1
|
Gee LMV, Barron-Millar B, Leslie J, Richardson C, Zaki MYW, Luli S, Burgoyne RA, Cameron RIT, Smith GR, Brain JG, Innes B, Jopson L, Dyson JK, McKay KRC, Pechlivanis A, Holmes E, Berlinguer-Palmini R, Victorelli S, Mells GF, Sandford RN, Palmer J, Kirby JA, Kiourtis C, Mokochinski J, Hall Z, Bird TG, Borthwick LA, Morris CM, Hanson PS, Jurk D, Stoll EA, LeBeau FEN, Jones DEJ, Oakley F. Anti-Cholestatic Therapy with Obeticholic Acid Improves Short-Term Memory in Bile Duct-Ligated Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:11-26. [PMID: 36243043 DOI: 10.1016/j.ajpath.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.
Collapse
Affiliation(s)
- Lucy M V Gee
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Barron-Millar
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Richardson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel A Burgoyne
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rainie I T Cameron
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John G Brain
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara Innes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Jopson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jessica K Dyson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Katherine R C McKay
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexandros Pechlivanis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - George F Mells
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard N Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Kirby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Joao Mokochinski
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Zoe Hall
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher M Morris
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter S Hanson
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | | | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David E J Jones
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
2
|
Çalışkan G, French T, Enrile Lacalle S, Del Angel M, Steffen J, Heimesaat MM, Rita Dunay I, Stork O. Antibiotic-induced gut dysbiosis leads to activation of microglia and impairment of cholinergic gamma oscillations in the hippocampus. Brain Behav Immun 2022; 99:203-217. [PMID: 34673174 DOI: 10.1016/j.bbi.2021.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are widely applied for the treatment of bacterial infections, but their long-term use may lead to gut flora dysbiosis and detrimental effects on brain physiology, behavior as well as cognitive performance. Still, a striking lack of knowledge exists concerning electrophysiological correlates of antibiotic-induced changes in gut microbiota and behavior. Here, we investigated changes in the synaptic transmission and plasticity together with behaviorally-relevant network activities from the hippocampus of antibiotic-treated mice. Prolonged antibiotic treatment led to a reduction of myeloid cell pools in bone marrow, circulation and those surveilling the brain. Circulating Ly6Chi inflammatory monocytes adopted a proinflammatory phenotype with increased expression of CD40 and MHC II. In the central nervous system, microglia displayed a subtle activated phenotype with elevated CD40 and MHC II expression, increased IL-6 and TNF production as well as with an increased number of Iba1 + cells in the hippocampal CA3 and CA1 subregions. Concomitantly, we detected a substantial reduction in the synaptic transmission in the hippocampal CA1 after antibiotic treatment. In line, carbachol-induced cholinergic gamma oscillation were reduced upon antibiotic treatment while the incidence of hippocampal sharp waves was elevated. These alterations were associated with the global changes in the expression of neurotrophin nerve growth factor and inducible nitric oxide synthase, both of which have been shown to influence cholinergic system in the hippocampus. Overall, our study demonstrates that antibiotic-induced dysbiosis of the gut microbiome and subsequent alteration of the immune cell function are associated with reduced synaptic transmission and gamma oscillations in the hippocampus, a brain region that is critically involved in mediation of innate and cognitive behavior.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Miguel Del Angel
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
3
|
Chronic Restraint Stress Affects Network Oscillations in the Anterior Cingulate Cortex in Mice. Neuroscience 2020; 437:172-183. [PMID: 32335214 DOI: 10.1016/j.neuroscience.2020.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022]
Abstract
The anterior cingulate cortex (ACC) is vulnerable to stress. Its dysfunction is observed in psychiatric disorders manifested as alterations in network oscillations. Mechanisms linking stress load to disturbed emotional-cognitive behaviors are of essential importance to further elucidate therapeutic strategies for psychiatric diseases. Here, we analyzed the effects of chronic restraint stress (CRS) load in juvenile mice on kainic acid (KA)-induced network oscillations in ACC slice preparations and on the forced swim test (FST). The immobility time (IT) was shortened at the beginning of the FST in CRS mice. Power spectral density (PSD) obtained from KA-induced oscillations in field potentials in the superficial layers of the ACC were altered in slices from the CRS mice. The PSD was decreased in CRS mice at the alpha (8-12 Hz), beta (13-30 Hz), low gamma (30-50 Hz), and high gamma (50-80 Hz) components. Noradrenaline increased the PSD of the theta (3-8 Hz) components in both the control and CRS groups, and also in alpha components only in the CRS group. Dopamine did not modulate the PSD of any frequency components in the control mice, whereas it enhanced the PSD of theta and alpha components in CRS mice. It was suggested that chronic stress load affects the dynamics of the network oscillations in the ACC with enhanced cathecolaminergic modulation.
Collapse
|
4
|
Xing H, Xu S, Xie X, Wang Y, Lu C, Han X. Levetiracetam induction of theta frequency oscillations in rodent hippocampus in vitro. Can J Physiol Pharmacol 2020; 98:725-732. [PMID: 32516556 DOI: 10.1139/cjpp-2019-0727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levetiracetam (LEV) has been demonstrated to improve cognitive function. Hippocampal theta rhythm (4-12 Hz) is associated with a variety of cognitively related behaviors, such as exploration in both humans and animal models. We investigated the effects of LEV on the theta rhythm in the rat hippocampal CA3 in hippocampal slices in vitro. We found that LEV increased the theta power in a dose-dependent manner. The increase in theta power can be blocked by GABAA receptor (GABAAR) or NMDA receptor (NMDAR) antagonists but not by AMPA receptor antagonist, indicating the involvement of GABAAR and NMDAR in the induction of theta activity. Interestingly, LEV enhancement of theta power can be also blocked by taurine or GABA-A agonist THIP, indicating that LEV induction of theta may be related to the indirect boosting of GABA action via reduction of extrasynaptic GABAAR activation. Furthermore, the increased theta power can be partially reduced by the mACh receptor (mAChR) antagonist atropine but not by nACh receptor antagonists, suggesting that mAChR activation provides excitatory input into local network responsible for LEV-induced theta. Our study demonstrated that LEV induced a novel theta oscillation in vitro, which may have implications in the treatment of the neuronal disorders with impaired theta oscillation and cognitive function.
Collapse
Affiliation(s)
- Hang Xing
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Henan, 453000, P.R. China.,Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| | - Sihan Xu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Henan, 453000, P.R. China
| | - Xin'e Xie
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Henan, 453000, P.R. China
| | - Yuan Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Henan, 453000, P.R. China
| | - Chengbiao Lu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Henan, 453000, P.R. China
| | - Xiong Han
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| |
Collapse
|
5
|
Wang L, Zhao D, Wang M, Wang Y, Vreugdenhil M, Lin J, Lu C. Modulation of Hippocampal Gamma Oscillations by Dopamine in Heterozygous Reeler Mice in vitro. Front Cell Neurosci 2020; 13:586. [PMID: 32116553 PMCID: PMC7026475 DOI: 10.3389/fncel.2019.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 11/14/2022] Open
Abstract
The reelin haploinsufficient heterozygous reeler mice (HRM), an animal model of schizophrenia, have altered mesolimbic dopaminergic pathways and share similar neurochemical and behavioral properties with patients with schizophrenia. Dysfunctional neural circuitry with impaired gamma (γ) oscillation (30–80 Hz) has been implicated in abnormal cognition in patients with schizophrenia. However, the function of neural circuitry in terms of γ oscillation and its modulation by dopamine (DA) has not been reported in HRM. In this study, first, we recorded γ oscillations in CA3 from wild-type mice (WTM) and HRM hippocampal slices, and we studied the effects of DA on γ oscillations. We found that there was no difference in γ power between WTM and HRM and that DA increased γ power of WTM but not HRM, suggesting that DA modulations of network oscillations in HRM are impaired. Second, we found that N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 itself increased γ power and occluded DA-mediated enhancement of γ power in WTM but partially restored DA modulation of γ oscillations in HRM. Third, inhibition of phosphatidylinositol 3-kinase (PI3K), a downstream molecule of NMDAR, increased γ power and blocked the effects of DA on γ oscillation in WTM and had no significant effect on γ power but largely restored DA modulation of γ oscillations in HRM. Our results reveal that impaired DA function in HRM is associated with dysregulated NMDAR–PI3K signaling, a mechanism that may be relevant in the pathology of schizophrenia.
Collapse
Affiliation(s)
- Lu Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Dandan Zhao
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Yuan Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Juntang Lin
- School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Chengbiao Lu
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Robson E, Tweedy C, Manzanza N, Taylor JP, Atkinson P, Randall F, Reeve A, Clowry GJ, LeBeau FEN. Impaired Fast Network Oscillations and Mitochondrial Dysfunction in a Mouse Model of Alpha-synucleinopathy (A30P). Neuroscience 2018. [PMID: 29524634 DOI: 10.1016/j.neuroscience.2018.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). We found an age-dependent reduction in the power of the gamma (20-80 Hz) frequency oscillations in slices taken from mice aged 9-16 months (9+A30P), that was not present in either young 2-6 months old (2+A30P) mice, or in control mice at either age. The mitochondrial blockers potassium cyanide and rotenone both reduced network oscillations in a concentration-dependent manner in aged A30P mice and aged control mice but slices from A30P mice showed a greater reduction in the oscillations. Histochemical analysis showed an age-dependent reduction in cytochrome c oxidase (COX) activity, suggesting a mitochondrial dysfunction in the 9+A30P group. A deficit in COX IV expression was confirmed by immunohistochemistry. Overall, our data demonstrate an age-dependent impairment in mitochondrial function and gamma frequency activity associated with the abnormal expression of α-syn. These findings provide mechanistic insights into the consequences of over-expression of α-syn which might contribute to cognitive decline.
Collapse
Affiliation(s)
- Emma Robson
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Clare Tweedy
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Nelson Manzanza
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Peter Atkinson
- Eisai Hatfield Research Laboratories, Eisai Ltd., European Knowledge Centre, Mosquito Way, Hatfield, Herts AL10 9SN, UK
| | - Fiona Randall
- Eisai AiM Institute, Eisai Inc., 4 Corporate Drive, Andover, MA 01810, USA
| | - Amy Reeve
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Fiona E N LeBeau
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Kainate-induced network activity in the anterior cingulate cortex. Neuroscience 2016; 325:20-9. [DOI: 10.1016/j.neuroscience.2016.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
|
8
|
Dine J, Genewsky A, Hladky F, Wotjak CT, Deussing JM, Zieglgänsberger W, Chen A, Eder M. Local Optogenetic Induction of Fast (20-40 Hz) Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity. Front Cell Neurosci 2016; 10:108. [PMID: 27199662 PMCID: PMC4844905 DOI: 10.3389/fncel.2016.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022] Open
Abstract
The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz) network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2) expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz) field potential oscillations in hippocampal area CA1 in vitro (at 25°C) and in vivo (i.e., slightly anesthetized NEX-Cre-ChR2 mice). As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer) and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I) oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells) and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM) in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC) in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1→PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive) P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.
Collapse
Affiliation(s)
- Julien Dine
- Max Planck Institute of PsychiatryMunich, Germany; Department "Stress Neurobiology and Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany; Scientific Core Unit "Electrophysiology and Neuronal Network Dynamics", Max Planck Institute of PsychiatryMunich, Germany
| | - Andreas Genewsky
- Max Planck Institute of PsychiatryMunich, Germany; Department "Stress Neurobiology and Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany; Research Group "Neuronal Plasticity", Max Planck Institute of PsychiatryMunich, Germany
| | - Florian Hladky
- Max Planck Institute of PsychiatryMunich, Germany; Department "Stress Neurobiology and Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany; Scientific Core Unit "Electrophysiology and Neuronal Network Dynamics", Max Planck Institute of PsychiatryMunich, Germany
| | - Carsten T Wotjak
- Max Planck Institute of PsychiatryMunich, Germany; Department "Stress Neurobiology and Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany; Research Group "Neuronal Plasticity", Max Planck Institute of PsychiatryMunich, Germany
| | - Jan M Deussing
- Max Planck Institute of PsychiatryMunich, Germany; Department "Stress Neurobiology and Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany; Research Group "Molecular Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany
| | | | - Alon Chen
- Max Planck Institute of PsychiatryMunich, Germany; Department "Stress Neurobiology and Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany; The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of ScienceRehovot, Israel
| | - Matthias Eder
- Max Planck Institute of PsychiatryMunich, Germany; Department "Stress Neurobiology and Neurogenetics", Max Planck Institute of PsychiatryMunich, Germany; Scientific Core Unit "Electrophysiology and Neuronal Network Dynamics", Max Planck Institute of PsychiatryMunich, Germany
| |
Collapse
|
9
|
Glykos V, Whittington MA, LeBeau FEN. Subregional differences in the generation of fast network oscillations in the rat medial prefrontal cortex (mPFC) in vitro. J Physiol 2015; 593:3597-615. [PMID: 26041504 PMCID: PMC4560586 DOI: 10.1113/jp270811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Fast network oscillations in the beta (20-30 Hz) frequency range can be evoked with combined activation of muscarinic and kainate receptors in different subregions of the medial prefrontal cortex (mPFC). Subregional differences were observed as the oscillations in the dorsal prelimbic cortex (PrL) were smaller in magnitude than those in the ventral dorsopeduncular (DP) region, and these differences persisted in trimmed slices containing only PrL and DP regions. Oscillations in both regions were dependent upon GABAA and AMPA receptor activation but NMDA receptor blockade decreased oscillations only in the DP region. Subregional differences in neuronal properties of the presumed pyramidal cells were found between PrL and DP, with many more cells in DP firing rhythmically compared to the PrL region. Presumed inhibitory synaptic potentials (IPSPs) recorded from principal cells were more rhythmic and coherent, and significantly larger in amplitude, in the DP region; the data suggest that variation in the patterns of activity between subregions may reflect distinct functional roles. ABSTRACT Fast network oscillations in the beta (20-30 Hz) and low gamma (30-80 Hz) range underlie higher cognitive functions associated with the medial prefrontal cortex (mPFC) including attention and working memory. Using a combination of kainate (KA, 200 nm) and the cholinergic agonist carbachol (Cb, 10 μm) fast network oscillations, in the beta frequency range, were evoked in the rat mPFC in vitro. Oscillations were elicited in the prelimbic (PrL), infralimbic (IL) and the dorsopeduncular (DP) cortex, with the largest oscillations observed in DP cortex. Oscillations in both the PrL and DP were dependent, with slightly different sensitivities, on γ-aminobutyric acid (GABA)A , α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, but only oscillations in the DP were significantly reduced by N-methyl-d-aspartate (NMDA) receptor blockade. Intracellular recordings showed that 9/20 regular spiking (RS) cells in the PrL exhibited a notable cAMP-dependent hyperpolarisation activated current (Ih ) in contrast to 16/17 in the DP cortex. Extracellular single unit recordings showed that the majority of cells in the PrL, and DP regions had interspike firing frequencies (IFFs) at beta (20-30 Hz) frequencies and fired at the peak negativity of the field oscillation. Recordings in DP revealed presumed inhibitory postsynaptic potentials (IPSPs) that were larger in amplitude and more rhythmic than those in the PrL region. Our data suggest that each PFC subregion may be capable of generating distinct patterns of network activity with different cell types involved. Variation in the properties of oscillations evoked in the PrL and DP probably reflects the distinct functional roles of these different PFC regions.
Collapse
Affiliation(s)
- Vasileios Glykos
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Miles A Whittington
- York-Hull Medical School, F1- Department of Biology, York University, Heslington, YO10 5DD, UK
| | - Fiona E N LeBeau
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
10
|
Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, Li PP, Lu CB. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience 2015; 301:49-60. [PMID: 26049144 DOI: 10.1016/j.neuroscience.2015.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.
Collapse
Affiliation(s)
- X Zhang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - X Y Ge
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - J G Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y L Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Yu
- Department of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - P P Li
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - C B Lu
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
11
|
Bidirectional modulation of hippocampal gamma (20–80Hz) frequency activity in vitro via alpha(α)- and beta(β)-adrenergic receptors (AR). Neuroscience 2013; 253:142-54. [DOI: 10.1016/j.neuroscience.2013.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022]
|