causal relationship between AT1-AAs and vascular aging, an AT1-AAs-positive rat model was established by active immunization. The carotid pulse wave velocity was higher, and the aortic endothelium-dependent vasodilatation was attenuated significantly in the immunized rats. Morphological staining showed thickening of the aortic wall. Histological examination showed that levels of the senescent markers were increased in the aortic tissue, mostly located at the endothelium. In addition, purified AT1-AAs-IgGs from both the immunized rats and PAD patients induced premature senescence in cultured human umbilical vein endothelial cells. These effects were significantly blocked by the AT1 receptor blocker. Taken together, our study demonstrates that AT1-AAs contribute to the progression of vascular aging and induce EC senescence through AT1 receptor. AT1-AA is a novel biomarker of vascular aging and aging-related CVD that acts to accelerate EC senescence.
Collapse
Affiliation(s)
- Meili Wang
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiaochen Yin
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Suli Zhang
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Chenfeng Mao
- 3Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,4Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ning Cao
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiaochun Yang
- 5Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingwei Bian
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Weiwei Hao
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Qian Fan
- 5Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huirong Liu
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wang Z, Wu Y, Zhang S, Zhao Y, Yin X, Wang W, Ma X, Liu H. The role of NO-cGMP pathway inhibition in vascular endothelial-dependent smooth muscle relaxation disorder of AT1-AA positive rats: protective effects of adiponectin. Nitric Oxide 2019; 87:10-22. [PMID: 30831264 DOI: 10.1016/j.niox.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022]
Abstract
Angiotensin II type 1 receptor autoantibodies (AT1-AA) cause endothelial-dependent smooth muscle relaxation disorder. It is well understood that impairment of the NO-cGMP signaling pathway is one of the mechanisms of endothelial-dependent smooth muscle relaxation disorder. However, it is still unclear whether AT1-AA induces endothelial-dependent smooth muscle relaxation disorder via the impairment of the NO-cGMP signaling pathway. In addition, adiponectin exerts vascular endothelial protection through the NO-cGMP signaling pathway. Therefore, the purpose of this investigation was to assess the mechanism of vascular endothelial-dependent smooth muscle relaxation disorder induced by AT1-AA and the role of adiponectin in attenuating this dysregulation. Serum endothelin-1 (ET-1), adiponectin and AT1-AA were detected by enzyme-linked immunosorbent assay. In preeclamptic patients, there was an increased level of AT1-AA, which was positively correlated with ET-1 and negatively correlated with adiponectin, as elevated levels of ET-1 suggested endothelial injury. AT1-AA-positive animal models were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII) for eight weeks. In thoracic aortas of AT1-AA positive rats, ET-1 was elevated, endothelium-dependent vasodilation was decreased. Paradoxically, as the upstream element of the NO-cGMP signaling pathway, NO production was not decreased but increased, and the ratio of p-VASP/VASP, an established biochemical endpoint of NO-cGMP signaling pathway, was reduced. Moreover, the levels of nitrotyrosine and gp91phox which indicate the presence of peroxynitrite (ONOO-) and superoxide anion (O2·-) were increased. Pretreatment with the ONOO- scavenger FeTMPyP or O2·-scavenger Tempol normalized vasorelaxation. Key enzymes responsible for NO synthesis were also assessed. iNOS protein expression was increased, but p-eNOS(Ser1177)/eNOS was reduced. Preincubation with the iNOS inhibitor 1400 W or eNOS agonist nebivolol restored vasorelaxation. Further experiments showed levels of p-AMPKα (Thr172)/AMPKα, which controls iNOS expression and eNOS activity, to have been reduced. Furthermore, levels of the upstream component of AMPK, adiponectin, was reduced in sera of AT1-AA positive rats and supplementation of adiponectin significantly decreased ET-1 contents, improved endothelial-dependent vasodilation, reduced NO production, elevated p-VASP/VASP, inhibited protein expression of nitrotyrosine and gp91phox, reduced iNOS overexpression, and increased eNOS phosphorylation at Ser1177 in the thoracic aorta of AT1-AA positive rats. These results established that impairment NO-cGMP pathway may aggravate the endothelial-dependent smooth muscle relaxation disorder in AT1-AA positive rats and adiponectin improved endothelial-dependent smooth muscle relaxation disorder by enhancing NO-cGMP pathway. This discovery may shed a novel light on clinical treatment of vascular diseases associated with AT1-AA.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Yuhui Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Xiaochen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Xinliang Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China; Department of Emergency Medicine, Thomas Jefferson University, Philadephia, Pennsylvania, USA.
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Li X, Zhang Q, Hou N, Li J, Liu M, Peng S, Zhang Y, Luo Y, Zhao B, Wang S, Zhang Y, Qiao Y. Carnosol as a Nrf2 Activator Improves Endothelial Barrier Function Through Antioxidative Mechanisms. Int J Mol Sci 2019; 20:ijms20040880. [PMID: 30781644 PMCID: PMC6413211 DOI: 10.3390/ijms20040880] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the main pathogenesis of diabetic microangiopathy, which can cause microvascular endothelial cell damage and destroy vascular barrier. In this study, it is found that carnosol protects human microvascular endothelial cells (HMVEC) through antioxidative mechanisms. First, we measured the antioxidant activity of carnosol. We showed that carnosol pretreatment suppressed tert-butyl hydroperoxide (t-BHP)-induced cell viability, affected the production of lactate dehydrogenase (LDH) as well as reactive oxygen species (ROS), and increased the produce of nitric oxide (NO). Additionally, carnosol promotes the protein expression of vascular endothelial cadherin (VE-cadherin) to keep the integrity of intercellular junctions, which indicated that it protected microvascular barrier in oxidative stress. Meanwhile, we investigated that carnosol can interrupt Nrf2-Keap1 protein−protein interaction and stimulated antioxidant-responsive element (ARE)-driven luciferase activity in vitro. Mechanistically, we showed that carnosol promotes the expression of heme oxygenase 1(HO-1) and nuclear factor-erythroid 2 related factor 2(Nrf2). It can also promote the expression of endothelial nitric oxide synthase (eNOS). Collectively, our data support the notion that carnosol is a protective agent in HMVECs and has the potential for therapeutic use in the treatments of microvascular endothelial cell injury.
Collapse
Affiliation(s)
- Xi Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Qiao Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Ning Hou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Jing Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Min Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Sha Peng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yuxin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yinzhen Luo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Bowen Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Shifeng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yanjiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| |
Collapse
|
10
|
Aggarwal S, Sunderland N, Thornton C, Xu B, Hennessy A, Makris A. A longitudinal analysis of angiotensin II type 1 receptor antibody and angiogenic markers in pregnancy. Am J Obstet Gynecol 2017; 216:170.e1-170.e8. [PMID: 27793555 DOI: 10.1016/j.ajog.2016.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/28/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Preeclampsia can be caused by shallow trophoblast invasion and results in endothelial dysfunction. Angiotensin II type 1 receptor antibodies may have a role in both processes. Other angiogenic markers (placental growth factor, soluble fms-like tyrosine kinase-1, and soluble endoglin) have been shown to alter before clinically evident preeclampsia. OBJECTIVE The aim of this study is to assess the longitudinal changes and utility of biomarker angiotensin II type 1 receptor antibodies and angiogenic markers in hypertensive disorders of pregnancy, gestational hypertension, and preeclampsia. STUDY DESIGN A longitudinal prospective cohort observational study of angiogenic markers and a secondary retrospective case-control study of angiotensin II type 1 receptor antibody changes were conducted. The studies were conducted in a large tertiary metropolitan teaching hospital (Sydney, Australia). Sequential recruitment of women with a singleton pregnancy (N = 351) was undertaken. Plasma concentrations of angiotensin II type 1 receptor antibodies, placental growth factor, soluble fms-like tyrosine kinase-1, and soluble endoglin were measured using validated enzyme-linked immunosorbent assays at 12, 18, 28, 36, and 40 weeks' gestation and 6 weeks' postpartum. Clinical, demographic, and pregnancy data were prospectively collected. Pregnancy outcomes were classified as normotensive, gestational hypertension, or preeclampsia. Analyses were carried out using software and significance set at P < .05. RESULTS In all, 351 women were recruited, 17 developed gestational hypertension, and 18 developed preeclampsia. Women with preeclampsia at baseline were heavier (P = .015), were taller (P = .046), and had higher systolic (P = .029) and diastolic (P = .006) blood pressure. The preeclampsia group had higher soluble fms-like tyrosine kinase-1 from ≥28 weeks (P = .003) and lower placental growth factor from 18 weeks (P = .004). Soluble endoglin and angiotensin II type 1 receptor antibodies did not vary over time or between groups. Angiotensin II type 1 receptor antibody (12 weeks) was positively correlated with serum pregnancy associated plasma protein A (P = .008) and human chorionic gonadotrophin (P = .04). CONCLUSION Angiogenic markers vary longitudinally during pregnancy and placental growth factor and soluble fms-like tyrosine kinase-1 have a role for predicting and diagnosing preeclampsia later in disease. Our data show that angiotensin II type 1 receptor antibodies are not sensitive for disease and hence not useful as a biomarker. Larger studies are required to describe the role and functionality of angiotensin II type 1 receptor antibodies in preeclampsia.
Collapse
Affiliation(s)
- Shikha Aggarwal
- School of Medicine, Western Sydney University, Sydney, Australia; Heart Research Institute, Sydney, Australia.
| | | | - Charlene Thornton
- Department of Renal Medicine, South Western Sydney Local Health District, Sydney, Australia
| | - Bei Xu
- Heart Research Institute, Sydney, Australia
| | - Annemarie Hennessy
- School of Medicine, Western Sydney University, Sydney, Australia; Heart Research Institute, Sydney, Australia; Department of Renal Medicine, South Western Sydney Local Health District, Sydney, Australia
| | - Angela Makris
- School of Medicine, Western Sydney University, Sydney, Australia; Heart Research Institute, Sydney, Australia; Department of Renal Medicine, South Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
11
|
Franco ATB, Silva LMG, Costa MS, Zamuner SF, Vieira RP, de Fatima Pereira Teixeira C, Zamuner SR. Effect of photobiomodulation on endothelial cell exposed to Bothrops jararaca venom. Lasers Med Sci 2016; 31:1017-25. [PMID: 27147074 DOI: 10.1007/s10103-016-1941-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/18/2016] [Indexed: 02/01/2023]
|
12
|
Marian U, Slavcev A, Gazdic T, Ivak P, Netuka I. The impact of Angiotensin II Type 1 Receptor antibodies on morbidity and mortality in Heart Mate II supported recipients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:518-523. [PMID: 27132810 DOI: 10.5507/bp.2016.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022] Open
Abstract
AIMS One of the proposed limitations of left ventricular assist device (LVAD) therapy is high degree of sensitization. Apart from human leukocyte antigen (HLA), antibodies against Angiotensin II Type 1 Receptor (AT1R) have been associated with adverse outcomes. The purpose of this study was to compare complications and survival of anti - AT1R positive versus negative Heart Mate II (HMII) recipients. METHODS Altogether 96 patients received HMII at our institution between 2008 and 2012. These were stratified into three groups: antibody positive before implantation (AT1R+), antibody conversion during support (AT1R-/+) and patients who remained antibody negative (AT1R-). Survival, major on-device adverse events and post-transplant rejections were assessed with Kaplan-Meier and log-rank tests. RESULTS Two year on-device and overall survival was 78 ± 12% and 75 ± 10% in AT1R-, 60 ± 23% and 60 ± 15% in AT1R+ and 92 ± 6% and 87 ± 5% in AT1R-/+ group (P = 0.409, P = 0.185). Freedom from major adverse event at two years for AT1R-, AT1R+ and AT1R-/+ was 49 ± 14%, 53 ± 16% and 41 ± 11% (P = 0.875). Freedom from rejection was 63 ± 17% in patients who were both anti-AT1R and HLA negative and 65 ± 13% in those who were antibody positive (P = 0.788). CONCLUSION Patients who were anti-AT1R antibody positive had similar on-device survival and rate of complications in comparison to those who were antibody negative. In transplanted patients, there were no differences in the overall survival and rejection between the groups.
Collapse
Affiliation(s)
- Urban Marian
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Antonij Slavcev
- Department of Clinical Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Gazdic
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Ivak
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivan Netuka
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
13
|
Angiotensin II type 1 receptor autoantibody as a novel regulator of aldosterone independent of preeclampsia. J Hypertens 2015; 33:1046-56. [DOI: 10.1097/hjh.0000000000000521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Yang X, Wang F, Lau WB, Zhang S, Zhang S, Liu H, Ma XL. Autoantibodies isolated from preeclamptic patients induce endothelial dysfunction via interaction with the angiotensin II AT1 receptor. Cardiovasc Toxicol 2014; 14:21-9. [PMID: 24122090 DOI: 10.1007/s12012-013-9229-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complete understanding of the etiology underlying endothelial damage in preeclampsia (PE) remains deficient. Recent studies suggest that autoantibodies against angiotensin II AT1 receptors (AT1-AA) may affect vascular endothelial integrity. However, direct evidence demonstrating association between AT1-AA from preeclamptic patients and vascular endothelial injury is lacking. The current study determined the effects of AT1-AA isolated from preeclamptic patients (Pre-IgG) upon the endothelium and attempted to elucidate the underlying mechanisms of injury. Pre-IgG markedly induced dose-dependent vasoconstriction in aortic vascular rings, an effect blocked by AT1 receptor antagonist losartan. Pre-IgG-induced vasoconstriction was increased in the absence of intact endothelium (1.59 ± 0.04 g vs. 1.63 ± 0.08 g, P < 0.05). Additionally, Pre-IgG incubation with human umbilical vein endothelial cells significantly increased lactate dehydrogenase release in a time-dependent manner (0.84 ± 0.07 vs. 3.50 ± 0.09, 24 vs. 72-h exposure group, P < 0.01) and increased caspase-3 and -8 activities (peaking at 48 h), but did not affect caspase-9 activity. Taken together, these results support the contribution of AT1-AA to endothelial cell injury and dysfunction in PE.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Reproductive Center, Taiyuan Central Hospital, Taiyuan, 030001, Shanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Bai K, Wang K, Li X, Wang J, Zhang J, Song L, Wang J, Zhang S, Lau WB, Ma X, Liu H. Autoantibody against angiotensin AT1 receptor from preeclamptic patients enhances collagen-induced human platelet aggregation. Acta Biochim Biophys Sin (Shanghai) 2013; 45:749-55. [PMID: 23681235 DOI: 10.1093/abbs/gmt059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypercoagulability, platelet activation, and thrombocytopenia are the chief characteristics of preeclampsia, but their responsible underlying molecular mechanisms remain obscure. Recent studies have demonstrated that the autoantibody against angiotensin II type 1 receptor (AT1-AA) constitutes a novel risk factor for preeclampsia. However, the role of AT1-AA in platelet activation and hypercoagulability in preeclampsia has never been investigated. In the present study, we determined whether AT1-AA promotes platelet aggregation in vitro, and dissected the potential underlying mechanisms. AT1-AA was detected by enzyme-linked immunosorbent assay. After immunoglobulin G fractions purified from the preeclamptic patient positive sera were added to platelets isolated from healthy volunteers, platelet aggregation and intracellular Ca(2+) levels were detected. AT1-AA significantly enhanced in vitro collagen-induced platelet aggregation, an effect blocked by the AT1 receptor antagonist losartan. Additionally, AT1-AA increased and maintained collagen-induced cytosolic calcium concentration throughout the experiment. We demonstrated for the first time that AT1-AA significantly promotes collagen-induced platelet aggregation through angiotensin type 1 receptor activation in vitro, potentially via increased intracellular Ca(2+) concentration, supporting AT1-AA as a potential contributor to the hypercoagulable state of preeclampsia.
Collapse
Affiliation(s)
- Kehua Bai
- Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang S, Zheng R, Yang L, Zhang X, Zuo L, Yang X, Bai K, Song L, Tian J, Yang J, Liu H. Angiotensin type 1 receptor autoantibody from preeclamptic patients induces human fetoplacental vasoconstriction. J Cell Physiol 2012; 228:142-8. [DOI: 10.1002/jcp.24113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Zhang S, Zhang X, Yang L, Yan Z, Yan L, Tian J, Li X, Song L, Wang L, Yang X, Zheng R, Lau WB, Ma X, Liu H. Increased susceptibility to metabolic syndrome in adult offspring of angiotensin type 1 receptor autoantibody-positive rats. Antioxid Redox Signal 2012; 17:733-43. [PMID: 22304458 DOI: 10.1089/ars.2011.4365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Abnormal fetal and early postnatal growth is closely associated with adult-onset metabolic syndrome (MetS). However, the underlying etiological factors remain complex. The presence of the autoantibody against the angiotensin II type 1 receptor (AT1-Ab), a known risk factor for pre-eclampsia, may create a suboptimal intrauterine fetal environment. The current study investigated whether middle-aged offspring of AT1-Ab-positive mothers were prone to metabolic disorder development. RESULTS The AT1-Abs was detected in placental trophoblastic cells, capillary endothelium, and milk of pregnant rats actively immunized with the second extracellular loop of the AT1 receptor. AT1-Abs in newborn rats induced vasoconstriction, increased intracellular-free Ca(2+) in vitro, and was undetectable 7 weeks later. Immunized group offspring exhibited increased weight variability and insulin resistance at 40 weeks of age under a normal diet, evidenced by elevated fasting serum insulin and homeostasis model assessment score compared with the vehicle control. To further observe metabolic alterations, the offspring were given a high-sugar diet (containing 20% sucrose) 40-48 weeks postnatally. The fasting plasma glucose in immunized group offspring was markedly increased. Concomitantly, these offspring manifested increased visceral adipose tissue, increased fatty liver, increased triglycerides, decreased high-density lipoprotein cholesterol, and decreased adiponectin levels, indicative of MetS. INNOVATION AT1-Abs could be transferred from mother to offspring via the placenta and milk. Moreover, offspring of an AT1-Ab-positive mother were more vulnerable to MetS development in middle age. CONCLUSION AT1-Ab-positivity of mothers during pregnancy is a previously unrecognized "silent" risk factor for MetS development in their offspring.
Collapse
Affiliation(s)
- Suli Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xia Y, Kellems RE. Receptor-activating autoantibodies and disease: preeclampsia and beyond. Expert Rev Clin Immunol 2011; 7:659-74. [PMID: 21895478 DOI: 10.1586/eci.11.56] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The research reviewed in this article provides examples of autoantibody-mediated receptor activation that likely contributes to disease. The classic example is Graves' hyperthyroidism, in which autoantibodies activate the thyroid-stimulating hormone receptor resulting in overproduction of thyroid hormones. Other compelling examples come from the cardiovascular literature and include agonistic autoantibodies targeting the cardiac β(1)-adrenergic receptor, which are associated with dilated cardiomyopathy. Autoantibodies capable of activating α(1)-adrenergic receptors are associated with refractory hypertension and cardiomyopathy. A prominent example is preeclampsia, a hypertensive disease of pregnancy, characterized by the presence of autoantibodies that activate the major angiotensin receptor, AT(1). AT(1) receptor-activating autoantibodies are also observed in kidney transplant recipients suffering from severe vascular rejection and malignant hypertension. AT(1) receptor-activating autoantibodies and antibodies that activate the endothelin-1 receptor, ET(A), are prevalent in individuals diagnosed with systemic sclerosis. Thus, the presence of agonistic autoantibodies directed to G protein-coupled receptors has been observed in numerous cardiovascular disease states. Rapidly emerging evidence indicates that receptor-activating autoantibodies contribute to disease, and that efforts to detect and remove these pathogenic autoantibodies or block their actions will provide promising therapeutic possibilities.
Collapse
Affiliation(s)
- Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
19
|
Jin Z, Wang J, Zhang W, Zhang G, Jiao X, Zhi J. Changes in cardiac structure and function in rats immunized by angiotensin type 1 receptor peptides. Acta Biochim Biophys Sin (Shanghai) 2011; 43:970-6. [PMID: 22037945 DOI: 10.1093/abbs/gmr096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Angiotensin II (Ang II) is known to induce cardiomyocyte hypertrophy by activating the Ang II type 1 (AT1) receptor. Some studies have demonstrated that the autoantibodies against angiotensin AT1 receptor (AT1-AAs) cause functional effects, which is similar to those observed for the natural agonist Ang II. In this study, we investigated the effects of AT1-AAs on cardiomyocytes' structure and function. Male Wistar rats were immunized with synthetic peptides corresponding to the second extracellular loop of AT1 receptor and Freund's adjuvant. The titers of AT1-AAs in rat serum were detected by enzyme-linked immunosorbent assay every week. Hemodynamic analysis and heart weight (HW) indices were measured on the 4th and 8th months after initial immunization, respectively. Cultured neonatal rat cardiomyocytes were used to observe the hypertrophic effects of AT1-AAs. Results showed that systolic blood pressure and heart rate were significantly increased, the titers of AT1-AAs were also increased after 4 weeks of initial immunization. Compared with control group, the HW/body weight (BW) and left ventricular weight/BW of immunized rats were increased significantly and cardiac function was enhanced compensatively. The cultured neonatal rat cardiomyocytes respond to AT1-AAs stimulation with increased (3)H-leucine incorporation and cell surface area in a dose-dependent manner. These results suggest that the AT1-AAs have an agonist effect similar to Ang II in hypertrophy of cardiomyocytes in vivo and in vitro. AT1-AAs are involved in the pathogenesis of cardiovascular diseases and hypertension.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Autoantibodies/blood
- Autoantibodies/immunology
- Blood Pressure/drug effects
- Cardiomegaly
- Cell Enlargement/drug effects
- Heart/drug effects
- Heart/physiology
- Heart Rate/drug effects
- Male
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Wistar/immunology
- Receptor, Angiotensin, Type 1/administration & dosage
- Receptor, Angiotensin, Type 1/immunology
- Receptor, Angiotensin, Type 1/metabolism
Collapse
Affiliation(s)
- Zhu Jin
- Department of Physiology, Shanghai Jiao Tong University, School of Medicine, China
| | | | | | | | | | | |
Collapse
|
20
|
Wenzel K, Rajakumar A, Haase H, Geusens N, Hubner N, Schulz H, Brewer J, Roberts L, Hubel CA, Herse F, Hering L, Qadri F, Lindschau C, Wallukat G, Pijnenborg R, Heidecke H, Riemekasten G, Luft FC, Muller DN, Lamarca B, Dechend R. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension 2011; 58:77-84. [PMID: 21576625 DOI: 10.1161/hypertensionaha.111.171348] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pregnant women who subsequently develop preeclampsia are highly sensitive to infused angiotensin (Ang) II; the sensitivity persists postpartum. Activating autoantibodies against the Ang II type 1 (AT(1)) receptor are present in preeclampsia. In vitro and in vivo data suggest that they could be involved in the disease process. We generated and purified activating antibodies against the AT(1) receptor (AT(1)-AB) by immunizing rabbits against the AFHYESQ epitope of the second extracellular loop, which is the binding epitope of endogenous activating autoantibodies against AT(1) from patients with preeclampsia. We then purified AT(1)-AB using affinity chromatography with the AFHYESQ peptide. We were able to detect AT(1)-AB both by ELISA and a functional bioassay. We then passively transferred AT(1)-AB into pregnant rats, alone or combined with Ang II. AT(1)-AB activated protein kinase C-α and extracellular-related kinase 1/2. Passive transfer of AT(1)-AB alone or Ang II (435 ng/kg per minute) infused alone did not induce a preeclampsia-like syndrome in pregnant rats. However, the combination (AT(1)-AB plus Ang II) induced hypertension, proteinuria, intrauterine growth retardation, and arteriolosclerosis in the uteroplacental unit. We next performed gene-array profiling of the uteroplacental unit and found that hypoxia-inducible factor 1α was upregulated by Ang II plus AT(1)-AB, which we then confirmed by Western blotting in villous explants. Furthermore, endothelin 1 was upregulated in endothelial cells by Ang II plus AT(1)-AB. We show that AT(1)-AB induces Ang II sensitivity. Our mechanistic study supports the existence of an "autoimmune-activating receptor" that could contribute to Ang II sensitivity and possible to preeclampsia.
Collapse
|
21
|
Frontiers of vascular biology and disease research. Acta Pharmacol Sin 2010; 31:1241-2. [PMID: 20921953 DOI: 10.1038/aps.2010.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|