1
|
Lee B, Park Y, Lee Y, Kwon S, Shim J. Triptolide, a Cancer Cell Proliferation Inhibitor, Causes Zebrafish Muscle Defects by Regulating Notch and STAT3 Signaling Pathways. Int J Mol Sci 2024; 25:4675. [PMID: 38731894 PMCID: PMC11083231 DOI: 10.3390/ijms25094675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.
Collapse
Affiliation(s)
- Byongsun Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yongjin Park
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Younggwang Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Seyoung Kwon
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Jaekyung Shim
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| |
Collapse
|
2
|
Pan W, Yang B, He D, Chen L, Fu C. Functions and targets of miRNAs in pharmacological and toxicological effects of major components of Tripterygium wilfordii Hook F. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1997-2019. [PMID: 37831113 DOI: 10.1007/s00210-023-02764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Tripterygium wilfordii Hook F (TwHF) has a long history of use as a traditional Chinese medicine and has been widely administered to treat various inflammatory and autoimmune diseases. MicroRNAs (miRNAs) are endogenous, short, non-coding RNAs that regulate gene expression post-transcriptionally. They participate in the efficacies and even toxicities of the components of TwHF, rendering miRNAs an appealing therapeutic strategy. This review summarizes the recent literature related to the roles and mechanisms of miRNAs in the pharmacological and toxicological effects of main components of TwHF, focusing on two active compounds, triptolide (TP) and celastrol (CEL). Additionally, the prospects for the "You Gu Wu Yun" theory regarding TwHF nephrotoxicity are presented.
Collapse
Affiliation(s)
- Wei Pan
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bo Yang
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Dongxiu He
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Chengxiao Fu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China.
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Zhou K, Chang Y, Han B, Li R, Wei Y. MicroRNAs as crucial mediators in the pharmacological activities of triptolide (Review). Exp Ther Med 2021; 21:499. [PMID: 33791008 PMCID: PMC8005665 DOI: 10.3892/etm.2021.9930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Triptolide is the main bioactive constituent isolated from the Chinese herb Tripterygium wilfordii Hook F., which possesses a variety of pharmacological properties. MicroRNAs (miRNAs/miRs) are short non-coding RNAs that regulate gene expression post-transcriptionally. miRNAs are implicated in several intracellular processes, whereby their dysregulation contributes to pathogenesis of various diseases. Thus, miRNAs have great potential as biomarkers and therapeutic targets for diseases, and are implicated in drug treatment. Previous studies have reported that specific miRNAs are targeted, and their expression levels can be altered following exposure to triptolide. Thus, miRNAs are emerging as crucial mediators in the pharmacological activities of triptolide. The present review summarizes current literature on miRNAs as target molecules in the pharmacological activities of triptolide, including antitumor, anti-inflammatory, immunosuppressive, renal protective, cardioprotective, antiangiogenesis activities and multiorgan toxicity effects. In addition, the diverse signaling pathways involved are discussed to provide a comprehensive understanding of the underlying molecular mechanisms of triptolide in the regulation of target miRNAs.
Collapse
Affiliation(s)
- Kun Zhou
- Shanxi Institute of Energy, Taiyuan, Shanxi 030600, P.R. China
| | - Yinxia Chang
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Bo Han
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Rui Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Yanming Wei
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
5
|
|
6
|
Peng F, Xie X, Peng C. Chinese Herbal Medicine-Based Cancer Therapy: Novel Anticancer Agents Targeting MicroRNAs to Regulate Tumor Growth and Metastasis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1711-1735. [PMID: 31801358 DOI: 10.1142/s0192415x19500873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs, small non-coding RNA molecules, have gained a reputation of the most substantial regulators in gene network with the ability to down-regulate their targets. Accumulating evidence shifted insight toward microRNAs regulation as the key element of cancer initiation, development, and aggression. Recent studies have attached the importance of traditional Chinese medicine (TCM) to the treatment of various cancers, and the functional natural compounds have been considered as novel anticancer agents to directly inhibit tumor progression. In more recent decades, a wide range of biologically active components of TCM has gained increasing attention to their applications in the modulation of microRNAs. This review is on the purpose of demonstrating the significance of TCM bioactive ingredients in microRNAs regulation for cancer treatment according to the reports mainly in the recent six years, providing the evidence of efficient Chinese herbal medicine-based therapy and effective pro-diagnosis focusing on microRNAs expression of cancer patients.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xiaofang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, P. R. China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, P. R. China
| |
Collapse
|
7
|
Chen M, Wang JM, Wang D, Wu R, Hou HW. Triptolide inhibits migration and proliferation of fibroblasts from ileocolonic anastomosis of patients with Crohn's disease via regulating the miR‑16‑1/HSP70 pathway. Mol Med Rep 2019; 19:4841-4851. [PMID: 30942423 PMCID: PMC6522880 DOI: 10.3892/mmr.2019.10117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/27/2019] [Indexed: 01/26/2023] Open
Abstract
Anastomotic fibrosis is highly likely to lead to reoperation in Crohn's disease (CD) patients. Triptolide (TPL) is considered to have anti-inflammatory and antifibrotic effects in a variety of autoimmune diseases, including CD. The present study aimed to investigate the effects of TPL on fibroblasts from strictured ileocolonic anastomosis of patients with CD and its underlying mechanism. Primary fibroblasts were obtained from strictured anastomosis tissue (SAT) samples and matched anastomosis-adjacent normal tissue (NT) samples which were collected from 10 CD patients who underwent reoperation because of anastomotic stricture. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure miR-16-1 and heat shock protein 70 (HSP70) levels. Western blotting was conducted to determine expression of HSP70, collagen I (Col-I), collagen III (Col-III) and α-smooth muscle actin (α-SMA) proteins. Agomir-16-1 and antagomir-16-1 were used to up and downregulate the expression of miR-16-1, respectively. Small interfering RNA (siRNA) was employed to inhibit the expression of HSP70. A wound healing assay was performed to measure the migration of fibroblasts. Cell proliferation was evaluated by MTT and 5-bromo-2-deoxyrudidine assays. Cell apoptosis was determined by caspase-3 activity and TUNEL assays. The results demonstrated that the levels of Col-I, Col-III and α-SMA were all significantly upregulated in SAT compared with NT. miR-16-1 levels in the SAT group were significantly compared with the NT group; conversely, the expression levels of HSP70 mRNA and protein in the SAT group were significantly lower compared with the NT group. Next, fibroblasts were treated with TPL to examine its effect on the miR-16-1/HSP70 pathway. The results demonstrated that the elevated expression of miR-16-1 in the SAT group was effectively inhibited by TPL treatment. Compared with the NT group, both the mRNA and protein levels of HSP70 were significantly downregulated in the SAT group cells, while TPL exhibited a strong promoting effect on HSP70 synthesis. Furthermore, upregulation of miR-16-1 reversed the effect of TPL on the miR-16-1/HSP70 pathway in fibroblasts from SAT. Overexpression of miR-16-1 significantly reversed the inhibitory effects of TPL treatment on migration, proliferation and extracellular matrix (ECM)-associated protein expression of fibroblasts from SAT. Finally, downregulation of miR-16-1 caused similar effects to the fibroblasts as the TPL treatment; however, the inhibitory effects on cell biological functions induced by antagomir-16-1 were all significantly reversed by HSP70 silencing. The present findings indicated that TPL may be a potential therapeutic option for postoperative anastomosis fibrosis of patients with CD. The miR-16-1/HSP70 pathway had a substantial role in the inhibitory effects of TPL on migration, proliferation and ECM synthesis rate of fibroblasts from strictured anastomosis tissues.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiology, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210009, P.R. China
| | - Jin-Min Wang
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Wu
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Hong-Wei Hou
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
8
|
Yao C, Li H, Zhang W. Triptolide inhibits benign prostatic epithelium viability and migration and induces apoptosis via upregulation of microRNA-218. Int J Immunopathol Pharmacol 2019; 32:2058738418812349. [PMID: 30453799 PMCID: PMC6247479 DOI: 10.1177/2058738418812349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Benign prostatic hypertrophy (BPH) has become a troublesome disease for elder
men. Triptolide (TPL) has been reported to be a potential anticancer agent.
However, the potential effects of TPL on BPH have not been shown out. BPH-1
cells were treated with different concentrations of TPL and/or transfected with
microRNA-218 (miR-218) inhibitor, pc-survivin, sh-survivin, or their
corresponding controls (NC). Thereafter, cell viability was determined by CCK-8
assay. Cell migration was accessed by modified two-chamber migration assay. Cell
apoptosis was checked by propidium iodide (PI) and fluorescein isothiocyanate
(FITC)-conjugated Annexin V staining. In addition, messenger RNA (mRNA) and
protein levels were detected using quantitative real-time polymerase chain
reaction (qRT-PCR) and western blot analysis, respectively. BPH-1 cell viability
and migration were significantly decreased, while cell apoptosis and expression
of miR-218 were statistically enhanced by TPL (P < 0.05 or
P < 0.01). However, downregulation of miR-218 increased
cell viability and migration, while decreased cell apoptosis compared with the
negative control group (P < 0.05 or
P < 0.01). Furthermore, the expression of cell cycle–related
proteins and cell apoptosis–related proteins were also led to the opposite
results with NC. In addition, we found that miR-218 negatively regulated the
expression of survivin (P < 0.01) and suppression of
survivin significantly enhanced cell apoptosis (P < 0.01).
Moreover, the results demonstrated that TPL could inactivate mammalian target of
rapamycin (mTOR) pathway, while inhibition of miR-218 alleviated the effects.
TPL inhibits viability and migration of BPH-1 cells and induces cell apoptosis
and also inactivates mTOR signal pathway via upregulation of miR-218. This study
provides evidence for the further studies representing triptolide as a potential
agent in the treatment of human BPH.
Collapse
Affiliation(s)
- Changlei Yao
- 1 Department of Urinary Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Hongfa Li
- 1 Department of Urinary Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Weitao Zhang
- 2 Department of Urinary Surgery, Affiliated Hospital of Taishan Medical University, Taian, China
| |
Collapse
|
9
|
Wang R, Shen J, Wang Q, Zhang M. Bortezomib inhibited the progression of diffuse large B-cell lymphoma via targeting miR-198. Biomed Pharmacother 2018; 108:43-49. [PMID: 30216798 DOI: 10.1016/j.biopha.2018.08.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, which is an aggressive malignancy with high variance of clinical features and response to the treatment. The proteasome inhibitor bortezomib (BTZ) has been demonstrated to suppress the progression of DLBCL, however, the underlying molecular mechanisms by which BTZ regulates the growth of DLBCL cells remain largely unknown. Increasing evidence has suggested that microRNAs (miRNAs) are novel targets of anti-cancer drugs to modulate the progression of cancers. Here, we showed BTZ treatment significantly inhibited the proliferation of DLBCL CRL-2630 cells. Mechanistically, exposure of BTZ up-regulated the expression of miR-198 in DLBCL cells. Depletion of miR-198 significantly reversed the inhibitory effect of BTZ on the proliferation of CRL-2630 cells. To further characterize the involvement of miR-198 in BTZ-induced growth defects of CRL-2630 cells, the downstream targets of miR-198 were predicted with the bioinformatics tools. The results showed that miR-198 bound the 3'-untranslated region (UTR) of the high mobility group AT-hook 1 (HMGA1) and suppressed the expression of HMGA1 in DLBCL cells. Consistently, BTZ treatment decreased the level of HMAG1 and inhibited the migration of DLBCL cells. Our results provided the possible mechanism by which BTZ suppressed the growth of DLBCL cells.
Collapse
Affiliation(s)
- Ruihuan Wang
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China.
| | - Jie Shen
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China
| | - Qing Wang
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China
| | - Minjuan Zhang
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China
| |
Collapse
|
10
|
Hou HW, Wang JM, Wang D, Wu R, Ji ZL. Triptolide exerts protective effects against fibrosis following ileocolonic anastomosis by mechanisms involving the miR-16-1/HSP70 pathway in IL-10-deficient mice. Int J Mol Med 2017. [PMID: 28627592 PMCID: PMC5505014 DOI: 10.3892/ijmm.2017.3016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Surgeries, particularly ileocecal resection (ICR), are often required in the treatment of Crohn's disease (CD). However, recurrences are common for patients who undergo ICR, and anastomotic fibrosis is the main cause of re-operation. The present study aimed to investigate the therapeutic effects of triptolide (TPL) in ameliorating fibrosis following ileocolonic anastomosis. A model of IL-10−/− mice undergoing ICR was used to study post surgical inflammation and fibrosis of anastomosis. For this purpsose, interleukin (IL)-10−/− mice were randomly divided into 3 groups as follows: the control group, the saline-treated group subjected to ICR (ST-ICR) and the TPL-treated group subjected to ICR (TT-ICR). Wild-type (WT) mice of matching ages were assigned to the WT group. The effects of TPL treatment on ileocolonic anastomosis were determined by histopathological evaluation, western blot analysis and ELISA. The analysis of the effects of TPL treatment on microRNA-16-1 (miR-16-1) and heat shock protein 70 (HSP70) expression was carried out by RT-qPCR and western blot analysis. Compared with the control group, significantly higher inflammation scores following anastomosis were observed in the ST-ICR group (P<0.05), although reversion was observed in the TT-ICR group, which was consistent with changes in the area of CD4+ cell infiltration. The elevated fibrosis scores and the overexpression of procollagen I and III in the ST-ICR group were all inhibited by TPL. With an increase in the severity of inflammation and fibrosis, the levels of IL-6, tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) increased; however, a significant decrease in these levels was observed following treatment with TPL (P<0.05). The results of RT-qPCR revealed that the upregulated miR-16-1 levels in the ST-ICR group were significantly reduced by TPL. HSP70, which can be inhibited by miR-16-1, ameliorates anastomotic inflammation and fibrosis. Thus, the present study demonstrates that TPL exerts a protective effect against fibrosis following anastomosis in CD. The miR-16-1/HSP70 signaling pathway, which can be regulated by TPL, may thus represent a novel therapeutic option in CD that deserves further investigation.
Collapse
Affiliation(s)
- Hong-Wei Hou
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Jin-Min Wang
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Wu
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Zhen-Ling Ji
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Jiang C, Fang X, Zhang H, Wang X, Li M, Jiang W, Tian F, Zhu L, Bian Z. Triptolide inhibits the growth of osteosarcoma by regulating microRNA-181a via targeting PTEN gene in vivo and vitro. Tumour Biol 2017; 39:1010428317697556. [PMID: 28381158 DOI: 10.1177/1010428317697556] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We aimed to study the anti-tumor effects of triptolide on osteosarcoma and the related molecular mechanisms. The cell viability, apoptosis portion, tumor size, tumor weight, and invasion of osteosarcoma cells were determined. The relative level of microRNA-181 in osteosarcoma tissues and the adjacent tissues was determined by quantitative real-time reverse transcription polymerase chain reaction. The target gene of microRNA-181a was determined and verified by luciferase report assay. At last, osteosarcoma cells were treated with triptolide and triptolide + microRNA-181a mimics to verify the relationship between triptolide and microRNA-181a. Triptolide inhibited the cell viability, promoted the apoptosis, decreased the tumor size and weight, and reduced the invasion of osteosarcoma cells. The level of microRNA-181a in osteosarcoma cells decreased significantly after treating with triptolide, and the relative level of microRNA-181a in osteosarcoma tissues was markedly higher than that in the adjacent tissues. PTEN was reported and verified the direct target gene of microRNA-181a. The overexpression of microRNA-181a decreased the inhibition of triptolide on osteosarcoma proliferation and promotion on osteosarcoma apoptosis. In conclusion, triptolide inhibited cell growth and invasion of osteosarcoma by regulating microRNA-181a via targeting PTEN gene in vivo and vitro.
Collapse
Affiliation(s)
- Chunming Jiang
- 1 Department of Pediatrics, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Xiang Fang
- 2 Department of Clinical Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Hongxu Zhang
- 3 Department of Ophthalmology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Xuepeng Wang
- 4 Department of Orthopedic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,5 Hangzhou Orthopedic Institute, Hangzhou, China
| | - Maoqiang Li
- 4 Department of Orthopedic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,5 Hangzhou Orthopedic Institute, Hangzhou, China
| | - Wu Jiang
- 4 Department of Orthopedic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,5 Hangzhou Orthopedic Institute, Hangzhou, China
| | - Fei Tian
- 4 Department of Orthopedic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,5 Hangzhou Orthopedic Institute, Hangzhou, China
| | - Liulong Zhu
- 4 Department of Orthopedic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,5 Hangzhou Orthopedic Institute, Hangzhou, China
| | - Zhenyu Bian
- 4 Department of Orthopedic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.,5 Hangzhou Orthopedic Institute, Hangzhou, China
| |
Collapse
|
12
|
Jiang C, Fang X, Zhang H, Wang X, Li M, Jiang W, Tian F, Zhu L, Bian Z. AMD3100 combined with triptolide inhibit proliferation, invasion and metastasis and induce apoptosis of human U2OS osteosarcoma cells. Biomed Pharmacother 2017; 86:677-685. [DOI: 10.1016/j.biopha.2016.12.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023] Open
|
13
|
Hua HY, Gao HQ, Sun AN, Cen JN, Wu LL. Arsenic trioxide and triptolide synergistically induce apoptosis in the SKM‑1 human myelodysplastic syndrome cell line. Mol Med Rep 2016; 14:4180-4186. [PMID: 27665715 PMCID: PMC5101914 DOI: 10.3892/mmr.2016.5779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
Although certain combination therapies comprising arsenic trioxide (As2O3) with other agents exist for the treatment of several types of human cancer, few As2O3 combination therapies are clinically effective for myelodysplastic syndromes (MDS). Triptolide (TL) may be an effective therapeutic agent for the treatment of MDS. However, to date, there is no combination therapy for MDS with As2O3 and TL. Therefore, the aim of the present study was to investigate this combination therapy on the apoptosis of MDS SKM-1 cells. The MDS SKM-1 cells were treated with As2O3, TL or the two in combination at various concentrations, or were mock-treated. Cell viability, cell apoptosis, levels of reactive oxygen species (ROS) and the expression of the cell apoptosis-associated genes, B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax) and caspase-3, were determined using an MTT assay, flow cytometric analysis of annexin V-fluorescein isothiocyanate/propidium iodide double-stained cells, flow cytometic analysis of intracellular 2′,7′-dichlorodihydrofluorescein diacetate fluorescence and reverse transcription-quantitative polymerase chain reaction analysis, respectively. Combination index (CI) analysis was performed to determine whether effects were synergistic (CI<1). The combination treatment was found to synergistically inhibit MDS SKM-1 cell growth, induce cell apoptosis, increase ROS levels, upregulate the expression levels of Bax and caspase-3, and downregulate the mRNA expression of Bcl-2. In conclusion, the combination treatment of As2O3 and TL synergistically induced apoptosis in the MDS SKM-1 cells.
Collapse
Affiliation(s)
- Hai-Ying Hua
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hua-Qiang Gao
- Department of Hematology, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Ai-Ning Sun
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian-Nong Cen
- Laboratory of Cell and Molecular Biology, Jiangsu Institute of Hematology, Suzhou, Jiangsu 215006, P.R. China
| | - Li-Li Wu
- Laboratory of Cell and Molecular Biology, Jiangsu Institute of Hematology, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
14
|
Wang H, Ma D, Wang C, Zhao S, Liu C. Triptolide Inhibits Invasion and Tumorigenesis of Hepatocellular Carcinoma MHCC-97H Cells Through NF-κB Signaling. Med Sci Monit 2016; 22:1827-36. [PMID: 27239780 PMCID: PMC4920093 DOI: 10.12659/msm.898801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We investigated whether the plant-derived agent triptolide (TPL) could effectively inhibit the growth and invasion of human hepatocellular carcinoma (HCC) cells. MATERIAL AND METHODS MHCC-97H cells were treated with various concentration of TPL for various times. To detect the effect of NF-κB on TPL-induced signal pathways, MHCC-97H cells were transfected with p65 siRNA or p65 cDNA, then treated with TPL. We detected cell survival and apoptosis by MTT, soft-agar colony formation assay, flow cytometry, and TUNEL assay. Cell migration and invasion was determined by Matrigel invasion and a wound-healing assay. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-9 activity was detected by ELISA. Western blot and real-time PCR (RT-PCR) assays were used to detect p65 and MMP-9 protein and mRNA expression. A subcutaneously implanted tumor model of MHCC-97H cells in nude mice was used to assess the effects of TPL on tumorigenesis in vivo. RESULTS We showed that TPL treatment significantly suppressed growth and induced apoptosis of MHCC-97H cells in a dose- and time-dependent manner in vitro. Furthermore, TPL treatment inhibited invasion in vitro and inhibited the growth and lung metastasis of MHCC-97H cells in vivo. NF-κB and MMP-9 were inactivated with TPL treatment. Overexpression of p65 restored MMP-9 activity and inhibited the TPL anti-tumor effect on MHCC-97H cells. Knockdown of p65 blocked MMP-9 activation and enhanced TPL-induced cell apoptosis and survival inhibition, and TPL inhibition of migration and invasion in vitro. CONCLUSIONS TPL treatment inhibited MHCC-97H cell growth, invasion, and metastasis in vitro and vivo, suggesting that TPL could be developed as a potential therapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Haiji Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, P.R. China
| | - Duanye Ma
- Department of Clinical Laboratory, Yuhuangding Hospital, Yantai, Shandong, P.R. China
| | - Chenghong Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, P.R. China
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, Shandong, P.R. China
| | - Shanna Zhao
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, Shandong, P.R. China
| | - Chengbiao Liu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, P.R. China
- Department of General Surgery, Yishui Central Hospital of Linyi, Linyi, Shandong, P.R. China
| |
Collapse
|
15
|
Triptolide Attenuates Podocyte Injury by Regulating Expression of miRNA-344b-3p and miRNA-30b-3p in Rats with Adriamycin-Induced Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:107814. [PMID: 26078766 PMCID: PMC4452866 DOI: 10.1155/2015/107814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Abstract
Objectives. We investigated the action of triptolide in rats with adriamycin-induced nephropathy and evaluated the possible mechanisms underlying its protective effect against podocyte injury. Methods. In total, 30 healthy male Sprague-Dawley rats were randomized into three groups (normal group, model group, and triptolide group). On days 7, 28, 42, and 56, 24 h urine samples were collected. All rats were sacrificed on day 56, and their blood and renal tissues were collected for determination of biochemical and molecular biological parameters. Expression of miRNAs in the renal cortex was analyzed by a biochip assay and RT-PCR was used to confirm observed differences in miRNA levels. Results. Triptolide decreased proteinuria, improved renal function without apparent adverse effects on the liver, and alleviated renal pathological lesions. Triptolide also elevated the nephrin protein level. Furthermore, levels of miR-344b-3p and miR-30b-3p were elevated in rats with adriamycin-induced nephropathy, while triptolide treatment reversed the increase in the expression of these two miRNAs. Conclusions. These results suggest that triptolide may attenuate podocyte injury in rats with adriamycin-induced nephropathy by regulating expression of miRNA-344b-3p and miRNA-30b-3p.
Collapse
|
16
|
Drug resistance-related microRNAs in hematological malignancies: Translating basic evidence into therapeutic strategies. Blood Rev 2015; 29:33-44. [DOI: 10.1016/j.blre.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
|
17
|
Chen F, Liu Y, Wang S, Guo X, Shi P, Wang W, Xu B. Triptolide, a Chinese herbal extract, enhances drug sensitivity of resistant myeloid leukemia cell lines through downregulation of HIF-1α and Nrf2. Pharmacogenomics 2014; 14:1305-17. [PMID: 23930677 DOI: 10.2217/pgs.13.122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM To explore whether triptolide (TPL) can enhance drug sensitivity of resistant myeloid leukemia cell lines through downregulation of HIF-1α and Nrf2. MATERIALS & METHODS HL60/A and K562/G cells were subjected to different treatments and thereafter an methyl thiazole tetrazolium bromide assay, flow cytometry, western blot and real-time PCR were used to determine IC₅₀, apoptotic status and expression of Nrf2, HIF-1α and their target genes. RESULTS Doxorubicin- or imatinib-induced apoptosis was enhanced when anticancer agents were used in combination with TPL. When combined with TPL, both doxorubicin and imatinib downregulate Nrf2 and HIF-1α expression at protein and mRNA levels. Genes downstream of Nrf2, for example, NQO1, GSR and HO-1, as well as target genes of HIF-1α, for example, BNIP3, VEGF and CAIX are also downregulated at the mRNA level. CONCLUSION TPL is able to enhance drug sensitivity of resistant myeloid leukemia cell lines through downregulation of HIF-1α and Nrf2.
Collapse
Affiliation(s)
- Feili Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu C, Zhang X, Zhou JX, Wei W, Liu DH, Ke P, Zhang GF, Cai GJ, Su DF. The protective action of ketanserin against lipopolysaccharide-induced shock in mice is mediated by inhibiting inducible NO synthase expression via the MEK/ERK pathway. Free Radic Biol Med 2013; 65:658-666. [PMID: 23954471 DOI: 10.1016/j.freeradbiomed.2013.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) plays an important role in the pathogenesis of endotoxic shock. This work tested the hypothesis that ketanserin could attenuate endotoxic shock by inhibiting the expression of inducible NO synthase (iNOS). The results demonstrated that ketanserin could inhibit iNOS expression in the heart, lungs, liver, and kidneys and nitrate production in the serum upon endotoxic shock in mice. In RAW264.7 cells, ketanserin significantly inhibited the expression of iNOS and decreased the production of NO, TNFα, IL-6, and reactive oxygen species upon lipopolysaccharide (LPS) challenge. Ketanserin also increased the level of ATP and mitochondrial membrane potential in RAW264.7 cells upon LPS exposure. LPS-induced iNOS expression was inhibited by the 5-HT2A receptor antagonist ritanserin and not the α1 receptor antagonist prazosin. Knockdown of 5-HT2A receptor by siRNA abolished the inhibitory effect of ketanserin on the expression of iNOS. These results indicated that the inhibitory effect of ketanserin on the expression of iNOS is mediated by blocking the 5-HT2A receptor. Furthermore, ketanserin significantly inhibited the activation of ERK1/2 and NF-κB signal. Pretreatment with PD184352, a specific inhibitor of ERK1/2, blocked the inhibitory effect of ketanserin on the expression of iNOS and NO production, indicating a critical role for the MEK/ERK1/2 signaling pathway. Collectively, our findings indicate that inhibition of the expression of iNOS via the MEK/ERK pathway mediates the protective effects of ketanserin against LPS-induced shock in mice.
Collapse
Affiliation(s)
- Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China.
| | - Xin Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Jv-Xiang Zhou
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Wei Wei
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Dian-Hua Liu
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Gu-Fang Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Guo-Jun Cai
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China.
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
19
|
Hsp90 inhibitor BIIB021 enhances triptolide-induced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol Sin 2013; 34:1545-53. [PMID: 24241349 DOI: 10.1038/aps.2013.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/02/2013] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the effects of BIIB021, an inhibitor of heat shock protein 90 (Hsp90) alone or in combination with triptolide (TPL) on T-cell acute lymphoblastic leukemia (T-ALL) and the mechanisms of action. METHODS Human T-ALL cells line Molt-4 was examined. The cell viability was measured using MTT assay. Apoptotic cells were studied with Hoechst 33258 staining. Cell apoptosis and cell cycle were analyzed using flow cytometry with Annexin V/PI staining and PI staining, respectively. The levels of multiple proteins, including Akt, p65, CDK4/6, p18, Bcl-2 family proteins, MDM2, and p53, were examined with Western blotting. The level of MDM2 mRNA was determined using RT-PCR. RESULTS Treatment of Molt-4 cells with BIIB021 (50-800 nmol/L) inhibited the cell growth in a dose-dependent manner (the IC50 value was 384.6 and 301.8 nmol/L, respectively, at 48 and 72 h). BIIB021 dose-dependently induced G0/G1 phase arrest, followed by apoptosis of Molt-4 cells. Furthermore, BIIB021 increased the expression of p18, decreased the expression of CDK4/6, and activated the caspase pathway in Molt-4 cells. Moreover, BIIB021 (50-400 nmol/L) dose-dependently decreased the phospho-MDM2 and total MDM2 protein levels, but slightly increased the phospho-p53 and total p53 protein levels, whereas TPL (5-40 nmol/L) dose-dependently enhanced p53 activation without affecting MDM2 levels. Co-treatment with BIIB021 and TPL showed synergic inhibition on Molt-4 cell growth. The co-treatment disrupted p53-MDM2 balance, thus markedly enhanced p53 activation. In addition, the co-treatment increased the expression of Bak and Bim, followed by increased activation of caspase-9. CONCLUSION The combination of BIIB021 and TPL may provide a novel strategy for treating T-ALL by overcoming multiple mechanisms of apoptosis resistance.
Collapse
|
20
|
WANG XIAOFEI, ZHAO YIBING, WU QIANG, SUN ZHIHUA, LI HAIJIN. Triptolide induces apoptosis in endometrial cancer via a p53-independent mitochondrial pathway. Mol Med Rep 2013; 9:39-44. [DOI: 10.3892/mmr.2013.1783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/18/2013] [Indexed: 11/06/2022] Open
|
21
|
Shen Y, Lu L, Xu J, Meng W, Qing Y, Liu Y, Zhang B, Hu H. Bortezomib induces apoptosis of endometrial cancer cells through microRNA-17-5p by targeting p21. Cell Biol Int 2013; 37:1114-21. [PMID: 23716467 DOI: 10.1002/cbin.10139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/29/2013] [Indexed: 11/11/2022]
Abstract
Bortezomib suppresses ubiquitin (Ub)-dependent protein degradation and preferentially kills various tumour cells in vitro and in animal models. However, its mechanism of action is not fully understood. We report that bortezomib inhibits the proliferation and proteasomal activity of human endometrial cancer cells and induces G2/M arrest and apoptosis by modulating the miRNA level. By miRNA microarray, iR-17-5p was the most downregulated of all those in HTB-111 and Ishikawa cells after bortezomib treatment. This observation was confirmed by quantitative real-time PCR (qRT-PCR). Target prediction using TargetScan software identified p21 as a potential target for miR-17-5p, which was confirmed by luciferase reporter, qRT-PCR and Western blot assays. The transfection of miR-17-5p mimics or siRNA-p21 reversed the effect of bortezomib on HTB-111 and Ishikawa cells, indicating that miR-17-5p may mediate the function of bortezomib by targeting p21 in endometrial cancer cells. These findings show novel mechanisms by which bortezomib inhibits proliferation and promotes the apoptosis of human endometrial cancer cells.
Collapse
Affiliation(s)
- Yuan Shen
- Gynecology and Obstetrics Department of the First Affiliated Hospital of JiNan University, Guangzhou, 510630, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
MacKenzie TN, Mujumdar N, Banerjee S, Sangwan V, Sarver A, Vickers S, Subramanian S, Saluja AK. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol Cancer Ther 2013; 12:1266-75. [PMID: 23635652 DOI: 10.1158/1535-7163.mct-12-1231] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies, is resistant to current chemotherapies. We previously showed that triptolide inhibits PDAC cell growth in vitro and blocks metastatic spread in vivo. Triptolide downregulates HSP70, a molecular chaperone upregulated in several tumor types. This study investigates the mechanism by which triptolide inhibits HSP70. Because microRNAs (miRNA) are becoming increasingly recognized as negative regulators of gene expression, we tested whether triptolide regulates HSP70 via miRNAs. Here, we show that triptolide as well as quercetin, but not gemcitabine, upregulated miR-142-3p in PDAC cells (MIA PaCa-2, Capan-1, and S2-013). Ectopic expression of miR-142-3p inhibited cell proliferation, measured by electric cell-substrate impedance sensing, and decreased HSP70 expression, measured by real-time PCR and immunoblotting, compared with controls. We showed that miR-142-3p directly binds to the 3'UTR of HSP70, and that this interaction is important as HSP70 overexpression rescued miR-142-3p-induced cell death. We found that miR-142-3p regulates HSP70 independently of heat shock factor 1. Furthermore, Minnelide, a water-soluble prodrug of triptolide, induced the expression of miR-142-3p in vivo. This is the first description of an miRNA-mediated mechanism of HSP70 regulation in cancer, making miR-142-3p an attractive target for PDAC therapeutic intervention.
Collapse
Affiliation(s)
- Tiffany N MacKenzie
- Department of Pharmacology, University of Minnesota, MMC 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
LLDT-67 attenuates MPTP-induced neurotoxicity in mice by up-regulating NGF expression. Acta Pharmacol Sin 2012; 33:1187-94. [PMID: 22941283 DOI: 10.1038/aps.2012.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM To investigate the neuroprotective effects of LLDT-67, a novel derivative of triptolide, in MPTP-induced mouse Parkinson's disease (PD) models and in primary cultured astrocytes, and to elucidate the mechanisms of the action. METHODS In order to induce PD, C57BL/6 mice were injected MPTP (30 mg/kg, ip) daily from d 2 to d 6. MPTP-induced behavioral changes in the mice were examined using pole test, swimming test and open field test. The mice were administered LLDT-67 (1, 2, or 4 mg/kg, po) daily from d 1 to d 11. On d 12, the mice were decapitated and brains were collected for immunohistochemistry study and measuring monoamine levels in the striatum. Primary cultured astrocytes from the cortices of neonatal C57BL/6 mouse pups were prepared for in vitro study. RESULTS In MPTP-treated mice, administration of LLDT-67 significantly reduced the loss of tyrosine hydroxylase-positive neurons in the substantia nigra, and ameliorated the behavioral changes. LLDT-67 (4 mg/kg) significantly increased the expression of NGF in astrocytes in the substantia nigra and striatum of the mice. Furthermore, administration of LLDT-67 caused approximately 2-fold increases in the phosphorylation of TrkA at tyrosine 751, and marked increases in the phosphorylation of AKT at serine 473 as compared with the mice model group. In the cultured astrocytes, LLDT-67 (1 and 10 nmol/L) increased the NGF levels in the culture medium by 179% and 160%, respectively. CONCLUSION The neuroprotective effect of LLDT-67 can be mostly attributed to its ability to enhance NGF synthesis in astrocytes in the midbrain and to rescue dopaminergic neurons indirectly through TrkA activation.
Collapse
|
24
|
Tao Y, Zhang ML, Ma PC, Sun JF, Zhou WQ, Cao YP, Li LJ. Triptolide Inhibits Proliferation and Induces Apoptosis of Human Melanoma A375 Cells. Asian Pac J Cancer Prev 2012; 13:1611-5. [DOI: 10.7314/apjcp.2012.13.4.1611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Chen L, Liu Q, Huang Z, Wu F, Li Z, Chen X, Lin T. Tripchlorolide induces cell death in lung cancer cells by autophagy. Int J Oncol 2011; 40:1066-70. [PMID: 22139090 PMCID: PMC3584525 DOI: 10.3892/ijo.2011.1278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 11/08/2011] [Indexed: 11/17/2022] Open
Abstract
It has been demonstrated that triptolide inhibits the growth of several types of cancer cells in vitro and prevents tumor growth in vivo by inducing apoptosis and autophagy. Here we showed that Tripchlorolide (T4) significantly suppressed the proliferation of A549 cells in a dose- and time-dependent manner. This suppressive effect was diminished when cells were pretreated with 3-Methylamphetamine (3-MA). After the cells were treated with T4, the LC3 II protein expression was significantly increased, and autophagosomes were observed by TEM. However, almost no apoptosis was observed in A549 treated with T4. These results suggest that T4 induces A549 cell death predominantly through the activation of the autophagy pathway instead of the apoptosis pathway.
Collapse
Affiliation(s)
- Limin Chen
- Department of Respiratory Medicine, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, PR China
| | | | | | | | | | | | | |
Collapse
|