1
|
Yu X, Pan M, Jiang L, Liu K. NDC80 Kinetochore Complex Serves as a Potential Prognostic Predictor and Correlates with Immune Infiltrates in Epithelial Ovarian Cancer Patients. Int J Gen Med 2024; 17:1789-1805. [PMID: 38711823 PMCID: PMC11073534 DOI: 10.2147/ijgm.s450976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose This study focuses on evaluating the prognostic value of the NDC80 kinetochore complex in ovarian cancer (OC) using the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database and reveals the relationship between the NDC80 complex and immune infiltrates in OC. Methods We collected data on NDC80 complex expression levels in both OC tissues and non-OC ovarian tissues from the University of California Santa Cruz Xena and GEO databases. The clinicopathological characteristics correlated with overall survival were analyzed using Cox regression and the Kaplan-Meier method. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, gene set enrichment analysis and CIBERSORT were performed using data from TCGA database. Immunohistochemical staining was used to verify the higher expression level of NUF2 protein in OC in vitro. Meanwhile, we utilized the Tumor Immune Estimation Resource to analyze the correlation between the NDC80 complex and immunocyte infiltration. Results The NDC80 complex expression level was prominently higher in OC tissues than in non-OC ovarian tissues and correlated with advanced histologic grade characteristics. Gene expression profiling interactive analysis and the Kaplan-Meier survival curve uncovered a close relationship between high expression of the NDC80 complex and poor overall survival in OC patients. The univariate Cox regression hazard model produced age, pathologic stage, tumor status, primary therapy outcome, SPC24 expression level, and Karnofsky performance score as prognostic factors for OC patients. NDC80 complex expression levels were highly associated with immune cell infiltration, showing NK CD56 bright cells and NK cells with a negative correlation and T helper 2 cells with a positive correlation (P<0.05). Conclusion These findings provide evidence that an increased expression level of the NDC80 complex is closely associated with the progression of OC and could also serve as a novel target of immunotherapy in OC.
Collapse
Affiliation(s)
- Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Meizhu Pan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
2
|
Chen X, He Q, Zeng S, Xu Z. Upregulation of nuclear division cycle 80 contributes to therapeutic resistance via the promotion of autophagy-related protein-7-dependent autophagy in lung cancer. Front Pharmacol 2022; 13:985601. [PMID: 36105209 PMCID: PMC9465246 DOI: 10.3389/fphar.2022.985601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer remains the leading cause of malignant mortality worldwide. Hence, the discovery of novel targets that can improve therapeutic effects in lung cancer patients is an urgent need. In this study, we screened differentially expressed genes using isobaric tags for relative and absolute quantitation (iTRAQ) analysis and datasets from the cancer genome atlas database, and found that nuclear division cycle 80 (NDC80) might act as a novel prognostic indicator of lung cancer. The expression of NDC80 was significantly increased in lung cancer tissues, as compared to normal tissues, and high expression levels of NDC80 were correlated with unfavorable survival rates. Furthermore, an in vitro analysis showed that the stable knockdown of NDC80 decreased the cell viability and increased therapeutic sensitivity in two lung cancer cell lines, A549-IRR and H1246-IRR. Moreover, gene set enrichment analysis results showed that NDC80 was enriched in autophagy-related pathways. The downregulation of NDC80 inhibited the formation of autophagosomes, and reduced the expression of autophagy-related proteins such as LC3II, Beclin-1, and p62 in lung cancer cells. To further clarify the role of NDC80 as a downstream regulator of autophagy, we validated autophagic mediators through iTRAQ analysis and real-time polymerase chain reaction arrays. Autophagy-related protein7 (ATG7) was observed to be downregulated after the knockdown of NDC80 in lung cancer cells. Immunohistochemistry assay results revealed that both NDC80 and ATG7 were upregulated in an array of lung adenocarcinoma samples, compared to normal tissues, and the expression of NDC80 was identified to be positively associated with the levels of ATG7. Our findings suggest that NDC80 promotes the development of lung cancer by regulating autophagy, and might serve as a potential target for increasing the therapeutic sensitivity of lung cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shuangshuang Zeng, ; Zhijie Xu,
| | - Zhijie Xu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shuangshuang Zeng, ; Zhijie Xu,
| |
Collapse
|
3
|
Li J, Xu X, Peng X. NDC80 Enhances Cisplatin-resistance in Triple-negative Breast Cancer. Arch Med Res 2022; 53:378-387. [PMID: 35346500 DOI: 10.1016/j.arcmed.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS Chemotherapy is a standard systemic treatment option for triple-negative breast cancer (TNBC). Cisplatin has been used to treat TNBC, but frequently leads to cisplatin resistance in patients. The aim of our study was to investigate cisplatin-resistant mechanism in TNBC. MATERIALS AND METHODS To identify the potential genes and pathways relative to cisplatin resistance, GSE103115 data were analyzed by the Limma package and Gene set enrichment analysis (GSEA). TNBC data from TCGA, GSE76250 and GSE115275 datasets were used to calculate NDC80 expression. Immunohistochemistry detected NDC80 protein expression in TNBC tissues from patients before and after cisplatin treatment. After expose to cisplatin treatment, the viability and proliferation of TNBC cells were measured by CCK-8 and colony formation assays, respectively. RESULTS NDC80 was regarded as a cisplatin-resistant gene because after cisplatin treatment NDC80 was downregulated in cisplatin-sensitive cells but was upregulated in cisplatin-resistant cells. NDC80 was over-expressed in TNBC tissues compared to normal tissues. Furthermore, NDC80 expression in TNBC patients was increased after cisplatin treatment. Cisplatin-sensitive TNBC patients showed lower NDC80 expression than cisplatin-resistant patients. Additionally, NDC80 expression was correlated with clinical stages, tumor size and chemotherapy of TNBC patients. Moreover, NDC80 overexpression promoted the viability and proliferation of TNBC cells and enhanced the cells resistance to cisplatin. The potential pathways relative to cisplatin resistance were obtained, such as p53 signaling pathway and Oxidative phosphorylation. CONCLUSION These findings provide new insights for understanding the mechanism of cisplatin resistance in TNBC, and NDC80 may be a potential therapeutic target for TNBC treatment.
Collapse
|
4
|
Laine LJ, Mäki-Jouppila JHE, Kutvonen E, Tiikkainen P, Nyholm TKM, Tien JF, Umbreit NT, Härmä V, Kallio L, Davis TN, Asbury CL, Poso A, Gorbsky GJ, Kallio MJ. VTT-006, an anti-mitotic compound, binds to the Ndc80 complex and suppresses cancer cell growth in vitro. Oncoscience 2021; 8:134-153. [PMID: 34926718 PMCID: PMC8667816 DOI: 10.18632/oncoscience.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Hec1 (Highly expressed in cancer 1) resides in the outer kinetochore where it works to facilitate proper kinetochore-microtubule interactions during mitosis. Hec1 is overexpressed in various cancers and its expression shows correlation with high tumour grade and poor patient prognosis. Chemical perturbation of Hec1 is anticipated to impair kinetochore-microtubule binding, activate the spindle assembly checkpoint (spindle checkpoint) and thereby suppress cell proliferation. In this study, we performed high-throughput screen to identify novel small molecules that target the Hec1 calponin homology domain (CHD), which is needed for normal microtubule attachments. 4 million compounds were first virtually fitted against the CHD, and the best hit molecules were evaluated in vitro. These approaches led to the identification of VTT-006, a 1,2-disubstituted-tetrahydro-beta-carboline derivative, which showed binding to recombinant Ndc80 complex and modulated Hec1 association with microtubules in vitro. VTT-006 treatment resulted in chromosome congression defects, reduced chromosome oscillations and induced loss of inter-kinetochore tension. Cells remained arrested in mitosis with an active spindle checkpoint for several hours before undergoing cell death. VTT-006 suppressed the growth of several cancer cell lines and enhanced the sensitivity of HeLa cells to Taxol. Our findings propose that VTT-006 is a potential anti-mitotic compound that disrupts M phase, impairs kinetochore-microtubule interactions, and activates the spindle checkpoint.
Collapse
Affiliation(s)
- Leena J Laine
- VTT Health, VTT Technical Research Centre of Finland Ltd., Otaniemi, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.,These authors contributed equally to this work
| | - Jenni H E Mäki-Jouppila
- VTT Health, VTT Technical Research Centre of Finland Ltd., Otaniemi, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.,Drug Research Doctoral Programme, University of Turku, Finland.,Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland.,These authors contributed equally to this work
| | - Emma Kutvonen
- VTT Health, VTT Technical Research Centre of Finland Ltd., Otaniemi, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Pekka Tiikkainen
- VTT Health, VTT Technical Research Centre of Finland Ltd., Otaniemi, Finland
| | | | - Jerry F Tien
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ville Härmä
- VTT Health, VTT Technical Research Centre of Finland Ltd., Otaniemi, Finland
| | - Lila Kallio
- VTT Health, VTT Technical Research Centre of Finland Ltd., Otaniemi, Finland
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Marko J Kallio
- VTT Health, VTT Technical Research Centre of Finland Ltd., Otaniemi, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
5
|
Wang W, Zhang W, Hu Y. Identification of keygenes, miRNAs and miRNA-mRNA regulatory pathways for chemotherapy resistance in ovarian cancer. PeerJ 2021; 9:e12353. [PMID: 34820170 PMCID: PMC8582303 DOI: 10.7717/peerj.12353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chemotherapy resistance, especially platinum resistance, is the main cause of poor prognosis of ovarian cancer. It is of great urgency to find molecular markers and mechanism related to platinum resistance in ovarian cancer. Methods One mRNA dataset (GSE28739) and one miRNA dataset (GSE25202) were acquired from Gene Expression Omnibus (GEO) database. The GEO2R tool was used to screen out differentially expressed genes (DEGs) and differentially expressed miRNAs (DE-miRNAs) between platinum-resistant and platinum-sensitive ovarian cancer patients. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for DEGs were performed using the DAVID to present the most visibly enriched pathways. Protein–protein interaction (PPI) of these DEGs was constructed based on the information of the STRING database. Hub genes related to platinum resistance were visualized by Cytoscape software. Then, we chose seven interested hub genes to further validate using qRT-PCR in A2780 ovarian cancer cell lines. And, at last, the TF-miRNA-target genes regulatory network was predicted and constructed using miRNet software. Results A total of 63 upregulated DEGs, 124 downregulated DEGs, four upregulated miRNAs and six downregulated miRNAs were identified. From the PPI network, the top 10 hub genes were identified, which were associated with platinum resistance. Our further qRT-PCR showed that seven hub genes (BUB1, KIF2C, NUP43, NDC80, NUF2, CCNB2 and CENPN) were differentially expressed in platinum-resistant ovarian cancer cells. Furthermore, the upstream transcription factors (TF) for upregulated DE-miRNAs were SMAD4, NFKB1, SMAD3, TP53 and HNF4A. Three overlapping downstream target genes (KIF2C, STAT3 and BUB1) were identified by miRNet, which was regulated by hsa-miR-494. Conclusions The TF-miRNA–mRNA regulatory pairs, that is TF (SMAD4, NFKB1 and SMAD3)-miR-494-target genes (KIF2C, STAT3 and BUB1), were established. In conclusion, the present study is of great significance to find the key genes of platinum resistance in ovarian cancer. Further study is needed to identify the mechanism of these genes in ovarian cancer.
Collapse
Affiliation(s)
- Wenwen Wang
- Tianjin Medical University, Tianjin, China.,Department of Obstetrics and Gynecology, Beijing Tongren Hospital affiliated Capital Medical University, Beijing, China
| | - Wenwen Zhang
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.,Department of Gynecological Oncology, Obstetrics and Gynecology Hospital affiliated Nankai University, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.,Department of Gynecological Oncology, Obstetrics and Gynecology Hospital affiliated Nankai University, Tianjin, China
| |
Collapse
|
6
|
Roberts MS, Sahni JM, Schrock MS, Piemonte KM, Weber-Bonk KL, Seachrist DD, Avril S, Anstine LJ, Singh S, Sizemore ST, Varadan V, Summers MK, Keri RA. LIN9 and NEK2 Are Core Regulators of Mitotic Fidelity That Can Be Therapeutically Targeted to Overcome Taxane Resistance. Cancer Res 2020; 80:1693-1706. [PMID: 32054769 PMCID: PMC7165041 DOI: 10.1158/0008-5472.can-19-3466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
A significant therapeutic challenge for patients with cancer is resistance to chemotherapies such as taxanes. Overexpression of LIN9, a transcriptional regulator of cell-cycle progression, occurs in 65% of patients with triple-negative breast cancer (TNBC), a disease commonly treated with these drugs. Here, we report that LIN9 is further elevated with acquisition of taxane resistance. Inhibiting LIN9 genetically or by suppressing its expression with a global BET inhibitor restored taxane sensitivity by inducing mitotic progression errors and apoptosis. While sustained LIN9 is necessary to maintain taxane resistance, there are no inhibitors that directly repress its function. Hence, we sought to discover a druggable downstream transcriptional target of LIN9. Using a computational approach, we identified NIMA-related kinase 2 (NEK2), a regulator of centrosome separation that is also elevated in taxane-resistant cells. High expression of NEK2 was predictive of low survival rates in patients who had residual disease following treatment with taxanes plus an anthracycline, suggesting a role for this kinase in modulating taxane sensitivity. Like LIN9, genetic or pharmacologic blockade of NEK2 activity in the presence of paclitaxel synergistically induced mitotic abnormalities in nearly 100% of cells and completely restored sensitivity to paclitaxel, in vitro. In addition, suppressing NEK2 activity with two distinct small molecules potentiated taxane response in multiple in vivo models of TNBC, including a patient-derived xenograft, without inducing toxicity. These data demonstrate that the LIN9/NEK2 pathway is a therapeutically targetable mediator of taxane resistance that can be leveraged to improve response to this core chemotherapy. SIGNIFICANCE: Resistance to chemotherapy is a major hurdle for treating patients with cancer. Combining NEK2 inhibitors with taxanes may be a viable approach for improving patient outcomes by enhancing mitotic defects induced by taxanes alone.
Collapse
Affiliation(s)
- Melyssa S Roberts
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Jennifer M Sahni
- Department of Pathology, School of Medicine, New York University, New York, New York
| | - Morgan S Schrock
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Katrina M Piemonte
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | | | - Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Lindsey J Anstine
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Steven T Sizemore
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Chuang SH, Lee YSE, Huang LYL, Chen CK, Lai CL, Lin YH, Yang JY, Yang SC, Chang LH, Chen CH, Liu CW, Lin HS, Lee YR, Huang KP, Fu KC, Jen HM, Lai JY, Jian PS, Wang YC, Hsueh WY, Tsai PY, Hong WH, Chang CC, Wu DZ, Wu J, Chen MH, Yu KM, Chern CY, Chang JM, Lau JYN, Huang JJ. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur J Med Chem 2020; 191:112118. [PMID: 32113126 DOI: 10.1016/j.ejmech.2020.112118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 μM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.
Collapse
Affiliation(s)
- Shih-Hsien Chuang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ying-Shuan E Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lynn Y L Huang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Chi-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chun-Liang Lai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yu-Hsiang Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ju-Ying Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Sheng-Chuan Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lien-Hsiang Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ching-Hui Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Wei Liu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Her-Sheng Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yi-Ru Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuan Pin Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo Chu Fu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Hsueh-Min Jen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Jun-Yu Lai
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Shiou Jian
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Yu-Chuan Wang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Wen-Yun Hsueh
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Yi Tsai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Wan-Hua Hong
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Chi Chang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Diana Zc Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Jinn Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Meng-Hsin Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo-Ming Yu
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Ching Yuh Chern
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Jia-Ming Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Johnson Y N Lau
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Jiann-Jyh Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan; Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan.
| |
Collapse
|
8
|
Chen X, Li W, Xiao L, Liu L. Nuclear division cycle 80 complex is associated with malignancy and predicts poor survival of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1233-1247. [PMID: 31933938 PMCID: PMC6947052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 06/10/2023]
Abstract
The NDC80 (nuclear division cycle 80) complex takes part in chromosome segregation by forming an outer kinetochore and providing a platform for the interaction between chromosomes and microtubules, thus impacting the progression of mitosis and the cell cycle. The clinical significance of its components, NDC80, nuf2, spc24, and spc25, were widely explored in various malignancies respectively, yet seldom were they studied from the perspective of a complex. This paper explores the clinical importance of the NDC80 kinetochore complex components in terms of their expression level, prognostic value, and therapeutic potential in HCC (hepatocellular carcinoma) patients. With the data from several paired HCC samples from Nanfang Hospital, HCC patients from the TCGA database and other cases from GSE89377, we analyzed the expression levels of the NDC80 complex components, NDC80/nuf2/spc24/spc25, along with the survival data as well as other clinical features using statistical methods and GSEA. The study found that a high expression of NDC80 complex predicts poor survival, and these components have the potential to be used as therapeutic targets.
Collapse
Affiliation(s)
- Xiaowei Chen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Wenwen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Lushan Xiao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
9
|
Ju LL, Chen L, Li JH, Wang YF, Lu RJ, Bian ZL, Shao JG. Effect of NDC80 in human hepatocellular carcinoma. World J Gastroenterol 2017; 23:3675-3683. [PMID: 28611520 PMCID: PMC5449424 DOI: 10.3748/wjg.v23.i20.3675] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/23/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of nuclear division cycle (NDC)80 in human hepatocellular carcinogenesis.
METHODS NDC80 gene expression was analyzed by real-time reverse transcription polymerase chain reaction in 47 paired hepatocellular carcinoma (HCC) and adjacent tissues. The HCC cell line SMMC-7721 was transfected with lentivirus to silence endogenous NDC80 gene expression, which was confirmed by real-time polymerase chain reaction and western blotting. The effects of NDC80 silencing on SMMC-7721 cell proliferation were evaluated by Cellomics ArrayScan VTI imaging. Cell cycle analysis and apoptosis were detected with flow cytometry. Colony formation was assessed by fluorescence microscopy.
RESULTS NDC80 expression levels in HCC tissues were significantly higher than those in the adjacent tissues. Functional studies demonstrated that NDC80 silencing significantly reduced SMMC-7721 cell proliferation and colony formation. Knockdown of NDC80 resulted in increased apoptosis and cell cycle arrest at S-phase. NDC80 contributed to HCC progression by reducing apoptosis and overcoming cell cycle arrest.
CONCLUSION Elevated expression of NDC80 may play a role in promoting the development of HCC.
Collapse
|
10
|
Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang JY, Ye F, Fu YF, Zhou CY, Lu WG, Cheng XD, Xie X. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy 2016; 11:225-38. [PMID: 25607466 DOI: 10.1080/15548627.2014.998931] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.
Collapse
Key Words
- 95% CI, 95% confidence interval
- ALDOC, aldolase C, fructose-bisphosphate
- ATG5, autophagy-related 5
- BECN1
- BECN1, Beclin 1, autophagy-related
- BafA1, bafilomycin A1
- CNN3, calponin 3, acidic
- DAPI, 4', 6-diamidino-2-phenylindole
- FLNA, filamin A, α
- GO, gene ontology
- GenMAPP, gene microarray pathway profiler
- HBSS, Hank's balanced salt solution
- HR, hazard ratio
- KEGG, Kyoto encyclopedia of genes and genome
- LC-MS/MS, liquid chromatography-mass spectrometry/ mass spectrometry
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- OS, overall survival
- PFS, progression-free survival
- PGAM1, phosphoglycerate mutase 1 (brain)
- SQSTM1, sequestosome 1
- TNF, tumor necrosis factor
- TXN, thioredoxin
- TXNDC17
- TXNDC17, thioredoxin domain containing 17
- UTP23, small subunit (SSU) processome component, homolog (yeast)
- autophagy
- ovarian cancer
- paclitaxel resistance
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Song-Fa Zhang
- a Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine ; Zhejiang University ; Hangzhou , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Meng QC, Wang HC, Song ZL, Shan ZZ, Yuan Z, Zheng Q, Huang XY. Overexpression of NDC80 is correlated with prognosis of pancreatic cancer and regulates cell proliferation. Am J Cancer Res 2015; 5:1730-1740. [PMID: 26175941 PMCID: PMC4497439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023] Open
Abstract
AIMS NDC80/Hec1, one of four proteins of the outer kinetochore NDC80 complex, is involved in the tumorigenesis of a variety of cancers. In this study, we focused on that NDC80 is overexpressed in human pancreatic cancer and investigates the role of NDC80-knockdown in pancreatic cancer cells proliferation. MATERIALS AND METHODS We determined the expression levels of NDC80 on both mRNA and protein levels in fresh pancreatic cancer tissues and cells by quantitative real-time polymerase chain reaction and immunoblotting, respectively. Furthermore, protein level of NDC80 was identified using immunochemistry in paraffin-embedded tumor specimen, with correlation between NDC80 expression and various clinicopathological parameters evaluated. The role of NDC80 in pancreatic cancer cells (Panc-1) growth was investigated by lentivirus-mediated silencing of NDC80. The effect of NDC80 deletion on cell proliferation was analyzed by MTT assay and clone formation assay, while cell cycle distributions and apoptosis were analyzed by flow cytometry. RESULTS The mRNA and protein of NDC80 were overexpressed in pancreatic cancer tissues and cells. The statistical analysis based on immunohistochemical evaluation suggested that NDC80 overexpression was signifi cantly associated with clinicopathological parameters including pathological T staging and N staging, which may be served as an predictor for poor outcomes. The silencing of NDC80 in Panc-1 cells could suppress cell proliferation and colony formation. Furthermore, the NDC80-siRNA infected Panc-1 cells lead to cell cycle arrest at G2/M phase and induction of apoptosis. CONCLUSION These results demonstrated that NDC80 plays an essential role in the tumorigenesis of pancreatic cancer, and might serve as potential prognostic and therapeutic target for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Qing-Cai Meng
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University 600 Yi-Shan Road, Shanghai 200233, China
| | - Hong-Cheng Wang
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University 600 Yi-Shan Road, Shanghai 200233, China
| | - Zi-Liang Song
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University 600 Yi-Shan Road, Shanghai 200233, China
| | - Ze-Zhi Shan
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University 600 Yi-Shan Road, Shanghai 200233, China
| | - Zhou Yuan
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University 600 Yi-Shan Road, Shanghai 200233, China
| | - Qi Zheng
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University 600 Yi-Shan Road, Shanghai 200233, China
| | - Xin-Yu Huang
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University 600 Yi-Shan Road, Shanghai 200233, China
| |
Collapse
|
12
|
Wang B, Li S, Meng X, Shang H, Guan Y. Inhibition of mdr1 by G-quadruplex oligonucleotides and reversal of paclitaxel resistance in human ovarian cancer cells. Tumour Biol 2015; 36:6433-43. [PMID: 25801244 DOI: 10.1007/s13277-015-3333-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/23/2023] Open
Abstract
The expression of ATP-dependent efflux pump P-glycoprotein (P-gp) in cancer cells generally results in multidrug resistance (MDR) to chemotherapeutic drugs, which is the main cause of chemotherapy failure in cancer treatment. The intracellular drug levels could be increased by some MDR reversal agents that inhibited the drug efflux activity of P-gp. The synthesized DNA nucleic acids of G-quadruplex represent a novel and unique class of anti-cancer agents. While there was no report on the roles of DNA G-quadruplex oligonucleotides (GQ-ODNs) in the MDR reversal, the present study was performed to investigate the ability of synthesized GQ-ODNs to reverse P-gp-mediated MDR and its mechanism in paclitaxel (PTX)-resistant SKOV3 (SKOV3/PTX) cells and their sensitive cell lines SKOV3. The ability of GQ-ODNs to reverse drug resistance was evaluated by MTS assay. The results showed that GQ-ODNs can reverse PTX resistance effectively. The potential of GQ-ODNs as reversal agents was evaluated with the nude mice tumor xenograft model and showed that the co-administration of the GQ-ODNs and PTX had better effects and was also more evident than treatment with only PTX. The P-gp expression was assessed by the Western blot; it showed that SKOV3/PTX cells showed highly expressed P-gp protein, while their sensitive cells scarcely showed P-gp. The presence of GQ-ODNs efficiently decreased the P-gp expression, showing that GQ-ODNs could reverse P-gp-mediated MDR by decreasing the expression of P-gp. This study indicated that GQ-ODNs could effectively reverse P-gp-mediated PTX resistance by inhibiting the expression of P-gp and by the co-administration of GQ-ODNs and PTX that could increase the apoptosis of SKOV3/PTX cells. Thus, the synthesized GQ-ODNs may be a potential inhibitor to overcome drug resistance.
Collapse
Affiliation(s)
- Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China,
| | | | | | | | | |
Collapse
|
13
|
Lee YSE, Chuang SH, Huang LYL, Lai CL, Lin YH, Yang JY, Liu CW, Yang SC, Lin HS, Chang CC, Lai JY, Jian PS, Lam K, Chang JM, Lau JYN, Huang JJ. Discovery of 4-aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 inhibitors. Part I: optimization of in vitro potencies and pharmacokinetic properties. J Med Chem 2014; 57:4098-110. [PMID: 24773549 DOI: 10.1021/jm401990s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 4-aryl-N-arylcarbonyl-2-aminothiazoles of scaffold 4 was designed and synthesized as Hec1/Nek2 inhibitors. Structural optimization of 4 led to compound 32 bearing C-4' 4-methoxyphenoxy and 4-(o-fluoropyridyl)carbonyl groups that showed low nanomolar in vitro antiproliferative activity (IC50: 16.3-42.7 nM), high intravenous AUC (64.9 μM·h, 2.0 mg/kg) in SD rats, and significant in vivo antitumor activity (T/C = 32%, 20 mg/kg, IV) in mice bearing human MDA-MB-231 xenografts. Cell responses resulting from Hec1/Nek2 inhibition were observed in cells treated with 32, including a reduced level of Hec1 coimmunoprecipitated with Nek2, degradation of Nek2, mitotic abnormalities, and apoptosis. Compound 32 showed selectivity toward cancer cells over normal phenotype cells and was inactive in a [(3)H]astemizole competitive binding assay for hERG liability screening. Therefore, 32 is as a good lead toward the discovery of a preclinical candidate targeting Hec1/Nek2 interaction.
Collapse
Affiliation(s)
- Ying-Shuan E Lee
- Development Center for Biotechnology , No. 101, Lane 169, Kangning Street, Xizhi District, New Taipei City 22180, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huang LYL, Chang CC, Lee YS, Chang JM, Huang JJ, Chuang SH, Kao KJ, Lau GMG, Tsai PY, Liu CW, Lin HS, Lau JYN. Activity of a novel Hec1-targeted anticancer compound against breast cancer cell lines in vitro and in vivo. Mol Cancer Ther 2014; 13:1419-30. [PMID: 24694948 DOI: 10.1158/1535-7163.mct-13-0700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current cytotoxic chemotherapy produces clinical benefit in patients with breast cancer but the survival impact is modest. To explore novel cytotoxic agents for the treatment of advanced disease, we have characterized a new and pharmacokinetically improved Hec1-targeted compound, TAI-95. Nine of 11 breast cancer cell lines tested were sensitive to nanomolar levels of TAI-95 (GI(50) = 14.29-73.65 nmol/L), and more importantly, TAI-95 was active on a number of cell lines that were resistant (GI(50) > 10 μmol/L) to other established cytotoxic agents. TAI-95 demonstrates strong inhibition of in vivo tumor growth of breast cancer model when administered orally, without inducing weight loss or other obvious toxicity. Mechanistically, TAI-95 acts by disrupting the interaction between Hec1 and Nek2, leading to apoptotic cell death in breast cancer cells. Furthermore, TAI-95 is active on multidrug-resistant (MDR) cell lines and led to downregulation of the expression of P-glycoprotein (Pgp), an MDR gene. In addition, TAI-95 increased the potency of cytotoxic Pgp substrates, including doxorubicin and topotecan. Certain clinical subtypes of breast cancer more likely to respond to Hec1-targeted therapy were identified and these subtypes are the ones associated with poor prognosis. This study highlights the potential of the novel anticancer compound TAI-95 in difficult-to-treat breast cancers.
Collapse
Affiliation(s)
- Lynn Y L Huang
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chia-Chi Chang
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Ying-Shuan Lee
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Jia-Ming Chang
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Jiann-Jyh Huang
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Shih-Hsien Chuang
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Kuo-Jang Kao
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Gillian M G Lau
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Pei-Yi Tsai
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chia-Wei Liu
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Her-Sheng Lin
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| | - Johnson Y N Lau
- Authors' Affiliations: Taivex Therapeutics Corporation, Taipei; and Development Center for Biotechnology, New Taipei City, Taiwan
| |
Collapse
|
15
|
Sun S, Han Y, Liu J, Fang Y, Tian Y, Zhou J, Ma D, Wu P. Trichostatin A targets the mitochondrial respiratory chain, increasing mitochondrial reactive oxygen species production to trigger apoptosis in human breast cancer cells. PLoS One 2014; 9:e91610. [PMID: 24626188 PMCID: PMC3953478 DOI: 10.1371/journal.pone.0091610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM Histone deacetylase inhibitors (HDACIs)-based therapies have stimulated interest via their anti-tumor activities, including apoptosis induction, cell cycle arrest, cell differentiation, and autophagy. However, the mechanisms of HDACI-associated anti-tumor activity are not yet clearly defined. The aim of this study was to explore the key events of Trichostatin A (TSA), a classic HDACI agent, against breast cancer cells. METHODS The MCF-7, MDA-MB-231 and MCF-10A cell lines were evaluated with colony-forming and cell viability assays. Apoptosis and cell cycle distribution were detected by flow cytometry. Mitochondrial function was measured with biochemical assays, flow cytometry and transmission electron microscopy. RESULTS TSA inhibited breast cancer cell viability and proliferation, without affecting MCF-10A cell. TSA-induced breast cancer cell apoptosis was initiated by G2-M arrest and depended on mitochondrial reactive oxygen species (ROS) produced subsequent to reduced mitochondrial respiratory chain activity. The enhanced mitochondrial ROS production and apoptosis in cancer cells were markedly attenuated by antioxidants, such as N-acetyl cysteine (NAC), reduced glutathione (GSH) and Vitamin C. CONCLUSION The present study demonstrated that TSA-induced cell death by arresting cell cycle in G2-M phase and was dependent on production of mitochondria-derived ROS, which was derived from impaired mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Shujuan Sun
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Fang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Tian
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DM); (PW)
| | - Peng Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DM); (PW)
| |
Collapse
|